聚类分析与判别分析的区别

合集下载

多元统计分析(聚类分析,判别分析,对应分析)

多元统计分析(聚类分析,判别分析,对应分析)

91.500
358.500
95.000
357.000
输出的第一部分对应表是由原始数据学号与科目 分类的列联表,可以看出观测总数n=40,说明原 始数据中没有记录缺失,有效边际为行列数的总 和。
维数 1 2 3 总计
汇总 惯量比例
置信奇异值
奇异值 .075 .052
惯量 .006 .003
解释 .548 .264
2 -.143 -.427 .065 -.013
概述列点a
惯量 .002 .003 .005 .000 .010
点对维惯量
1 .000
2 .099
.022
.880
.975
.021
.003
.001
1.000
1.000
贡献
1 .000 .047 .989 .039
维对点惯量 2 .135 .887 .010 .006
(列)的每一状态对每一维度(公共因子)特
征值的贡献及每一维度对行(列)各个状态的
特征值等贡献。如第一维度中,外语对应的数 值最大,为0.975,说明外语这一状态对第一维 度的贡献最大。
对应分析
由以上两张坐标表可以得出如下的叠加散点图,也是输出 的最后一部分,是学号各状态与科目各状态同时在一张二 维图上的投影。在图上既可以看到每一变量内部各状态之 间的相关关系,又可以同时考察两变量之间的相关关系。
对应分析
结果分析
学号 1 2 3 4
语文 82.000 81.000 83.000 72.000
对Байду номын сангаас表
数学 120.000 119.000 115.000 115.000
科目 外语 71.000 77.000 69.000 75.000

聚类分析与判别分析区别

聚类分析与判别分析区别
ij
表示

cos
!
ij





!

ia

ja




!







!


"
ia
ja


cos
!
ij



cos
!
ij
=1

说明两个样品





完全相似

cos
!
ij




















cos
!
ij
=0

说明





完全不一样

cos
!
ij
接近









差别大。把所有两两样品的相似系数都
通过聚类分析可以达到简化数据的目的


众多的样品先聚集成比较好处理的几个类别或子


然后再进行后续的多元分析。
比如在回归分析


有时不对原始数据进行拟合

而是对这些子集
的中心作拟合

可能会更有意义。又比如

为了研
究不同消费者群体的消费行为特征

「聚类分析与判别分析」

「聚类分析与判别分析」

「聚类分析与判别分析」聚类分析和判别分析是数据挖掘和统计学中常用的两种分析方法。

聚类分析是一种无监督学习方法,通过对数据进行聚类,将相似的样本归为一类,不同的样本归入不同的类别。

判别分析是一种有监督学习方法,通过学习已知类别的样本,构建分类模型,然后应用模型对未知样本进行分类预测。

本文将对聚类分析和判别分析进行详细介绍。

聚类分析是一种数据探索技术,其目标是在没有任何先验知识的情况下,将相似的样本聚集在一起,形成互相区别较大的样本群。

聚类算法根据样本的特征,将样本分为若干个簇。

常见的聚类算法有层次聚类、k-means聚类和密度聚类。

层次聚类是一种自下而上或自上而下的层次聚合方法,通过测量样本间的距离或相似性,不断合并或分裂簇,最终形成一个聚类树状结构。

k-means聚类将样本划分为k个簇,通过优化目标函数最小化每个样本点与其所在簇中心点的距离来确定簇中心。

密度聚类基于样本点的密度来判断是否属于同一簇,通过划定一个密度阈值来确定簇的分界。

聚类分析在很多领域中都有广泛的应用,例如市场分割、医学研究和社交网络分析。

在市场分割中,聚类分析可以将消费者按照其购买行为和偏好进行分组,有助于企业制定更精准的营销策略。

在医学研究中,聚类分析可以将不同患者分为不同的亚型,有助于个性化的治疗和药物开发。

在社交网络分析中,聚类分析可以将用户按照其兴趣和行为进行分组,有助于推荐系统和社交媒体分析。

相比之下,判别分析是一种有监督学习方法,其目标是通过学习已知类别的样本,构建分类模型,然后应用模型对未知样本进行分类预测。

判别分析的目标是找到一个决策边界,使得同一类别内的样本尽可能接近,不同类别之间的样本尽可能远离。

常见的判别分析算法有线性判别分析(LDA)和逻辑回归(Logistic Regression)。

LDA是一种经典的线性分类方法,它通过对数据进行投影,使得同类样本在投影空间中的方差最小,不同类样本的中心距离最大。

逻辑回归是一种常用的分类算法,通过构建一个概率模型,将未知样本划分为不同的类别。

聚类分析和判别分析

聚类分析和判别分析

18
24 30 36 42 48 54 60 66 72
0.69
0.77 0.59 0.65 0.51 0.73 0.53 0.36 0.52 0.34
1.33
1.41 1.25 1.19 0.93 1.13 0.82 0.52 1.03 0.49
0.48
0.52 0.30 0.49 0.16 0.35 0.16 0.19 0.30 0.18
i i
( xi x ) 2 ( yi y ) 2
i i
i
当变量的测量值相差悬殊时,要先进行 标准化. 如R为极差, s 为标准差, 则标 准化的数据为每个观测值减去均值后 再除以R或s. 当观测值大于0时, 有人 采用Lance和Williams的距离
1 | xi yi | x y p i i i
Number of Cases in each Cluster Cluster 1 2 3 4 1.000 1.000 2.000 15.000 19.000 .000
Valid Missing
结果解释
参照专业知识,将儿童生长发育分期定为: 第一期,出生后至满月,增长率最高; 第二期,第2个月起至第3个月,增长率次之; 第三期,第3个月起至第8个月,增长率减缓; 第四期,第8个月后,增长率显著减缓。
k-均值聚类:案例
为研究儿童生长发育的分期,调查1253名1月至7岁儿 童的身高(cm)、体重(kg)、胸围(cm)和坐高(cm) 资料。资料作如下整理:先把1月至7岁划成19个月份段, 分月份算出各指标的平均值,将第1月的各指标平均值与出 生时的各指标平均值比较,求出月平均增长率(%),然后 第2月起的各月份指标平均值均与前一月比较,亦求出月平 均增长率(%),结果见下表。欲将儿童生长发育分为四期, 故指定聚类的类别数为4,请通过聚类分析确定四个儿童生 长发育期的起止区间。

聚类分析、判别分析、主成分分析、因子分析

聚类分析、判别分析、主成分分析、因子分析

聚类分析、判别分析、主成分分析、因子分析主成分分析与因子分析的区别1. 目的不同:因子分析把诸多变量看成由对每一个变量都有作用的一些公共因子和仅对某一个变量有作用的特殊因子线性组合而成,因此就是要从数据中控查出对变量起解释作用的公共因子和特殊因子以及其组合系数;主成分分析只是从空间生成的角度寻找能解释诸多变量变异的绝大部分的几组彼此不相关的新变量(主成分)。

2. 线性表示方向不同:因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。

3. 假设条件不同:主成分分析中不需要有假设;因子分析的假设包括:各个公共因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关。

4. 提取主因子的方法不同:因子分析抽取主因子不仅有主成分法,还有极大似然法,主轴因子法,基于这些方法得到的结果也不同;主成分只能用主成分法抽取。

5. 主成分与因子的变化:当给定的协方差矩阵或者相关矩阵的特征值唯一时,主成分一般是固定的;而因子分析中因子不是固定的,可以旋转得到不同的因子。

6. 因子数量与主成分的数量:在因子分析中,因子个数需要分析者指定(SPSS 根据一定的条件自动设定,只要是特征值大于1的因子主可进入分析),指定的因子数量不同而结果也不同;在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分(只是主成分所解释的信息量不等)。

7. 功能:和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势;而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。

当然,这种情况也可以使用因子得分做到,所以这种区分不是绝对的。

1 、聚类分析基本原理:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。

目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。

聚类分析、判别分析、主成分分析、因子分析

聚类分析、判别分析、主成分分析、因子分析

聚类分析、判别分析、主成分分析、因子分析主成分分析与因子分析的区别1. 目的不同:因子分析把诸多变量看成由对每一个变量都有作用的一些公共因子和仅对某一个变量有作用的特殊因子线性组合而成,因此就是要从数据中控查出对变量起解释作用的公共因子和特殊因子以及其组合系数;主成分分析只是从空间生成的角度寻找能解释诸多变量变异的绝大部分的几组彼此不相关的新变量(主成分)。

2. 线性表示方向不同:因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。

3. 假设条件不同:主成分分析中不需要有假设;因子分析的假设包括:各个公共因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关。

4. 提取主因子的方法不同:因子分析抽取主因子不仅有主成分法,还有极大似然法,主轴因子法,基于这些方法得到的结果也不同;主成分只能用主成分法抽取。

5. 主成分与因子的变化:当给定的协方差矩阵或者相关矩阵的特征值唯一时,主成分一般是固定的;而因子分析中因子不是固定的,可以旋转得到不同的因子。

6. 因子数量与主成分的数量:在因子分析中,因子个数需要分析者指定(SPSS 根据一定的条件自动设定,只要是特征值大于1的因子主可进入分析),指定的因子数量不同而结果也不同;在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分(只是主成分所解释的信息量不等)。

7. 功能:和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势;而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。

当然,这种情况也可以使用因子得分做到,所以这种区分不是绝对的。

1 、聚类分析基本原理:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。

目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。

聚类和判别分析

聚类和判别分析

市场细分
在市场营销中,判别分析可用于 识别消费者群体的特征和行为模 式,以便进行更有效的市场细分 和定位。
04
判别分析算法
线性判别分析(LDA)
01
基本思想:通过找到一个投影方向,使得同类样本在该方 向上投影后尽可能接近,不同类样本在该方向上投影后尽 可能远离。
02
算法步骤
03
1. 计算各类样本均值。
04
2. 计算类间散度矩阵和类内散度矩阵。
05
3. 计算投影方向,使得类间散度矩阵最大,类内散度矩 阵最小。
06
4. 将样本投影到该方向上,得到判别结果。
支持向量机(SVM)
算法步骤
2. 计算支持向量所构成的法向量 。
基本思想:通过找到一个超平面 ,使得该超平面能够将不同类样 本尽可能分开,同时使得离超平 面最近的样本距离尽可能远。
目的
聚类分析的目的是揭示数据集中的内在结构,帮助我们更好地理解数据的分布 和特征,为进一步的数据分析和挖掘提供基础。
聚类方法分类
01
基于距离的聚类
根据对象之间的距离进行聚类,常见的算法有K-means 、层次聚类等。
02
基于密度的聚类
根据数据点的密度进行聚类,将密度较高的区域划分为 一类,常见的算法有DBSCAN、OPTICS等。
聚类和判别分析
目录
• 聚类分析概述 • 聚类分析算法 • 判别分析概述 • 判别分析算法 • 聚类与判别分析的比较与选择
01
聚类分析概述
定义与目的
定义
聚类分析是一种无监督学习方法,旨在将数据集中的对象按照它们的相似性或 差异性进行分组,使得同一组内的对象尽可能相似,不同组之间的对象尽可能 不同。

判别分析与聚类分析

判别分析与聚类分析

判别分析与聚类分析判别分析与聚类分析是数据分析领域中常用的两种分析方法。

它们都在大量数据的基础上通过统计方法进行数据分类和归纳,从而帮助分析师或决策者提取有用信息并作出相应决策。

一、判别分析:判别分析是一种有监督学习的方法,常用于分类问题。

它通过寻找最佳的分类边界,将不同类别的样本数据分开。

判别分析可以帮助我们理解和解释不同变量之间的关系,并利用这些关系进行预测和决策。

判别分析的基本原理是根据已知分类的数据样本,建立一个判别函数,用来判断未知样本属于哪个分类。

常见的判别分析方法包括线性判别分析(LDA)和二次判别分析(QDA)。

线性判别分析假设各类别样本的协方差矩阵相同,而二次判别分析则放宽了这个假设。

判别分析的应用广泛,比如在医学领域可以通过患者的各种特征数据(如生理指标、疾病症状等)来预测患者是否患有某种疾病;在金融领域可以用来判断客户是否会违约等。

二、聚类分析:聚类分析是一种无监督学习的方法,常用于对数据进行分类和归纳。

相对于判别分析,聚类分析不需要预先知道样本的分类,而是根据数据之间的相似性进行聚类。

聚类分析的基本思想是将具有相似特征的个体归为一类,不同类别之间的个体则具有明显的差异。

聚类分析可以帮助我们发现数据中的潜在结构,识别相似的群组,并进一步进行深入分析。

常见的聚类分析方法包括层次聚类分析(HCA)和k-means聚类分析等。

层次聚类分析基于样本间的相似性,通过逐步合并或分割样本来构建聚类树。

而k-means聚类分析则是通过设定k个初始聚类中心,迭代更新样本的分类,直至达到最优状态。

聚类分析在市场细分、社交网络分析、图像处理等领域具有广泛应用。

例如,可以将客户按照他们的消费喜好进行分组,以便为不同群体提供有针对性的营销活动。

总结:判别分析和聚类分析是两种常用的数据分析方法。

判别分析适用于已知分类的问题,通过建立判别函数对未知样本进行分类;聚类分析适用于未知分类的问题,通过数据的相似性进行样本聚类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厂别
成材率
综合合格率
的数量关系, 建立判别函数, 然后便可以利用这一
大型厂
96.59%
95%
数量关系对其他未知分组类型所属的案例进行判
轧板厂
89.39%
92%
别分组。
判别分析中的因变量或判别准则是定类变
热轧厂
97.57%
94%
量, 而自变量或预测变量基本上是定距变量。依据
判别类型的多少与方法不同, 分为多类判别和逐
p( t|x) = max p( s|x) , +x∈Rt
d#
$ $
11
$
D=(
dij)

d$
$ 21
$ $
… $
$
$
d$
$
% n1
d d 12 …
&
1n
’ ’

d d … ’
22
2n ’




…’ ’

d d n2 …
’ ’
nn (
若 dij 越小, 那么第 i 与 j 两个 样 品 之 间 的 性
质就越接近。性质接近的样品就可以划为一类。
b 、常 用 的 相 似 系 数 中 如 夹 角 余 弦 系 数 :
而判别分析的前提是已经知道分类情况, 判 定新的观测样品到已知组中。即由若干个不同 的样本来构造判别函数, 以此决定新的未知类 别 的 样 品 属 于 哪 一 类 。例 如 , 炼 钢 产 品 按 化 学 成 分 分 为 非 合 金 钢 、低 合 金 钢 、合 金 钢 和 不 锈 钢 , 在测得所要判断钢坯的化学成分后, 就可以判 定 属 于 哪 一 类 钢 种 ; 某 医 院 已 有 1000 个 分 别 患 有 胃 炎 、肝 炎 、冠 心 病 、糖 尿 病 等 的 病 人 的 资 料 , 记录了他们每个人若干项症状指标数据, 利用 这些资料, 在测得一个新病人若干项症状指标 的数据时, 能够判定他患的是哪种病; 又如在天 气预报中, 利用长时间的记录资料, 判断是晴天 或下雨等等。
’ ’ ’ ’… **Fra bibliotek’ ’
*

**%cos!n1, cos!n2, …
cos!nn
’ ’ (
其 中 cos!11=cos!22=…=cos!nn=1。H 是 一 个 实
对称阵, 只须计算上三角形部分或下三角形部 分, 根据 H 可对 n 个样品进行分类, 把比较相 似的样品归为一类, 不怎么相似的样品归为不 同的类。
cos!ij=0, 说明 xi 与 xj 完 全 不 一 样 ; cos!ij 接 近 0, 说
明 xi 与 xj 差别大。把所有两两样品的相似系数都
算出, 可排成相似系数矩阵:
#**cos!11, cos!12, …
cos!1n
& ’ ’
*

H=
**cos!21,
* *
cos!22,

cos!2n
在实际分析中, 当对样本的分类不清楚时, 可 以先聚类分析, 然后进行判别分析。
2 、聚 类 分 析 与 判 别 分 析 对 数 据 要 求 不 同 ( 1) 聚类分析并不是一种纯粹的统计技术, 其 方法基本上与分布理论和显著性检验无关, 一般 不从样本推断总体。在实际应用中, 许多研究者实 际上是将手中的数据视为近似总体。与其说聚类 分析是一种假设检验的方法, 不如说它是一种建 立假设的方法。 ( 2) 而在判别分析中, 对于分布理论非常关 注, 它有一个基本假设: 每一个类别都应取自一 个多元正态总体的样本, 而且所有正态总体的协 方差矩阵或相关矩阵都假定是相同的, 如果不满 足正态总体的假定, 则需要对非正态化数据作正 态化变换; 如果不满足协方差矩阵相同的假定, 则 可能要采用非线性的判别函数, 例如: 二次判别函 数等。 3、在市场研究中, 应用范围有所不同 ( 1) 聚类分析在市场研究中可用于: a 、细 分 市 场 市场细分的过程就是将各种消费者划分成同 质的类别或部分。市场细分所用的变量由研究的
( 2) 判别分析依据判别函数和后验概率来分类 a 、用 一 个 或 几 个 判 别 函 数 来 表 示 判 别 分 析 模 型, 最简单的线性判别函数如下: Di=b0+b1x1i+b2x2i+b3x3i+…+bkxki 其中: Di: 对应于第 i 个个体的得分
bi: 判别系数或权重 xij: 自变量 根据所收集样本的数据, 可以计算出一个判 别临界值 Dc, 作为判定某个个体归属到哪一类别 的基准。 b 、后 验 概 率 是 指 按 判 别 准 则 及 判 别 函 数 计 算 的个体落入各个子总体( 类别) 的概率, 将某个个 体归入具有最大后验概率的子总体( 类别) 。 记为用来建立判别规则的 P 维随机变量 s: 合并协方差阵估计, t=1, …, G 为组的下 标, 共有 G 个组。 St: 第 t 组的协方差阵 qt: 第 t 组出现的先验概率 p( t|x) : 自变量为 x 的观测属于 第 t 组 的 后 验 概率 ft( x) : 第 t 组的分布密度在 X=x 处的值 按照 Bayes 理论, 自变量为 x 的观测属于第 t 组的后验概率: p( t|x) =qt ft( x) /f( x) 。 于是, 可以把自变量 X 的取值空间 Rp 划分为 G 个区域 Rt, t=1, …, G, 使得当 X 的取值 x 属于 Rt 时后验概率在第 t 组最大, 即
异质性。
知的, 分析的依据就是原始数据, 没有任何事先的
根据分类对象的不同分为样品聚类和变量聚类。 有关类别的信息可参考。
2 、判 别 分 析
例如简单的模拟聚类分析如下:
是一种进行统计判别和分组的技术手段。根
武钢 5 个主体厂的技术经济指标
据一定量案例的一个分组变量和相应的其他多元 变量的已知信息, 确定分组与其他多元变量之间
或“ 相 似 系 数 ”较 小 的 点 归 为 不 同 的 类 。
“距离”常用来度量样品之间的相似性 ,“相似
系 数 ”常 用 来 度 量 变 量 之 间 的 相 似 性 。
a、根 据 不 同 的 需 要 , 距 离 可 以 定 义 为 许 多 类
型, 最常见、最 直 观 的 距 离 是 欧 几 里 德 距 离 , 其 定
析和判别分析最简单、最朴素的阐释, 并且这一成 指标之间相似程度的统计量, 以这些统计量作为
语也道明了这两种方法的区别与联系, 都是分类 划分类型的依据。把一些相似程度较大的样品( 或
技术, 但它们是分别从不同的角度来对事物分类 指标) 聚合为一类, 把另外一些相似程度较大的样
的, 或者说, 是两种互逆的分类方式。聚类分析与 品( 或指标) 又聚合为另一类; 关系密切的聚合到
1 、基 本 思 想 不 同
态等数据, 形成“数字分类学”学科。聚类分析和判
( 1) 聚类分析的基本思想
别分析就是这样的分类方法, 目前它们已经成为
我们所研究的样品或指标( 变量) 之间存在程
比较标准的数据分类方法。
度不同的相似性( 亲疏关系) , 于是根据一批样品
我们常说“物以类聚、人以群分”, 就是聚类分 的多个观测指标, 具体找出一些能够度量样品或
判别分析都是多元统计中研究事物分类的基本方 一个小的分类单位, 关系疏远的聚合到一个大的
法, 但二者却存在着较大的差异。
分类单位, 直到把所有的样品(或指标)聚合完毕。
一 、聚 类 分 析 与 判 别 分 析 的 基 本 概 念
( 1) 判别分析的基本思想
1 、聚 类 分 析
对已知分类的数据建立由数值指标构成的分
义如下:

"! 2
dij=
( Xik- Xjk)
k= 1
其中: Xik: 第 i 个样品的第 k 个指标的观测值
Xjk: 第 j 个样品的第 k 个指标的观测值
dij: 第 i 个样品与第 j 个样品之间的欧氏距离
依次求出任何两个点的距离系数 dij( i, j=1, 2,
…, n) 以后, 则可形成一个距离矩阵:
将 任 何 两 个 样 品 xi 与 xj 看 成 维 p 空 间 的 两
个向量, 这两个向量的夹角余弦用 cos!ij 表示:

!xia xja
cos!ij=
a=1 p

"! ! ·xi2a
xj2a
a=1
a=1
1≤cos!ij≤1
当 cos!ij=1, 说明两个样品 xi 与 xj 完全相似;
cos!ij 接 近 1, 说 明 两 个 样 品 xi 与 xj 相 似 密 切 ;
目的决定 , 一般 可 用 背 景 变 量 、生 活 形 态 变 量 、产 品使用变量或消费者行为变量等。
b 、研 究 消 费 者 行 为 同一类别的消费者或购买者可能有着相似的 购买行为, 通过对不同类别的消费者的研究, 可以 深入地探讨各类消费者的消费行为。 c 、设 计 抽 样 方 案 在大规模的抽样调查中, 常常采用分层抽样, 以提高抽样的精度。例如: 湖北省的消费者调查的 抽样方案, 首先将城市或地区按一些可能影响消 费水平和行为的变量分层, 然后在各层中再实行 多级抽样, 分层所采用的方法之一就是聚类分析。 d 、寻 找 新 的 潜 在 市 场 按照同一类的产品或品牌聚类, 可将竞争的 产 品 或 品 牌 分 类 。竞 争 更 为 激 烈 的 会 在 同 一 类 内 。 通过考察和比较目前自己的情况和竞争对手的情 况, 就有可能发现潜在的新产品机会。 e 、选 择 试 验 的 市 场 为了推出某项新的市场策略, 例如开发新的 产品、实行新的 促 销 方 式 、新 的 广 告 创 意 等 , 需 要 进行事先的实验。通过聚类分析, 可将实验的对象 ( 例如商店、城市、居民区等) 分成同质的几个组作 为实验组和控制组。 f、作 为 多 元 分 析 的 预 处 理 通过聚类分析可以达到简化数据的目的, 将 众多的样品先聚集成比较好处理的几个类别或子 集, 然后再进行后续的多元分析。比如在回归分析 中, 有时不对原始数据进行拟合, 而是对这些子集 的中心作拟合, 可能会更有意义。又比如, 为了研 究不同消费者群体的消费行为特征, 可以先聚类, 然后再利用判别分析进一步研究各个群体之间的 差异。 ( 2) 判别分析在市场研究中主要用于对一个 企业进行市场细分, 以选择目标市场, 有针对性地 进行广告、促销等活动。例如, 根据消费者的一些 背景资料如何判定他们中的哪些会是某种品牌的 忠诚用户, 哪些不是? 或者想要知道, 忠诚用户和 非忠诚用户在人口的基本特征方面到底有哪些不 同? 如何区分价格敏感型的顾客和非敏感型的顾 客? 哪些心里特征或生活形态特征可以用作判别 或区分的标准? 各种目标消费群体在媒介接触方 面是否有显著的差异? 等等这类均可以通过判别
相关文档
最新文档