大学物理8-2 电容和电容器

合集下载

大学物理复习——电容器和电介质

大学物理复习——电容器和电介质
2
q
2
8 0R
E内 0
R O

q
q2 q2 另解:C 4 0 R , W e 2C 8 0 R
例 3:一个单芯电缆半径为 r1 ,铅包皮的内半径为 r2 ,其间充有相对电容率为εr 的电介质,求:当电缆 芯与铅皮之间的电压为U12时,长为 L 的电缆中储存 的静电能。

P

O
x
d
A
B
12.2 电容器的连接 1.串联:
q q1 q2
q1 q1 q 2 q 2
C1 C2
q q C U U1 U 2
1 1 1 C C1 C 2
2. 并联:
U U1 U 2
等效电容
q
q
C
U1
U2
U
q1 q1
A B AB
q 0S (3)由电容定义: C 得: C U A UB d 0S 平板电容器电容: C d
0S
仅由 S , d , 0 决定,与其所带电量、极板间电压无关。
2. 球形电容器 两极板的半径 R A , RB ( RB R A R A ) q ;两板间场强: q E (1)充电 4 0 r 2 (2)两极板间电势差:
U
等效电容
q
U U1 U 2 q q1 q2
C1 q 2 q2
C2
q
C
C C1 C 2
U
U
12.3 电介质(介电质)对电场的影响 电介质 — 不导电的绝缘物质。 q0 一、电介质对电场的影响 C0 1.充电介质时电容器的电容 q

大学物理电容器与电场能量

大学物理电容器与电场能量

例谈中小学信息技术教学中的思维培养在当今信息社会中,信息技术已经成为了人们生活和工作中不可或缺的一部分。

如何在中小学阶段培养学生的信息技术思维能力,已经成为了教育界的一个重要课题。

本文将结合教学实践,探讨中小学信息技术教学中的思维培养方法。

一、培养学生的创新思维能力信息技术的发展日新月异,新技术不断涌现,因此培养学生的创新思维能力显得尤为重要。

在信息技术教学中,教师应该引导学生进行自主学习和探究,通过开展课程设计和项目实践等活动,培养学生的问题意识和解决问题的能力。

在设计网页的课程中,教师可以布置一个主题任务,要求学生利用所学的知识自主设计一个网页。

学生在完成任务的过程中,需要从各个方面考虑,如布局、配色、内容等,这样可以培养学生的创新思维能力。

信息技术教学中,逻辑思维能力的培养也是非常重要的。

信息技术涉及到许多抽象概念和逻辑关系,学生需要通过逻辑推理来解决问题。

在教学中,教师可以引导学生进行逻辑思维训练。

在编程教学中,教师可以设计一些逻辑问题,要求学生通过编写程序解决。

这样可以锻炼学生的逻辑思维能力,提高他们解决问题的能力。

在信息技术教学中,很多项目和任务需要学生进行合作完成。

培养学生的协作思维能力也是非常重要的。

在教学中,教师可以组织学生进行小组合作,让学生在合作中学会分工合作、互相协调和交流合作等能力。

在做一个多媒体作品的项目中,学生可以组成小组,每个人负责一个环节,然后进行合作完成整个作品。

这样既培养了学生的协作能力,又提高了他们的信息技术能力。

中小学信息技术教学中的思维培养是非常重要的。

教师应该通过创新思维、逻辑思维、协作思维和创造思维的培养,全面提高学生的信息技术能力。

通过教学实践的不断探索和尝试,我们可以更好地促进学生的思维发展,培养他们的信息技术思维能力。

各向同性电介质中电容器电容计算的探讨

各向同性电介质中电容器电容计算的探讨

※基金项目:益阳市科技计划资助项目(2011JZ11)。

作者简介:邓英(1981—),女,湖南益阳人,湖南城市学院通信与电子工程学院,讲师,主要从事大学物理、普通物理教学。

电容器电容的计算是大学物理课程中最基本的内容之一,而各向同性电介质电容器电容的计算方法也是多样的,大学物理教材中主要从定义公式来介绍电容器的电容,学生在做课后习题时,不能举一反三,很少考虑到用其他方法来求解电容器的电容,本文介绍了用三种方法求解大学物理学中常见的电容器的电容,并对三种方法进行了讨论分析。

1利用定义公式来计算各向同性电介质电容器的电容这种方法是大学物理书上介绍的较多的也是学生比较熟悉的的一种求解方法,具体的解题步骤可归纳如下:(1)运用高斯定律求解电容器极板之间的电位移矢量D 的大小。

(2)根据各向同性电介质中电位移D 与电场强度E 的关系E=D ε,求出两极板之间的电场强度E 的大小。

(3)再利用电位差U 与场强E 的关系式U =L∫E ⇀.dl ⇀,求解两板之间电位差U 。

(4)应用定义C=Q U,求解电容器的电容,其中公式中的Q 表示一块极板所带的电量的大小。

[例1]平行板电容器两板之间的距离为d ,极板面积为s ,两板之间的电势差为U,左右两部分空间分别充满介电常数为ε1和ε2的电介质,ε1充满的空间的极板面积为s 1,求电容器的电容C。

图1平行板电容器示意图[解]:直接应用定义[1]C=Q U =εr ε0S 1d +εr ε0(S-S 1)d这种方法比较容易,不做详细解答。

球形电容器和圆柱形电容器也能够采用此方法来求解电容器的电容,这种方法比较简单,本文不再具体讨论。

2利用叠加法来计算各向同性电容器的电容这种方法在大学物理书上介绍的很少,学生做课后习题时往往忽略了这种方法,也很少有学生想到这种方法,用叠加法来求解电容器的电容,具体步骤可归纳如下:(1)把电容器看成是由两个或者多个电容器的串联或者并联而成,先求各个电容器的电容,C 1,C 2…C n 。

大学物理授课教案 第八章 静电场中的导体和电介

大学物理授课教案 第八章 静电场中的导体和电介

第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时,称这种状态为导体的静电平衡。

(2)静电平衡条件从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。

从电势角度也可以把上述结论说成: ①⇒导体内各点电势相等; ②⇒导体表面为等势面。

用一句话说:静电平衡时导体为等势体。

二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=•内S Sq s d E 01ε 导体静电平衡时其内0=E,∴ 0=•⎰s d E S, 即0=∑内S q 。

S 面是任意的,∴导体内无净电荷存在。

结论:静电平衡时,净电荷都分布在导体外表面上。

2、导体内有空腔时电荷分布(1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=•内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴ 空腔内表面上的净电荷为0。

但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即BAU U =,因此,假设不成立。

结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。

(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=•内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。

又因为此时导体内部无净电荷,而腔内有电荷+q ,∴ 腔内表面必有感应电荷-q ,。

大学物理第8章

大学物理第8章
实验事实指出,两个点电荷之间的相互作用力并不因为第 三个点电荷的存在而有所改变.因此,两个以上的点电荷对一个 点电荷施加的作用力等于各个点电荷单独存在时对该点电荷的 作用力的矢量和.这个结论称为静电力叠加原理.
每个点电荷所受的总静电力,等于其他点电荷单独存在时 作用在该点电荷上的静电力的矢量和.数学表达式为
在国际单位制中,电量的单位为库仑(C),简称库.
第一节 电荷 库仑定律
2. 电荷的量子化
实验证明,自然界中带电体所带的电量总是一个基本单 元的整数倍.物体所带的电荷不是以连续的方式出现,而是以 一个个不连续的量值出现的,电荷的这种特性称为电荷的量 子化.电荷的基本单元就是一个电子所带电量的绝对值,即 e=1.602×10-19C
1785年,法国物理学家库仑通过扭秤实验,首先对两个静止点 电荷之间的相互作用做了定量研究,作用力的大小与这两个点电荷的 电量之积成正比,与两个点电荷之间距离的平方成反比,作用力的方 向沿着两点电荷的连线,同号电荷互相排斥,异号电荷互相吸引.
第一节 电荷 库仑定律
其数学表达式为
k由实验测定. f表示q1对q2的作 用力,r为q1、q2之间的距离,r为由q1指向q2的单位向 量,图8-1 两静止点电荷的相互作用力如图8- 1所示. 当q1、q2为同号时,f的方向与er的方向一致;当q1、 q2为异号时,f的方向与er的方向相反.
见摸得着,但是依然对外有物质性表现.静电场的物质性表现有两
个方面,即
第二节 电场 电场强度
(1)在静电场中的任何带电体都会受到电场的作用力. (2)当带电体在静电场中运动时,电场力会对它做功. 以上两种物质性表现是研究静电场的基础,根据静电场 的第一种表现,从力的观点出发引入电场强度;根据静电场 的第二种表现,从功和能的角度引入电势.

大学物理电磁学复习题含答案

大学物理电磁学复习题含答案

题8-12图8-12 两个无限大的平行平面都均匀带电.电荷的面密度分别为1σ和2σ.解: 如题8-12图示.两带电平面均匀带电.电荷面密度分别为1σ与2σ.两面间. n E)(21210σσε-= 1σ面外. n E)(21210σσε+-= 2σ面外. n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体.如题8-13图所示.试求:两球心O 与O '点的场强.并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合.见题8-13图(a).(1) ρ+球在O 点产生电场010=E.ρ-球在O 点产生电场dπ4π3430320r E ερ= ∴ O 点电场d33030r E ερ= ; (2) ρ+在O '产生电场'dπ4d 3430301E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r'.相对O 点位矢为r (如题8-13(b)图)则 03ερrEPO=. 03ερr E O P '-=' ,∴ 0003'3)(3ερερερd OO r r E E E OP PO P=='-=+='∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C .两电荷距离d=0.2cm.把这电偶极子放在1.0×105N ·C -1.解: ∵ 电偶极子p在外场E 中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C.2q =3.0×10-8C.相距1r =42cm.要把它们之间的距离变为2r =25cm.需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示.在A .B 两点处放有电量分别为+q ,-q 的点电荷.AB 间距离为2R .现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点.解: 如题8-16图示0π41ε=O U 0)(=-R q Rq0π41ε=O U )3(R q R q -R q0π6ε-=∴ Rqq U U qA o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性.AB 和CD 段电荷在O 点产生的场强互相抵消.取θd d R l =则θλd d R q =产生O 点Ed 如图.由于对称性.O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势.以0=∞U⎰⎰===AB200012ln π4π4d π4d RRx x xxU ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg.电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ.在电子轨道处场强 rE 0π2ελ=电子受力大小 re eE F e0π2ελ==∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅8-19 空气可以承受的场强的最大值为E =30kV ·cm -1.超过这个数值时空气要发生火花放电.今有一高压平行板电容器.极板间距离为d =0.5cm.解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E与电势U 的关系U E -∇= .求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q .半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q .半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴ ()ix R qxi xU E 2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U Erεθ=∂∂-= 30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说.(1)相向的两面上.电荷的面密度总是大小相等而符号相反;(2)相背的两面上. 证: 如题8-21图所示.设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ.2σ.3σ.4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时.有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P .则其场强为零.并且它是由四个均匀带电平面产生的场强叠加而成的.即222204321=---εσεσεσεσ 又∵ +2σ3=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等.符号相同.8-22 三个平行金属板A .B 和C 的面积都是200cm 2.A 和B 相距4.0mm.A 与C 相距2.0 mm .B .C 都接地.如题8-22图所示.如果使A 板带正电3.0×10-7C.略去边缘效应.问B 板和C 板上的感应电荷各是多少?以地的电势为零.则A 板的电势是多少?解: 如题8-22图示.令A 板左侧面电荷面密度为1σ.右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =.即 ∴ AB AB AC AC E E d d = ∴ 2d d21===ACAB AB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S qσCC10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳.现给内球壳带电+q .(1)(2)先把外球壳接地.然后断开接地线重新绝缘.*(3)再使内球壳接地.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +.且均匀分布.其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R q rr q r E U εε (2)外壳接地时.外表面电荷q +入地.外表面不带电.内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-.外壳外表面带电量为+-q q ' (电荷守恒).此时内球壳电势为零.且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R q R R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远.并用导线与地相联.在与球心相距为R d 3=处有一点电荷+q .试求:金属球上的感应电荷的电量.解: 如题8-24图所示.设金属球感应电荷为q '.则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε 得 -='q 3q8-25 有三个大小相同的金属小球.小球1.2带有等量同号电荷.相距甚远.其间的库仑力为0F .试求: (1)用带绝缘柄的不带电小球3先后分别接触1.2后移去.小球1.2之间的库仑力; (2)小球3依次交替接触小球1.2很多次后移去.小球1.2 解: 由题意知 202π4r q F ε=(1)小球3接触小球1后.小球3和小球1均带电2q q =',小球3再与小球2接触后.小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后.每个小球带电量均为32q .∴ 小球1、2间的作用力00294π432322F r qq F==ε *8-26 如题8-26图所示.一平行板电容器两极板面积都是S.相距为d .分别维持电势A U =U .B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间.片的面积也是S.片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ.2σ.3σ.4σ,5σ,6σ如图所示.由静电平衡条件.电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+65432154326543002101σσσσσσσσσσεσσσσεσσd U S qSq d U U C S S q B A解得 Sq 261==σσSq dU2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E00422εεσ+==)2d(212d 02Sq U E U U CB C ε+===注意:因为C 片带电.所以2U U C ≠.若C 片不带电.显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳.介质相对介电常数为r ε.金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sdrd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r rQ E r Qr D ε==外(2)介质外)(2R r >电势rQ E U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R Q R r q rεεε+-=)11(π420R r Q r r-+=εεε (3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdr R R Rr r Qdr rQ εεε)11(π4210R R Q r r-+=εεε 8-28 如题8-28图所示.在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示.充满电介质部分场强为2E .真空部分场强为1E.自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D .22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面.长度均为l .半径分别为1R 和2R (2R >1R ).且l >>2R -1R .两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时.求:(1)在半径r 处(1R <r <2R =.厚度为dr.长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则 rlDS D S π2d )(=⋅⎰当)(21R r R <<时.Q q =∑ ∴ rlQ D π2= (1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w Wεευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==*8-30 金属球壳A 和B 的中心相距为r .A 和B 原来都不带电.现在A 的中心放一点电荷1q .在B 的中心放一点电荷2q .如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力.2q 有无加速度;(2)去掉金属壳B .求1q 作用在2q 上的库仑力.此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律.即2210π41r q q F ε=但2q 处于金属球壳中心.它受合力..为零.没有加速度. (2)去掉金属壳B .1q 作用在2q 上的库仑力仍是2210π41r q q F ε=.但此时2q 受合力不为零.有加速度.题8-30图 题8-31图8-31 如题8-31图所示.1C =0.25μF.2C =0.15μF.3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF 、500 V”和“300 pF、900 V”.把它们串联起来后等值电容是多少?如果两端加上1000 V .是否会击穿?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U .而100021=+U U∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿.然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源.再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示.设联接后两电容器带电分别为1q ,2q题8-33图 则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球.外套有一同心的导体球壳.壳的内、外半径分别为2R =4.0cm 和3R =5.0cm.当内球带电荷Q =3.0×10-8C .求:(1)整个电场储存的能量;(2)如果将导体壳接地.计算储存的能量;(3)此电容器的电容值.解: 如图.内球带电Q .外球壳内表面带电Q -.外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r r Q E ε = 3R r >时 302π4r r Q E ε = ∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r Q W εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J(2)导体壳接地时.只有21R r R <<时30π4r r Q E ε =,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J (3)电容器电容 )11/(π422102R R Q W C-==ε 121049.4-⨯=F。

第三章电容器教案

第三章电容器教案

第三章电容器一、本章教学目的:1、理解电容器和电容的概念。

了解决定平行板电容器电容大小的因素,并掌握它的计算公式。

2、了解常用电容器的分类和额定值的意义。

3、掌握电容器串、并联的特点和使用条件,以及电路计算。

4、了解电容器充放电的过程。

掌握电场能的计算。

二、教学步骤:(共七课时)1、第一节电容器与电容一课时;2、第二节电容器的参数和种类一课时;3、第三节电容器的联接二课时+一课时练习课;4、第四节电容器中的电场能一课时;5、机动一课时。

三、基础知识:1、电荷电量的概念;2、电源的内部结构;3、回路电压定律:U=U1+U2+U3。

四、教学过程:1、第一课时:3 一、新课导入:1.莱顿瓶的故事:1745年荷兰莱顿大学的科学家马森布罗克发现,使电学史上第一个保存电荷的容器诞生了。

法国人诺莱特在巴黎一座大教堂前所作的表演,诺莱特邀请了路易十五的皇室成员临场观看莱顿瓶的表演,他让七百名修道士手拉手排成一行,队伍全长达900英尺(约275米)。

然后,诺莱特让排头的修道士用手握住莱顿瓶,让排尾的握瓶的引线,一瞬间,七百名修道士,因受电击几乎同时跳起来,在场的人无不为之口瞪目呆,诺莱特以令人信服的证据向人们展示了电的巨大威力2.导语:莱顿瓶就是简单的电容器,是电路的基本元件之一,在各种电子产品和电力设备中,有着广泛的作用。

教师:叙述,导入学生:集中精力,聆听第三章电容器第一节电容器与电容一、电容器:1.特性:储存电荷。

2.定义:被绝缘介质隔开的两个导体的总体。

(极板,介质)3. 充电:使两个极板带上等量异种电荷的过程。

4.放电:两极板带的电荷互相中和,电容器不带电。

12五、课堂例题讲解:(多媒体投影) 1.书本例1。

2.书本例2。

3.平行板电容器充电后,保持电容器两极板与电池两极相连,电容器的C 、Q 、U 、将怎样改变?师生互动3六、小结,布置作业: 1.学生小结,老师指正。

今天我们学习了哪些内容?你认为哪些重要?2.作业:p56练习,补充一(多媒体投影)指导学生整理思路2. 第二课时第三章 电容器 第一节 电容器与电容 一、 电容器: 1.特性:储存电荷。

大学物理习题解答8第八章振动与波动 (2)

大学物理习题解答8第八章振动与波动 (2)

第七章 电磁感应本章提要1. 法拉第电磁感应定律· 当穿过闭合导体回路所包围面积的磁通量发生变化时,导体回路中就将产生电流,这种现象称为电磁感应现象,此时产生的电流称为感应电流。

· 法拉第电磁感应定律表述为:通过导体回路所包围面积的磁通量发生变化石,回路中产生地感应电动势i e 与磁通量m Φ变化率的关系为d d t=-F e其中Φ为磁链,负号表示感应电动势的方向。

对螺线管有N 匝线圈,可以有m N Φ=Φ。

2. 楞次定律· 楞次定律可直接判断感应电流方向,其表述为:闭合回路中感应电流的方向总是要用自己激发的磁场来阻碍引起感应电流的磁通量的变化。

3. 动生电动势· 磁感应强度不变,回路或回路的一部分相对于磁场运动,这样产生的电动势称为动生电动势。

动生电动势可以看成是洛仑兹力引起的。

· 由动生电动势的定义可得:()d bab ae 醋ò=v B l· 洛伦兹力不做功,但起能量转换的作用。

4. 感生电动势·当导体回路静止,而通过导体回路磁通量的变化仅由磁场的变化引起时,导体中产生的电动势称为感生电动势。

d dd d d d L S t te F =??蝌Ñ-=-i E r B S 其中E i 为感生电场强度。

5. 自感· 当回路中的电流发生变化,它所激发的磁场产生的通过自身回路的磁通量也会发生变化,此变化将在自身回路中产生感应电动势,这种现象称为自感现象,产生的电动势为自感电动势,其表达式为:d d L iL te =-(L 一定时)负号表明自感电动势阻碍回路中电流的变化,比例系数L 称为电感或自感系数。

· 自感系数表达式为:L iY =· 自感磁能212m W LI =6. 互感· 对于两个临近的载流回路,当其中一回路中的电流变化时,电流所激发的变化磁场在另一回路中产生感应电动势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解 设两金属线的电荷线密度为
R ,
求单位长度的电容 .
R 的平行长直导线中心间距为 d ,
2R
o
U
R
8 – 2 电容和电容器
第八章 静电场中的导体和电介质
*例5 为了防止电极间的空气被击穿,通常避免采用尖
端电极,而采用球形电极。然而,若两球形电极间存在 高电压的情况下,球形电极间的空气也还是会被击穿的。 如下图所示,有两个半径均为r=2cm 的球形电极放在击 穿场强 Eb 30 kV cm 的空气中,两球的中心距离为 d=10cm 。试粗略估算在上述条件下,两球形电极间的击 穿电压大约是多少?
2π 0lRA 0 S d RB RA RA , C d d
平行板电 容器电容
8 – 2 电容和电容器
第八章 静电场中的导体和电介质
例3 常用的圆柱形电容器,是由半径为 R1 的长 直圆柱导体和同轴的半径为 R2 的薄导体圆筒组成, 并在直导体与导体圆筒之间充以相对电容率为 r 的 电介质.设直导体和圆筒单位长度上的电荷分别为 和 . 求此圆柱形电容器的电容.
1
8 – 2 电容和电容器
第八章 静电场中的导体和电介质
按点电荷来估算,球形电极表面附近的电场强度大小为
1 1 Es [ 2 ] 2 4 0 r (d r )

Q
1 1 U12 ( ) 2 0 r d r
E s Eb U 12 U b
此时
Q
由于电极表面附近的电场强度最大,故
由(1)可知
R2 U E dr
1
dr R2 ln R 2π r 2π 0 r R1 0 r q R2 真空圆柱形 C 2π 0 r l ln r C0 U 电容器电容 R1 C R2 单位长度电容 2π 0 r ln
2
2 1
E
q
er

R2




R1

+ +
*P

r

8 – 2 电容和电容器 球形电容器的电容
第八章 静电场中的导体和电介质
q 1 1 U ( ) 4 π 0 R1 R2
4 0 R1R2 q 1 1 q C q [ ( )] 4 0 R1 R2 U R2 R1
8 – 2 电容和电容器
第八章 静电场中的导体和电介质
解:设想球形电极A和B各带+Q和-Q的的电荷,若忽略电 极间的静电感应导致的电荷重新分,看成是电荷均匀分 布在球形电极的表面上,并把球形表面上的电荷视为集 中于球心。基于以上考虑,电极A表面的电势为
Q Q V1 ( ) 4 0 r d r Q Q 同理,电极B表面的电势 V2 ( ) 4 0 r d r 两电极间的电势差 U V V 1 ( Q Q ) 12 1 2 2 0 r d r 1

讨论
1 1 当r=1cm 时 U b 2 Eb r d r 54kV 1 1 2 2 r (d r )
当r=0.5cm 时
U b 28.5kV
8 – 2 电容和电容器 三 1
第八章 静电场中的导体和电介质
电容器的串联和并联 电容器的并联 +
q1 C
U1
1
C C1 C2
q 0S C q /U E (d d ) d d
8 – 2 电容和电容器 2
第八章 静电场中的导体和电介质
球形电容器的电容 球形电容器是由半径分别为 R1和 R2 的两同心金 属球壳所组成. 设内球带正电( q ),外球带负电( q ).
4 π 0r ( R1 r R2 ) R dr q U E dl l 4 π 0 R r 2 q 1 1 ( ) 4 π 0 R1 R2
C q /U q S 特点:电压相等,即
0
q2

E (d d )
U1 U 2 U
q q1 q2
d d
U 2C2
q q1 q2 C C1 C2 U U1 U 2
8 – 2 电容和电容器 2 电容器的串联
第八章 静电场中的导体和电介质
q1

S l
l Cd
2
0
10.6m
8 – 2 电容和电容器
第八章 静电场中的导体和电介质
例8-2 平板电容器的极板面积为S,二极板距离为d。 使电容器充电后断开电源,二极板间的电势差用静电计测 量,如图(a)所示。现将厚度为 的金属平板平行插入 二极板之间,则静电计的指针张角变小,如图(b)所示。 试解释上述现象,并求出插入金属平板后电容器的电容。
8 – 2 电容和电容器 例1
第八章 静电场中的导体和电介质
平行平板电容器的极板是边长为 l 的正方
形,两板之间的距离 d 应取多大才行. 解
1mm .如两极板的电势差
4
为 100 V ,要使极板上储存 10
4
C 的电荷,边长 l
C
0S
d
q 10 6 C F 10 F U 100
4 0 Eb Q 1 1 2 2 r (d r )
得击穿电压
1 1 U b 2 Eb r d r 86.3kV 1 1 2 2 r (d r )
8 – 2 电容和电容器
第八章 静电场中的导体和电介质
由于上述结果是在忽略球形电极因静电感 应而引起的电荷重新分布,以及把球形电 极上的电荷看成集中在,所得的结果是近似的。但即 使如此,也已大体可以看出实际的情况。 球形电极的半径与击穿电压的关系
, ( RA r RB ) (2)E 2π 0 r R dr q RB (3) U ln R 2 π r 2 π 0l RA 0
B A
(1)设两导体圆柱面单位长度上 分别带电
l RB
-+ - + RA -+ R B -+
l
q RB (4)电容 C 2 π 0l ln U RA
8 – 2 电容和电容器 一 孤立导体的电容
第八章 静电场中的导体和电介质
定义:
q C V
单位
1F 1C/V
1μF 10 F 12 1pF 10 F
q
6
例如 孤立的导体球的电容
q C V
地球
q 4 π 0 R q 4 π 0 R
6
R
4
RE 6.4 10 m, CE 2 电容和电容器
*例4 两半径为
第八章 静电场中的导体和电介质
且d
E E E E 2π 0 x 2π 0 (d x) d R d R P 1 1 U Edx ( x d x )dx x 2π 0 R R x dx d R d E ln ln E π 0 R π 0 R d 单位长度的电容 C π 0 ln d
8 – 2 电容和电容器 1 平板电容器
第八章 静电场中的导体和电介质
(1)设两导体板分别带电
q
d
S
+ + + + + +
(2)两带电平板间的电场强度
q E 0 0S
(3)两带电平板间的电势差
qd U Ed 0S
(4)平板电容器电容
q
q
-
q S C 0 U d
8 – 2 电容和电容器
第八章 静电场中的导体和电介质
二 电容器 电容器电容的定义:
q q C VA VB U
Q
Q
U AB
AB
E dl
VB
VA
电容的大小仅与导体的形状、相对位置、其间的 电介质有关. 与所带电荷量无关. 电容器电容的计算 步骤
1)设两极板分别带电 q ; 2)求 E ; 3)求 U ;4)求 C .
q2
U 2C2
1 1 1 C C1 C2
特点:电荷相等,即
C1 U1
q1 q2 q

U U1 U 2
q q 1 U1 U 2 1 1 1 1 C U U1 U 2 C q q1 U1 q2 U 2 C1 C2
8 – 2 电容和电容器
第八章 静电场中的导体和电介质

R2




R1

+ +
若在两球面间充满相对电容率为 r 的电介质时,则电 容器的电容为 4 0 r R1 R2

*P

r

C rC
R2 R1
孤立导体球电容
R2 ,
C 4π 0 R1
8 – 2 电容和电容器 3 圆柱形电容器
第八章 静电场中的导体和电介质
r
R2
R1

8 – 2 电容和电容器
第八章 静电场中的导体和电介质
r
R2
R1

解:
1 E dS l
S
0
E 2 π 0 r r
( R1 r R2 )
8 – 2 电容和电容器
第八章 静电场中的导体和电介质
r
R2
R1

( R1 r R2 ) E 2π 0 r r
8 – 2 电容和电容器 解
第八章 静电场中的导体和电介质
由于静电平衡时金属平板内部场强等于零,所以两 极板之间的电势差 B U E dl E (d d )
A
比原来的电势差 U Ed 降低了,所以指针张角变小。 设两极板所带电量的绝对值为q,则插入金属平板后, 电容器的电容
相关文档
最新文档