导数中不等式相关的几个问题

合集下载

利用导数证明或解决不等式问题

利用导数证明或解决不等式问题

利用导数证明或解决不等式问题
导数在解决不等式问题中起着非常重要的作用,利用导数可以轻松地证明和解决各种
不等式问题。

本文将通过一些具体的例子,来展示导数在不等式问题中的应用。

我们来看一个简单的例子:证明当x>0时,e^x\geq1+x。

我们可以利用导数来证明这
个不等式。

我们计算e^x和1+x的导数,分别为e^x和1。

然后我们发现e^x-1\geq x,这意味着在x>0时,e^x\geq1+x。

这样就利用导数证明了这个不等式。

除了证明不等式,我们还可以利用导数来解决不等式问题。

我们要求解不等式
x^2-5x+6>0。

我们可以通过求解x^2-5x+6的导数来判断x^2-5x+6的增减性。

首先求导得
到2x-5,然后令2x-5=0,解得x=\frac{5}{2}。

这说明在x<\frac{5}{2}时,x^2-5x+6<0,而在x>\frac{5}{2}时,x^2-5x+6>0。

不等式x^2-5x+6>0的解集是x<\frac{5}{2}或
x>\frac{3}{2}。

高中数学:利用导数证明不等式的常见题型

高中数学:利用导数证明不等式的常见题型

利用导数证明不等式的常见题型题型一构造函数法把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键.这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。

题型二通过对函数的变形,利用分析法,证明不等式【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:题型三求最值解决任意、存在性变量问题解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:题型四分拆成两个函数研究【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质题型五设而不求当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.【启示】设而不求,整体代换是一种常用的方法,在解析几何中体现很多.在本例第(2)问中,只设出了零点而没有求出零点,这是一种非常好的方法,同学们一定要认真体会,灵活应用.题型六估值法题型七利用图象的特点,证明不等式题型八证明数列不等式题型九利用放缩法证明不等式【注意】在解决第(2)问时,用构造函数法证不出来,又试着分开两个函数仍然不行,正当我一筹莫展时,忽然想到与第一问题的切线联系,如果左边的函数的图像在切线的上方,右边函数的图像在切线的下方,这样问题不就得证了吗?心里非常高兴,马上付诸行动。

利用导数解不等式考点与题型归纳

利用导数解不等式考点与题型归纳

利用导数解不等式考点与题型归纳考点一 f (x )与f ′(x )共存的不等式问题[典例] (1)定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为__________.(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为__________________.[解析] (1)由题意构造函数g (x )=f (x )-12x ,则g ′(x )=f ′(x )-12<0,所以g (x )在定义域内是减函数. 因为f (1)=1,所以g (1)=f (1)-12=12,由f (lg x )>lg x +12,得f (lg x )-12lg x >12.即g (lg x )=f (lg x )-12lg x >12=g (1),所以lg x <1,解得0<x <10. 所以原不等式的解集为(0,10).(2)借助导数的运算法则,f ′(x )g (x )+f (x )g ′(x )>0⇔[f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增.又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).[答案] (1)(0,10) (2)(-∞,-3)∪(0,3)[解题技法](1)对于不等式f ′(x )+g ′(x )>0(或<0) ,构造函数F (x )=f (x )+g (x ). (2)对于不等式f ′(x )-g ′(x )>0(或<0) ,构造函数F (x )=f (x )-g (x ). 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ).(4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x )(g (x )≠0).[典例] (1)设f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0, 当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(2)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x[解析] (1)令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2.由题意知,当x >0时,g ′(x )<0, ∴g (x )在(0,+∞)上是减函数. ∵f (x )是奇函数,f (-1)=0, ∴f (1)=-f (-1)=0, ∴g (1)=f (1)=0,∴当x ∈(0,1)时,g (x )>0,从而f (x )>0; 当x ∈(1,+∞)时,g (x )<0,从而f (x )<0. 又∵f (x )是奇函数,∴当x ∈(-∞,-1)时,f (x )>0; 当x ∈(-1,0)时,f (x )<0.综上,所求x 的取值范围是(-∞,-1)∪(0,1).(2)令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2].当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0.综上可知,f (x )>0. [答案] (1)A (2)A [解题技法](1)对于xf ′(x )+nf (x )>0型,构造F (x )=x n f (x ),则F ′(x )=x n -1[xf ′(x )+nf (x )](注意对x n-1的符号进行讨论),特别地,当n =1时,xf ′(x )+f (x )>0,构造F (x )=xf (x ),则F ′(x )=xf ′(x )+f (x )>0.(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f (x )x n ,则F ′(x )=xf ′(x )-nf (x )xn +1(注意对x n +1的符号进行讨论),特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f (x )x,则F ′(x )=xf ′(x )-f (x )x 2>0. [典例] (1)已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有( ) A .e 2 019f (-2 019)<f (0),f (2 019)>e 2 019f (0) B .e 2 019f (-2 019)<f (0),f (2 019)<e 2 019f (0) C .e 2 019f (-2 019)>f (0),f (2 019)>e 2 019f (0) D .e 2 019f (-2 019)>f (0),f (2 019)<e 2 019f (0)(2)已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e (e 为自然对数的底数),则不等式e xf (x )-e 2x >0的解集为________.[解析] (1)构造函数h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,即h (x )在R 上单调递减,故h (-2 019)>h (0),即f (-2 019)e -2 019>f (0)e 0⇒e 2 019f (-2 019)>f (0);同理,h (2 019)<h (0),即f (2 019)<e 2 019f (0),故选D.(2)由f (x )+2f ′(x )>0得2⎣⎡⎦⎤12f (x )+f ′(x )>0,可构造函数h (x )=e 2xf (x ),则h ′(x )=12e 2x[f (x )+2f ′(x )]>0,所以函数h (x )=e 2x f (x )在R 上单调递增,且h (2)=e f (2)=1.不等式e x f (x )-e 2x >0等价于e 2x f (x )>1,即h (x )>h (2)⇒x >2,所以不等式e x f (x )-e 2x >0的解集为(2,+∞).[答案] (1)D (2)(2,+∞) [解题技法](1)对于不等式f ′(x )+f (x )>0(或<0),构造函数F (x )=e x f (x ).(2)对于不等式f′(x)-f(x)>0(或<0),构造函数F(x)=f(x) e x.考点二不等式恒成立问题不等式恒成立问题的基本类型类型1:任意x,使得f(x)>0,只需f(x)min>0.类型2:任意x,使得f(x)<0,只需f(x)max<0.类型3:任意x,使得f(x)>k,只需f(x)min>k.类型4:任意x,使得f(x)<k,只需f(x)max<k.类型5:任意x,使得f(x)>g(x),只需h(x)min=[f(x)-g(x)]min>0.类型6:任意x,使得f(x)<g(x),只需h(x)max=[f(x)-g(x)]max<0.[典例]已知函数f(x)=ax+ln x+1,若对任意的x>0,f(x)≤x e2x恒成立,求实数a的取值范围.[解]法一:构造函数法设g(x)=x e2x-ax-ln x-1(x>0),对任意的x>0,f(x)≤x e2x恒成立,等价于g(x)≥0在(0,+∞)上恒成立,则只需g(x)min≥0即可.因为g′(x)=(2x+1)e2x-a-1x,令h(x)=(2x+1)e2x-a-1x(x>0),则h′(x)=4(x+1)e2x+1x2>0,所以h(x)=g′(x)在(0,+∞)上单调递增,因为当x―→0时,h(x)―→-∞,当x―→+∞时,h(x)―→+∞,所以h(x)=g′(x)在(0,+∞)上存在唯一的零点x0,满足(2x0+1)e2x0-a-1x0=0,所以a=(2x0+1)e2x0-1x0,且g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以g(x)min=g(x0)=x0e2x0-ax0-ln x0-1=-2x20e2x0-ln x0,则由g(x)min≥0,得2x20e2x0+ln x0≤0,此时0<x0<1,e2x0≤-ln x02x20,所以2x0+ln(2x0)≤ln(-ln x0)+(-ln x0),设S (x )=x +ln x (x >0),则S ′(x )=1+1x >0,所以函数S (x )在(0,+∞)上单调递增, 因为S (2x 0)≤S (-ln x 0), 所以2x 0≤-ln x 0即e2x 0≤1x 0,所以a =(2x 0+1)e2x 0-1x 0≤(2x 0+1)·1x 0-1x 0=2,所以实数a 的取值范围为(-∞,2]. 法二:分离参数法因为f (x )=ax +ln x +1,所以对任意的x >0,f (x )≤x e 2x 恒成立,等价于a ≤e 2x -ln x +1x 在(0,+∞)上恒成立.令m (x )=e 2x -ln x +1x (x >0),则只需a ≤m (x )min 即可,则m ′(x )=2x 2e 2x +ln xx 2, 再令g (x )=2x 2e 2x +ln x (x >0),则g ′(x )=4(x 2+x )e 2x +1x >0,所以g (x )在(0,+∞)上单调递增,因为g ⎝⎛⎭⎫14=e 8-2ln 2<0,g (1)=2e 2>0, 所以g (x )有唯一的零点x 0,且14<x 0<1,所以当0<x <x 0时,m ′(x )<0,当x >x 0时,m ′(x )>0, 所以m (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,因为2x 20e2x 0+ln x 0=0, 所以ln 2+2ln x 0+2x 0=ln(-ln x 0), 即ln(2x 0)+2x 0=ln(-ln x 0)+(-ln x 0), 设s (x )=ln x +x (x >0),则s ′(x )=1x +1>0,所以函数s (x )在(0,+∞)上单调递增, 因为s (2x 0)=s (-ln x 0), 所以2x 0=-ln x 0,即e2x 0=1x 0,所以m (x )≥m (x 0)=e2x 0-ln x 0+1x 0=1x 0-ln x 0x 0-1x 0=2,则有a ≤2,所以实数a 的取值范围为(-∞,2]. [解题技法]求解不等式恒成立问题的方法(1)构造函数分类讨论:遇到f (x )≥g (x )型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h (x )=f (x )-g (x ) 或“右减左”的函数u (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或u (x )max ≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.(2)分离函数法:分离参数法的主要思想是将不等式变形成一个一端是参数a ,另一端是变量表达式v (x )的不等式后,应用数形结合思想把不等式恒成立问题转化为水平直线y =a 与函数y =v (x )图象的交点个数问题来解决.[题组训练](2019·陕西教学质量检测)设函数f (x )=ln x +kx,k ∈R.(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围. 解:(1)由条件得f ′(x )=1x -kx2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直, ∴f ′(e)=0,即1e -ke 2=0,得k =e ,∴f ′(x )=1x -e x 2=x -ex2(x >0),由f ′(x )<0得0<x <e ,由f ′(x )>0得x >e , ∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e)=ln e +ee =2.∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +kx -x (x >0),则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -kx 2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x =-⎝⎛⎭⎫x -122+14恒成立, ∴k ≥14.故k 的取值范围是⎣⎡⎭⎫14,+∞. 考点三 可化为不等式恒成立问题可化为不等式恒成立问题的基本类型类型1:函数f (x )在区间D 上单调递增,只需f ′(x )≥0.类型2:函数f (x )在区间D 上单调递减,只需f ′(x )≤0.类型3:∀x 1,x 2∈D ,f (x 1)>g (x 2),只需f (x )min >g (x )max .类型4:∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),只需f (x )min >g (x )min .类型5:∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),只需f (x )max <g (x )max .[典例] 已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=xe x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.[解] (1)由题设知f ′(x )=x 2+2x +a ≥0在[1,+∞)上恒成立,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而函数y =-(x +1)2+1在[1,+∞)单调递减,则y max =-3,∴a ≥-3,∴a 的最小值为-3.(2)“对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立”等价于“当x ∈⎣⎡⎦⎤12,2时,f ′(x )max ≤g (x )max ”.∵f ′(x )=x 2+2x +a =(x +1)2+a -1在⎣⎡⎦⎤12,2上单调递增, ∴f ′(x )max =f ′(2)=8+a .而g ′(x )=1-xe x ,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1,∴g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.∴当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (1)=1e . 由8+a ≤1e ,得a ≤1e-8,∴实数a 的取值范围为⎝⎛⎦⎤-∞,1e -8. [解题技法](1)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.[题组训练]已知函数f (x )=3x -3x +1,g (x )=-x 3+32(a +1)x 2-3ax -1,其中a 为常数.(1)当a =1时,求曲线g (x )在x =0处的切线方程;(2)若a <0,对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),求实数a 的取值范围.解:(1)当a =1时,g (x )=-x 3+3x 2-3x -1,所以g ′(x )=-3x 2+6x -3,g ′(0)=-3,又因为g (0)=-1, 所以曲线g (x )在x =0处的切线方程为y +1=-3x ,即3x +y +1=0. (2)f (x )=3x -3x +1=3(x +1)-6x +1=3-6x +1,当x ∈[1,2]时,1x +1∈⎣⎡⎦⎤13,12, 所以-6x +1∈[-3,-2], 所以3-6x +1∈[0,1],故f (x )在[1,2]上的值域为[0,1].由g (x )=-x 3+32(a +1)x 2-3ax -1,可得g ′(x )=-3x 2+3(a +1)x -3a =-3(x -1)(x -a ). 因为a <0,所以当x ∈[1,2]时,g ′(x )<0, 所以g (x )在[1,2]上单调递减, 故当x ∈[1,2]时,g (x )max =g (1)=-1+32(a +1)-3a -1=-32a -12,g (x )min =g (2)=-8+6(a +1)-6a -1=-3, 即g (x )在[1,2]上的值域为⎣⎡⎦⎤-3,-32a -12. 因为对于任意的x 1∈[1,2] ,总存在x 2∈[1,2], 使得f (x 1)=g (x 2),所以[0,1]⊆⎣⎡⎦⎤-3,-32a -12, 所以-32a -12≥1,解得a ≤-1,故a 的取值范围为(-∞,-1].[课时跟踪检测]1.(2019·南昌调研)已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意的x >0都有2f (x )+xf ′(x )>0成立,则( )A .4f (-2)<9f (3)B .4f (-2)>9f (3)C .2f (3)>3f (-2)D .3f (-3)<2f (-2)解析:选A 根据题意,令g (x )=x 2f (x ),其导函数g ′(x )=2xf (x )+x 2f ′(x ),又对任意的x >0都有2f (x )+xf ′(x )>0成立,则当x >0时,有g ′(x )=x [2f (x )+xf ′(x )]>0恒成立,即函数g (x )在(0,+∞)上为增函数,又由函数f (x )是定义在R 上的偶函数,则f (-x )=f (x ),则有g (-x )=(-x )2f (-x )=x 2f (x )=g (x ),即函数g (x )也为偶函数,则有g (-2)=g (2),且g (2)<g (3),则有g (-2)<g (3),即有4f (-2)<9f (3).2.f (x )在(0,+∞)上的导函数为f ′(x ),xf ′(x )>2f (x ),则下列不等式成立的是( ) A .2 0182f (2 019)>2 0192f (2 018) B .2 0182f (2 019)<2 0192f (2 018)C .2 018f (2 019)>2 019f (2 018)D .2 018f (2 019)<2 019f (2 018)解析:选A 令g (x )=f (x )x 2,x ∈(0,+∞),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3>0,则g (x )在(0,+∞)上为增函数, 即f (2 019)2 0192>f (2 018)2 0182, ∴2 0182f (2 019)>2 0192f (2 018).3.(2019·郑州质检)若对于任意的正实数x ,y 都有⎝⎛⎭⎫2x -y e ln y x ≤xm e 成立,则实数m 的取值范围为( )A.⎝⎛⎭⎫1e ,1 B.⎝⎛⎦⎤1e 2,1 C.⎝⎛⎦⎤1e 2,eD.⎝⎛⎦⎤0,1e 解析:选D 由⎝⎛⎭⎫2x -y e ln y x ≤xm e , 可得⎝⎛⎭⎫2e -y x ln y x ≤1m . 设yx=t ,令f (t )=(2e -t )·ln t ,t >0, 则f ′(t )=-ln t +2e t -1,令g (t )=-ln t +2e t -1,t >0,则g ′(t )=-1t -2et 2<0,∴g (t )在(0,+∞)上单调递减,即f ′(t )在(0,+∞)上单调递减. ∵f ′(e)=0,∴f (t )在(0,e)上单调递增,在(e ,+∞)上单调递减, ∴f (t )max =f (e)=e ,∴e ≤1m ,∴实数m 的取值范围为⎝⎛⎦⎤0,1e . 4.设函数f (x )=e x ⎝⎛⎭⎫x +3x -3-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________.解析:原问题等价于存在x ∈(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=e x (x 2-3x +3),x ∈(0,+∞),则a ≥g (x )min .而g ′(x )=e x (x 2-x ),由g ′(x )>0可得 x ∈(1,+∞),由g ′(x )<0可得x ∈(0,1),∴函数g (x )在区间(0,+∞)上的最小值为g (1)=e.综上可得,实数a 的最小值为e.答案:e5.(2018·武汉质检)已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2.(1)求函数f (x )的单调区间;(2)若对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.解:(1)∵函数f (x )=x ln x 的定义域是(0,+∞),∴f ′(x )=ln x +1.令f ′(x )<0,得ln x +1<0,解得0<x <1e, ∴f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 令f ′(x )>0,得ln x +1>0,解得x >1e, ∴f (x )的单调递增区间是⎝⎛⎭⎫1e ,+∞. 综上,f (x )的单调递减区间是⎝⎛⎭⎫0,1e ,单调递增区间是⎝⎛⎭⎫1e ,+∞. (2)∵g ′(x )=3x 2+2ax -1,2f (x )≤g ′(x )+2恒成立,∴2x ln x ≤3x 2+2ax +1恒成立.∵x >0,∴a ≥ln x -32x -12x 在x ∈(0,+∞)上恒成立.设h (x )=ln x -32x -12x (x >0),则h ′(x )=1x-32+12x 2=-(x -1)(3x +1)2x 2.令h ′(x )=0,得x 1=1,x 2=-13(舍去). 当x 变化时,h ′(x ),h (x )的变化情况如下表:∴当x =1时,h (x )取得极大值,也是最大值,且h (x )max =h (1)=-2,∴若a ≥h (x )在x ∈(0,+∞)上恒成立,则a ≥h (x )max =-2,故实数a 的取值范围是[-2,+∞).6.(2019·郑州质检)已知函数f (x )=ln x -a (x +1),a ∈R ,在点(1,f (1))处的切线与x 轴平行.(1)求f (x )的单调区间;(2)若存在x 0>1,当x ∈(1,x 0)时,恒有f (x )-x 22+2x +12>k (x -1)成立,求k 的取值范围.解:(1)由已知可得f (x )的定义域为(0,+∞).∵f ′(x )=1x-a ,∴f ′(1)=1-a =0,∴a =1, ∴f ′(x )=1x -1=1-x x, 令f ′(x )>0,得0<x <1,令f ′(x )<0,得x >1,∴f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)不等式f (x )-x 22+2x +12>k (x -1)可化为ln x -x 22+x -12>k (x -1). 令g (x )=ln x -x 22+x -12-k (x -1)(x >1), 则g ′(x )=1x -x +1-k =-x 2+(1-k )x +1x, 令h (x )=-x 2+(1-k )x +1(x >1),则h (x )的对称轴为x =1-k 2. ①当1-k 2≤1,即k ≥-1时,易知h (x )在(1,x 0)上单调递减, ∴h (x )<h (1)=1-k .若k ≥1,则h (x )<0,∴g ′(x )<0,∴g (x )在(1,x 0)上单调递减,∴g (x )<g (1)=0,不合题意;若-1≤k <1,则h (1)>0,∴必存在x 0使得x ∈(1,x 0)时g ′(x )>0,∴g (x )在(1,x 0)上单调递增,∴g (x )>g (1)=0恒成立,符合题意.②当1-k 2>1,即k <-1时,易知必存在x ,使得h (x )在(1,x 0)上单调递增.∴h (x )>h (1)=1-k >0,∴g ′(x )>0,∴g (x )在(1,x 0)上单调递增.∴g (x )>g (1)=0恒成立,符合题意.综上,k 的取值范围为(-∞,1).7.已知函数f (x )=x e x +ln x x(e 为自然对数的底数). (1)求证:函数f (x )有唯一零点;(2)若对任意x ∈(0,+∞),x e x -ln x ≥1+kx 恒成立,求实数k 的取值范围.解:(1)证明:f ′(x )=(x +1)e x+1-ln x x 2,x ∈(0,+∞), 易知当0<x <1时,f ′(x )>0,所以f (x )在区间(0,1)上为增函数,又因为f ⎝⎛⎭⎫1e =e 1e -e 2e <0,f (1)=e >0,所以f ⎝⎛⎭⎫1e f (1)<0,即f (x )在区间(0,1)上恰有一个零点,由题可知f (x )>0在(1,+∞)上恒成立,即在(1,+∞)上无零点, 所以f (x )在(0,+∞)上有唯一零点.(2)设f (x )的零点为x 0,即x 0e x 0+ln x 0x 0=0. 原不等式可化为x e x -ln x -1x≥k , 令g (x )=x e x-ln x -1x ,则g ′(x )=x e x +ln x x x , 由(1)可知g (x )在(0,x 0) 上单调递减,在(x 0,+∞)上单调递增, 故g (x 0) 为g (x )的最小值.下面分析x 0e x 0+ln x 0x 0=0, 设x 0e x 0=t ,则ln x 0x 0=-t , 可得⎩⎪⎨⎪⎧ ln x 0=-tx 0,ln x 0+x 0=ln t ,即x 0(1-t )=ln t , 若t >1,等式左负右正不相等;若t <1,等式左正右负不相等,只能t =1.因此g (x 0)=x 0e x 0-ln x 0-1x 0=-ln x 0x 0=1,所以k ≤1. 即实数k 的取值范围为(-∞,1].。

41 导数中不等式的证明问题(学生版)

41 导数中不等式的证明问题(学生版)

专题41导数中不等式的证明问题【高考真题】1. (2022•北京)已知函数/(x) = e*ln(l+x).(1)求曲线y = fa)在点(。

,/(0))处的切线方程;(2)设g*)=rα),讨论函数g*)在。

+8)上的单调性;(3)证明:对任意的S, £€(0, +∞),有"s+E)>f(s)+f(f).2. (2022•浙江)设函数/(X) = ± + lnx(x>0). Ix(1)求/O)的单调区间;(2)已知α"eR,曲线y =7。

)上不同的三点(国,/(8)),(巧Ja2)),(孙/(巧))处的切线都经过点3 3.证明:(i )⅛α> e ,则O<b-f(α) <g(∕-1);・・-4⅛.z% mf2 e -4 112 e —。

(11)若OVaVe, X] <A⅛<Λ⅞ ,贝∣]一 + -^-V — + 一< -- T -e oe Xy Xy ci oe(注:e = Z71828…是自然对数的底数)3. (2022・新高考∏)已知函数/(x) = XeS-e,(1)当。

=1时,讨论/*)的单调性;(2)当“>。

时,/(x)v-1,求α的取值范围;(3)设〃eN*,证明:-/= + -/^=+,,+T^=>ln(72 + 1)- √12+ 1 √22+2 y∣n2+n【方法总结】构造法证明不等式是指在证明与函数有关的不等式时,根据所要证明的不等式,构造与之相关的函数,利用函数单调性、极值、最值加以证明.常见的构造方法有:(1)直接构造法:证明不等式力r)>g(x)(∕(x) Vga))转化为证明y(x)—g(x)>o(/u)—g(X)V0),进而构造辅助函数〃(X)= 火防一g(x);(2)适当放缩构造法:X一是根据已知条件适当放缩,二是利用常见的放缩结论,如lnx≤r-l, e v≥r+l, InκVχVeYQO),币≤ln(x + l)≤x(x>-1); (3)构造“形似”函数:稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数;(4)构造双函数:若直接构造函数求导难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数Kr)和g(x),利用其最值求解.【题型突破】1 .己知函数y(x)="—αdnχ-l(a£R, tz≠O).(I)讨论函数AX)的单调性;(2)当x>l 时,求证:—^>⅛-1. x—1 e A2 .已知函数外)=1—3」,g(x)=χ-Inx.(1)证明:g(x)≥l;(2)证明:(x-inx)成x)>l-±∙3 . (2021 •全国乙)设函数/(x)=ln(α-x),已知X=O是函数y=M(x)的极值点.⑴求〃;(2)设函数g。

导数的不等式恒成立问题

导数的不等式恒成立问题

导数的应用【考查重点与常见题型】题型一运用导数证明不等式问题例1设a为实数,函数f(x)=e x-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1.(1)解由f(x)=e x-2x+2a,x∈R知f′(x)=e x-2,x∈R.令f′(x)=0,得x=ln 2,于是当x变化时,f′(x),f(x)的变化情况如下表:x (-∞,ln 2)ln 2(ln 2,+∞)f′(x)-0+f(x)单调递减2(1-ln 2+a)单调递增故f(x)的单调递减区间是(-∞,ln 2],单调递增区间是[ln 2,+∞),f(x)在x=ln 2处取得极小值,极小值为f(ln 2)=e ln 2-2ln 2+2a=2(1-ln 2+a).(2)证明设g(x)=e x-x2+2ax-1,x∈R,于是g′(x)=e x-2x+2a,x∈R.由(1)知当a>ln 2-1时,g′(x)的最小值为g′(ln 2)=2(1-ln 2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R上是增加的.于是当a>ln 2-1时,对任意x∈(0,+∞),都有g(x)>g(0).而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.已知f (x )=x ln x . (1)求g (x )=f (x )+kx(k ∈R)的单调区间; (2)证明:当x ≥1时,2x -e ≤f (x )恒成立.解:(1)g (x )=ln x +kx ,∴令g ′(x )=x -kx 2=0得x =k .∵x >0,∴当k ≤0时,g ′(x )>0.∴函数g (x )的增区间为(0,+∞),无减区间; 当k >0时g ′(x )>0得x >k ;g ′(x )<0得0<x <k , ∴增区间为(k ,+∞),减区间为(0,k ). (2)证明:设h (x )=x ln x -2x +e(x ≥1), 令h ′(x )=ln x -1=0得x =e , h (x ),h ′(x )的变化情况如下:x 1 (1,e) e (e ,+∞)h ′(x ) -1 -0 + h (x )e -2故h (x )≥0.即f (x )≥2x -e.题型二 利用导数研究恒成立问题例2已知函数f (x )=ln x -ax.(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求a 的值;(3)若f (x )<x 2在(1,+∞)上恒成立,求a 的取值范围. 解 (1)由题意知f (x )的定义域为(0,+∞), 且f ′(x )=1x +a x 2=x +ax 2.∵a >0,∴f ′(x )>0,故f (x )在(0,+∞)上是增加的. (2)由(1)可知,f ′(x )=x +ax2.①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上是增加的,∴f (x )min =f (1)=-a =32,∴a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上是减少的,∴f (x )min =f (e)=1-a e =32,∴a =-e2(舍去).③若-e<a <-1,令f ′(x )=0得x =-a ,当1<x <-a 时,f ′(x )<0,∴f (x )在(1,-a )上是减少的; 当-a <x <e 时,f ′(x )>0,∴f (x )在(-a ,e)上是增加的, ∴f (x )min =f (-a )=ln(-a )+1=32,∴a =- e.综上所述,a =- e. (3)∵f (x )<x 2,∴ln x -ax<x 2.又x >0,∴a >x ln x -x 3.令g (x )=x ln x -x 3,h (x )=g ′(x )=1+ln x -3x 2, h ′(x )=1x -6x =1-6x 2x .∵x ∈(1,+∞)时,h ′(x )<0, ∴h (x )在(1,+∞)上是减少的. ∴h (x )<h (1)=-2<0,即g ′(x )<0, ∴g (x )在(1,+∞)上也是减少的. g (x )<g (1)=-1,∴当a ≥-1时,f (x )<x 2在(1,+∞)上恒成立.已知函数f (x )=ax 3-3x +1对x ∈(0,1]总有f (x )≥0成立,则实数a 的取值范围是__________. 答案 [4,+∞)解析 当x ∈(0,1]时不等式ax 3-3x +1≥0可化为 a ≥3x -1x 3,设g (x )=3x -1x3,x ∈(0,1],g ′(x )=3x 3-(3x -1)(3x 2)x 6=-6⎝⎛⎭⎫x -12x 4,g ′(x )与g (x )随x 的变化情况如下表:x ⎝⎛⎭⎫0,12 12 ⎝⎛⎭⎫12,1 g ′(x ) + 0 -g (x )4因此g (x )的最大值为4,则实数a 的取值范围是[4,+∞).导数与不等式的综合问题典例:(12分)(2011·辽宁)设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2.(1)求a ,b 的值; (2)证明:f (x )≤2x -2.(1)解 f ′(x )=1+2ax +bx.[1分]由已知条件得⎩⎪⎨⎪⎧ f (1)=0,f ′(1)=2,即⎩⎪⎨⎪⎧1+a =0,1+2a +b =2.解得⎩⎪⎨⎪⎧a =-1,b =3.[4分](2)证明 因为f (x )的定义域为(0,+∞), 由(1)知f (x )=x -x 2+3ln x .设g (x )=f (x )-(2x -2)=2-x -x 2+3ln x , 则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x .[8分]当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0.所以g (x )在(0,1)上是增加的,在(1,+∞)上是减少的.[10分] 而g (1)=0,故当x >0时,g (x )≤0, 即f (x )≤2x -2.[12分]一、选择题(每小题5分,共20分)1. 已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( )A .(-1,2)B .(-∞,-3)∪(6,+∞)C .(-3,6)D .(-∞,-1)∪(2,+∞)答案 B解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根. ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0.∴a >6或a <-3.2. 曲线y =f (x )=e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( )A.94e 2 B .2e 2C .e 2D.e 22答案 D解析 ∵点(2,e 2)在曲线上, ∴切线的斜率k =f ′(2)=e 2,∴切线的方程为y -e 2=e 2(x -2),即e 2x -y -e 2=0. 与两坐标轴的交点坐标为(0,-e 2),(1,0), ∴S △=12×1×e 2=e 22.3. 已知函数f (x )=x 2+mx +ln x 是单调递增函数,则m 的取值范围是( )A .m >-2 2B .m ≥-2 2C .m <2 2D .m ≤2 2答案 B解析 依题意知,x >0,f ′(x )=2x 2+mx +1x ,令g (x )=2x 2+mx +1,x ∈(0,+∞),当-m4≤0时,g (0)=1>0恒成立,∴m ≥0成立,当-m4>0时,则Δ=m 2-8≤0,∴-22≤m <0,综上,m 的取值范围是m ≥-2 2.4. 某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总营业收入R 与年产量x 的年关系是R =R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400),80 000 (x >400),则总利润最大时,每年生产的产品是( ) A .100B .150C .200D .300答案 D解析 由题意得,总成本函数为C =C (x )=20 000+100x , 总利润P (x )=⎩⎪⎨⎪⎧300x -x 22-20 000 (0≤x ≤400),60 000-100x (x >400),又P ′(x )=⎩⎪⎨⎪⎧300-x (0≤x ≤400),-100 (x >400),令P ′(x )=0,得x =300,易知x =300时,总利润P (x )最大. 二、填空题(每小题5分,共15分)5. 设P 为曲线C :y =f (x )=x 2-x +1上一点,曲线C 在点P 处的切线的斜率的范围是[-1,3],则点P 纵坐标的取值范围是__________. 答案 ⎣⎡⎦⎤34,3解析 设P (a ,a 2-a +1),则f ′(x )=2a -1∈[-1,3], ∴0≤a ≤2.而g (a )=a 2-a +1=⎝⎛⎭⎫a -122+34, 当a =12时,g (a )min =34.当a =2时,g (a )max =3,故P 点纵坐标的取值范围是⎣⎡⎦⎤34,3.6. 在直径为d 的圆木中,截取一个具有最大抗弯强度的长方体梁,则矩形面的长为________(强度与bh 2成正比,其中h 为矩形的长,b 为矩形的宽). 答案63d 解析 截面如图所示,设抗弯强度系数为k ,强度为ω, 则ω=kbh 2, 又h 2=d 2-b 2,∴ω=kb (d 2-b 2)=-kb 3+kd 2b , ω′=-3kb 2+kd 2, 令ω′=0,得b 2=d 23, ∴b =33d 或b =-33d (舍去). ∴h =d 2-b 2=63d . 7. 已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________.答案 -13解析 对函数f (x )求导得f ′(x )=-3x 2+2ax , 由函数f (x )在x =2处取得极值知f ′(2)=0, 即-3×4+2a ×2=0,∴a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x , 易知f (x )在(-1,0)上是减少的,在(0,1)上是增加的, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4. 又∵f ′(x )=-3x 2+6x 的图像开口向下, 且对称轴为x =1,∴当n ∈[-1,1]时, f ′(n )min =f ′(-1)=-9. 故f (m )+f ′(n )的最小值为-13. 三、解答题(共22分)8. (10分)设函数f (x )=ax 3-3x 2 (a ∈R ),且x =2是y =f (x )的极值点.(1)求实数a的值,并求函数的单调区间;(2)求函数g(x)=e x·f(x)的单调区间.解(1)f′(x)=3ax2-6x=3x(ax-2),因为x=2是函数y=f(x)的极值点,所以f′(2)=0,即6(2a-2)=0,因此a=1.经验证,当a=1时,x=2是函数y=f(x)的极值点.所以f′(x)=3x2-6x=3x(x-2).所以y=f(x)的单调增区间是(-∞,0),(2,+∞);单调减区间是(0,2).(2)g(x)=e x(x3-3x2),g′(x)=e x(x3-3x2+3x2-6x)=e x(x3-6x)=x(x+6)(x-6)e x,因为e x>0,所以y=g(x)的单调增区间是(-6,0),(6,+∞);单调减区间是(-∞,-6),(0,6).。

导数与不等式的证明及函数零点、方程根的问题

导数与不等式的证明及函数零点、方程根的问题

05 总结与展望
导数与不等式证明及函数零点、方程根问题的总结
导数与不等式证明
导数是研究函数性质的重要工具,通过导数可以研究函数的单调性、极值和最值等。不等 式证明则是数学中常见的题型,利用导数可以证明不等式,如AM-GM不等式、CauchySchwarz不等式等。
函数零点问题
函数的零点是指满足$f(x)=0$的$x$值。研究函数的零点对于理解函数的性质和解决方程 的根的问题具有重要意义。通过导数可以研究函数的零点个数和位置,以及零点附近的函 数性质。
感谢您的观看
• 应用领域的拓展:导数与不等式证明及函数零点、方程根的问题不仅在数学领 域有广泛应用,在其他学科和工程领域也有着重要的应用价值。例如,在经济 学、物理学和社会科学等领域,这些问题都可能成为重要的研究课题。
• 与其他数学分支的交叉融合:随着数学各分支之间的交叉融合,导数与不等式 证明及函数零点、方程根的问题可能会与其他数学分支产生更多的交叉点。例 如,与概率论、统计学和复分析等领域的结合可能会产生新的研究方向和应用 场景。
导数在求解函数零点、方程根中的注意事项
注意定义域
在使用导数研究函数性质 时,需要注意函数的定义 域,确保导数在定义域内 连续。
考虑多解情况
在求解函数零点或方程根 时,需要注意多解情况, 全面考虑所有可能的解。
注意函数的奇偶性
在利用导数研究函数性质 时,需要注意函数的奇偶 性,以便更准确地判断函 数的性质。
不等式
不等式是表示两个数或两个量之 间大小关系的数学表达式。
导数与不等式的性质
01
导数大于零,函数在该区间内单 调递增;导数小于零,函数在该 区间内单调递减。
02
不等式的基本性质包括传递性、 加法性质、乘法性质等。

导数在证明不等式中的有关应用

导数在证明不等式中的有关应用

导数在证明不等式中的有关应用1.最值的判定导数可以帮助我们判断一个函数在其中一区间的最值。

具体来说,如果在一个区间内,函数的导数恒为零或者导数的正负性在其中一点发生变化,那么在该区间内函数的最值就会出现。

例如,考虑函数$f(x)=x^2-4x+3$。

我们可以通过求取导数$f'(x)=2x-4$,并令其等于零,得到$x=2$。

通过检查导数的符号,可以确认在$x<2$时导数为负,$x>2$时导数为正。

因此,在$x<2$时,函数的导数为负,说明函数在这个区间上是递减的;而在$x>2$时,函数的导数为正,说明函数在这个区间上是递增的。

因此,根据导数的正负性和最值判定原则,我们可以得出结论:函数$f(x)$在区间$(-\infty,2)$上单调递减,在区间$(2,+\infty)$上单调递增。

进一步,我们可以求得函数的最值,即当$x=2$时,函数取得最小值。

因此,我们得到了函数$f(x)$的最值以及最值的取值点。

2.利用导数证明不等式的成立导数可以被用来证明各种类型的不等式。

其中一个常见的方法是使用导数的定义和可微函数的局部性质。

考虑函数$f(x)$在闭区间$[a,b]$上有定义且在开区间$(a,b)$内可微。

如果在$(a,b)$内存在一个点$c$,使得$f'(c)>0$,那么基于导数的定义,我们可以得出结论:对于任意的$x \in (a,b)$,都有$f'(x)>0$。

这意味着$f(x)$在$(a,b)$内是单调递增的。

我们可以进一步得出结论:对于任意的$x \in [a,b]$,都有$f'(x) \geq f'(a)$。

因此,我们可以断定$f(x)$在闭区间$[a,b]$上是凸函数。

根据凸函数的性质,我们可以利用函数的凸性证明各种类型的不等式。

例如,我们可以证明对于任意的$x>0$和$y>0$,成立如下的不等式:$\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y}$。

导数与不等式常考题型

导数与不等式常考题型

导数与不等式题型1.已知2()ln ,()3f x x x g x x ax ==-+-.(1) 求函数()f x 在[,2](0)t t t +>上的最小值;(2) 对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,求实数a 的取值范围;(3) 证明:对一切(0,)x ∈+∞,都有12ln x x e ex>-成立. 本题是一道函数、导数与不等式证明的综合题,主要考查导数的几何意义、导数的求法以及导数在研究函数的性质和证明不等式等方面的应用,考查等价转化、分类讨论等数学思想方法以及分析问题与解决问题的能力. 对于第(1)问,只要运用导数的方法法研究出函数()f x 的单调性即可,最值就容易确定了;对于第(2)问,是一个不等式恒成立的问题,可通过分离常数,将其转化为求函数的最值问题来处理;对于第(3)问,可以通过构造函数,利用导数研究其函数值的正负来实现不等式的证明.解析: (1) '()ln 1f x x =+, 当1(0,)x e ∈,'()0f x <,()f x 单调递减, 当1(,)x e ∈+∞,'()0f x >,()f x 单调递增. ① 102t t e <<+<,t 无解; ② 102t t e <<<+,即10t e <<时,min 11()()f x f e e==-; ③ 12t t e≤<+,即1t e ≥时,()f x 在[,2]t t +上单调递增,min ()()ln f x f t t t ==; 所以min 110()1ln t e e f x t t t e ⎧-<<⎪⎪=⎨⎪≥⎪⎩, ,. (2) 22ln 3x x x ax ≥-+-,则32ln a x x x ≤++, 设3()2ln (0)h x x x x x=++>,则2(3)(1)'()x x h x x +-=,(0,1)x ∈,'()0h x <,()h x 单调递减,(1,)x ∈+∞,'()0h x >,()h x 单调递增,所以min ()(1)4h x h ==.因为对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,所以min ()4a h x ≤=.(3) 问题等价于证明2ln ((0,))x x x x x e e>-∈+∞, 由⑴可知()ln ((0,))f x x x x =∈+∞的最小值是1e -,当且仅当1x e =时取到.设2()((0,))x x m x x e e=-∈+∞,则1'()x x m x e -=,易得max 1()(1)m x m e ==-,当且仅当1x =时取到, 从而对一切(0,)x ∈+∞,都有12ln x x e ex >-成立. 2、已知函数ln ()x x k f x e+=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()'()g x x x f x =+,其中'()f x 为()f x 的导函数.证明:对任意20,()1x g x e -><+.【答案】3、已知函数a N n x a x x f n ,),1ln()1(1)(*∈-+-=其中为常数. (Ⅰ)当n =2时,求函数)(x f 的极值;(Ⅱ)当a =1时,证明:对任意的正整数n ,当2≥x 时,有.1)(-≤x x f【分析及解】(Ⅰ)定义域为),1(+∞,当2=n 时,),1ln()1(1)(2-+-=x a x x f ∴3232)1(22)1(2)1()(--+-=---='x a ax ax x x a x f ① 当0=a 时,3)1(1)(--='x x f , ∵1>x ,∴0)1(3>-x 恒成立,即0)(<'x f 在),1(+∞∈x 上恒成立,故)(x f 在),1(+∞∈x 上为减函数,∴)(x f 无极值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数中“不等式”相关的几个问题
f (x )=ln(1+ax )
-2x
x +2
.
专题二:不等式两边“变量”相同且不含参
1. (2016年山东高考)已知.当时,证明对于任意的成立.
2. (2016年全国II 高考)讨论函数的单调性,并证明当时,;
专题三:不等式两边不同“变量”的任意存在组合型
1. 已知函数f (x )=x -1
x +1
,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使
f (x 1)≥
g (x 2),则实数a 的取值范围是__________
2. 已知函数.设当时,若()2
21
()ln ,R x f x a x x a x
-=-+
∈1a =()3
()'2
f x f x +>[]1,2x ∈x
x 2f (x)x 2
-=
+e 0x >(2)20x x e x -++>1()ln 1a f x x ax x -=-+
-()a R ∈2()2 4.g x x bx =-+1
4
a =
对任意,存在,使,求实数取值范围.
专题四:不等式两边不同“变量”的对等构造、齐次消元型
类型1:对称变量,构造法求解
1. 已知函数f(x)=
2
1x 2
-ax+(a-1)ln x ,1a >。

(1)讨论函数()f x 的单调性; (2)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有
1212
()()
1f x f x x x ->--。

2. 已知函数 (I )讨论函数的单调性;
(II )设.如果对任意,,求的
取值范围。

3. 设函数f (x )=ln x +m
x
,m ∈R .
(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x
3
零点的个数;
(3)若对任意b >a >0,f (b )-f (a )
b -a <1恒成立,求m 的取值范围.
4. 当()1,,n m n m Z >>∈,时,证明:(
)()m
n
n m mn
nm >
1(0,2)x ∈[]21,2x ∈12()()f x g x ≥b 1ln )1()(2
+++=ax x a x f )(x f 1-<a ),0(,21+∞∈x x ||4)()(|2121x x x f x f -≥-a
类型2:齐次变量,消元法求解
1. 已知函数()ln ,f x x mx m m R =-+∈
(1)已知函数()f x 在点()()
1,1f 处与x 轴相切,求实数m 的取值,(m=1) (2)求函数()f x 的单调区间
(3)在(1)的结论下,对于任意的0<,a b <,证明:()()1
1f b f a b a
a
-<
--
2. 已知函数()=ln ,f x x 当0a b <<时,求证:22
2()
()()a b a f b f a a b -->
+
3. 已知函数()()()2
=ln ,,f x x g x f x ax bx
=++其中()g x 的图象在点()()
1,1M g 处的切线平行与x 轴
(1)确定a 与b 的关系
(2)若,讨论函数()g x 的单调性
(3)设斜率为k 的直线与函数()f x 的图象交于两点()()()112212,,,,A x y B x y x x <,
证明:
21
11k x x << 专题五:证明含有“ln(())f n ”的不等式
类型1:对数式未出现在“+…+”中 1. 已知函数()ln ()1a f x x a x =+
∈+R .求证:1
21
715131)1ln(+++++>+n n (n *N ∈).
2. 已知,求证:对大于1的任意正整数
类型2:对数式出现在“+…+”中 1. 已知函数 (1)求函数的单调区间; (2)若不等式在区间上恒成立,求实数k 的取值范围;
(3)求证:
1()ln x f x x ax -=
+1111
,ln 234n n n
>++++ (x)
x
x g kx x f ln )(,)(==x
x
x g ln )(=
)()(x g x f ≥),0(+∞e n
n 21
ln 33ln 22ln 444<+⋅⋅⋅++
2. 已知函数,
(1)求函数的单调区间;
(2)若 恒成立,试确定实数的取值范围; (3)证明:(且)
3. 已知函数f (x )=
2
1x 2
-ax + (a -1)ln x ,1a >. (Ⅰ) 若2a >,讨论函数()f x 的单调性;
(II )已知a =1,3
()2()g x f x x =+,若数列{a n }的前n 项和为()n S g n =,证明:
231111
(2,)3
n n n N a a a ++++<≥∈ .
4. 设函数()()2
ln 10f x x b x b =++≠,其中.
(1)当1b =时,求曲线()y f x =在点()0,0处的切线方程; (2)讨论函数()f x 的单调性;
(3)当2n N n *
∈≥,且时证明不等式:3311111
ln 1112323
n ⎡⎤⎛⎫⎛⎫⎛⎫++⋅⋅⋅++++⋅⋅⋅
⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 311121
n n +
>-+.
型式3:不等号两边均无“+…+”
1. 设函数2()ln(1)f x x b x =++,其中0b ≠.
(I )当1
2
b >
时,判断函数()f x 在定义域上的单调性; (II )求函数()f x 的极值点;
(III )证明对任意的正整数n ,不等式23
111
ln(1)n n n +>-都成立.
()ln(1)(1)1f x x k x =---+()f x ()0f x ≤k ln 2ln 3ln 4ln (1)34514
n n n n -+++<+ *
n N ∈1n >。

相关文档
最新文档