手性药物色谱拆分法研究发展

合集下载

手性药物的发展趋势

手性药物的发展趋势

手性药物的发展趋势手性药物(Chiral drugs)是指分子结构中含有手性中心(chiral center)的药物,即具有对映异构体(enantiomers)的特性。

近年来,手性药物的研究和开发呈现出一些发展趋势。

首先,随着对手性药物研究的深入,人们对手性药物的优势和重要性有了更深入的认识。

事实上,大约有70%的药物都是手性化合物,而对映异构体却可能具有完全不同的药理和毒理特性。

因此,对于手性药物的合成、分离和制备的技术要求越来越高,以期能够得到纯度更高的对映异构体,从而提高临床疗效、减少不良反应。

其次,随着研究和技术的发展,人们对手性药物在光学活性中心上对光的旋光现象有了更深入的认识。

光学活性(optical activity)是指光通过手性物质时的旋转现象。

在过去,对手性药物的光学活性研究主要依靠手性色谱分析仪器,但这种方法相对复杂和耗时。

现在,人们研发出了一些更简便的手性分析技术,如圆二色(circular dichroism)和荧光非对称性(fluorescence anisotropy),这些新技术有助于更准确地评估手性药物的性质。

第三,纳米技术在手性药物研究和应用中发挥着越来越重要的作用。

纳米技术在手性药物的分离、传递和释放等方面具有独特的优势。

利用纳米技术可以获得更高的对映异构体纯度,并可以调控手性药物的释放速率和药效,从而提高药物疗效。

此外,纳米技术还可以提高手性药物的体内稳定性,减少不良反应。

此外,随着人们对化学合成和生物合成技术的不断发展,越来越多的手性药物可以通过合成或生物转化合成得到。

合成技术可以产生大量的手性药物,提供商业化生产的可能。

同时,生物合成技术可以利用微生物或其他生物体来合成手性药物,具有环境友好、高效快速的优势。

最后,随着人们对个体化医疗和精准药物治疗的重视,手性药物研究趋向个性化和定制化。

个体差异可以导致对手性药物的代谢和反应性产生差异,因此,通过个体基因分型等方法可以预测患者对手性药物的反应。

手性药物分离方法的进展分析

手性药物分离方法的进展分析

手性药物分离方法的进展分析在进行手性药物分离的过程中,常见的方式有三种,包含物理拆分法、生物拆分法以及化学拆分法。

在本研究中,主要是对手性药物分离方式进行了分析,并且分析了国内外的相关研究,采用了不同的方法,分析别手性药物分离技术进行了展望和分析。

标签:手性药物;分离;方法;进展一、物理拆分法物理拆分法的原理是不同对映异构体存在的物理差异,例如溶解度和密度等,采用物理方式进行拆分的方式。

然而,对映体有着很相似的化学性质,因此,利用这种简单的方式分离很难取得理想的分离效果,常常需要使用一些现代化设备才能够完成高分离。

在对映异构体分离中,现代色谱分离的应用有着很多的优势,常用的分离技术包括:超临界流体色谱(SFC)、高效液相色谱(HPLC)和高速逆流色谱(HSCCC)等.(一)色谱分离法1.超临界流体色谱超临界流体色谱技术是在上个世纪的八十年代发展起来的,主要是用超临界流体做流动相,使用流动相实施分离分析的方式。

在超临界流体色谱技术中,既有气相色谱和液相色谱的性质,并且能够针对沸点高和容易挥发的样品进行分析,这也是气相色谱无法实现的。

并且其分析速度比较快。

和一般的色谱分离比起来,手性色谱法主要是固定相特点,并且在流动相中需要保持其中一相为手性相,这样能够在不同的固定相中,让手性药物存在不同吸附力,并且保持溶解度不同,从而完成对映异构体有效的分离过程。

2.高效液相色谱在当前使用的色谱分析方法中,高效液相色谱是利用最为普遍的,同时也是使用最广的,在分离中,其方式有两种,分别是直接法和间接法。

直接法也就是手性固定相法和手性流动相添加剂法。

在手性对映体的分离中,高效液相色谱法有十分广泛的应用,并且其分离的效果好,纯度高,但是对流动相的要求很高,另外,因为HPLC发展早,因此技术比较成熟,因此在进行手性药物分离中,常常有着十分重要的应用。

3.高速逆流色谱该技术主要是在高效液相色谱技术上发展来的,和其不同的是该技术使用螺旋柱色谱柱,并且能够进度高速离心运动。

手性药物的分离在色谱法中的应用

手性药物的分离在色谱法中的应用

手性药物的分离在色谱法中的应用
色谱法是一种将混合物中的组分分离开来的物理方法,其基本原理是利用不同物质在固体或液体固定相上的吸附、分配或亲水作用的差异来分离混合物的组分。

在手性药物的分离中,色谱法广泛应用了手性固定相色谱、手性液相色谱和毛细管电泳三种方法。

手性固定相色谱是利用手性固定相材料来实现对手性药物分离的方法。

其中较为常用的方法是手性拆分法和手性广谱法。

手性拆分法是通过再结晶或合成手性衍生物等方式将手性药物中的左旋体和右旋体分离开来。

手性广谱法则是使用手性吸附剂和手性柱来实现对左旋体和右旋体的分离。

这种方法具有选择性好、分离效果较好的特点,但操作相对复杂,适用性有一定局限性。

手性液相色谱是通过改变液体流动相中的手性添加剂或官能团来实现对手性药物的分离。

常见的手性液相色谱方法有正相液相色谱、反相液相色谱和离子对液相色谱等。

这些方法是通过在流动相中加入手性添加剂或官能团,改变药物分子与液相之间的相互作用,实现对左旋体和右旋体的分离。

手性液相色谱具有选择性好、操作简便的特点,是目前较常用的手性药物分离方法之一。

毛细管电泳是一种利用电场作用下带电物质在毛细管中迁移的物质分离方法。

手性药物的毛细管电泳分离主要是利用手性药物对毛细管壁的吸附作用和其电荷性质的差异来实现对左旋体和右旋体的分离。

毛细管电泳具有分离速度快、灵敏度高、样品消耗量低的特点,但对仪器的精密度和稳定性要求较高。

色谱法作为分离和纯化混合物中的手性药物的有效方法,具有选择性好、操作简便、灵敏度高等优点。

随着技术的不断发展,相信色谱法在手性药物的分离中将发挥更加重要的作用。

手性药物拆分技术的研究进展

手性药物拆分技术的研究进展

手性药物拆分技术的研究进展摘要:简要阐述了手性药物的世界销售市场。

综述了目前实验室和工业生产领域手性药物的拆分方法,包括:结晶拆分法,化学拆分法,动力学拆分法,生物拆分法,色谱拆分法,手性萃取拆分法和膜拆分法等,并简要介绍了每种方法的应用情况及优缺点。

关键词:手性药物; 外消旋体; 手性拆分自然界存在各种各样的手性现象,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质,都是手性的。

据统计,在研发的1200种新药中,有820种是手性的,占世界新药开发的68%以上[ 1 ]。

美国FDA在1992年发布了手性药物指导原则,该原则要求各医药企业今后在新药研发上,必须明确量化每一对映异构体的药效作用和毒理作用,并且当两种异构体有明显不同作用时,必须以光学纯的药品形式上市。

随后欧共体和日本也采取了相应的措施。

此项措施大大促进了手性药物拆分技术的发展,手性药物的研究与开发,已经成为当今世界新药发展的重要方向和热点领域[ 2 ]。

当前大多数药物是以外消旋体的形式出现,即药物里含有等量的左右两种对映体。

但是近年来单一对映体药物市场每年以20%以上的速度增长。

1993年全球100个热销药中,光学纯的药物仅仅占20%;然而到了1997年, 100个中就有50个是以单一对映体形式存在,手性药物已占到世界医药市场的半壁江山。

在1993年,手性药物的全球销售额只有330亿美元;到了1996年,手性药物世界市场已增长到730亿美元; 2002年总销售额更是达到1720亿美元, 2010年可望超过2500亿美元[ 3~5 ]。

广阔的应用前景和巨大的市场需求触发了更多的医药企业和学者探索更新更高效地获得单一手性化合物的方法。

不同的立体异构体在体内的药效学、药代动力学和毒理学性质不同,并表现出不同的治疗作用与不良反应,研究与开发手性药物是当今药物化学的发展趋势。

随着合理药物设计思想的日益深入,化合物结构趋于复杂,手性药物出现的可能性越来越大;另一方面,用单一异构体代替临床应用的混旋体药物,实现手性转换,也是开发新药的途径之一[ 1 - 3 ]。

手性药物拆分技术及分析

手性药物拆分技术及分析

手性药物拆分技术及分析在药物研究和开发中,手性药物是一个非常重要的领域。

手性药物指的是分子结构中含有手性中心(手性碳原子)的化合物,左旋和右旋两种异构体具有不同的生物活性和体内代谢途径。

因此,正确地分析和分离手性药物对于药物研究和有效性的评估至关重要。

手性药物分析技术主要包括色谱法、光学活性法和核磁共振(NMR)法。

色谱法是一种常用的手性药物分析方法。

它基于手性药物的两种对映异构体在手性固定相上的不同吸附能力进行分离。

常见的色谱法包括高效液相色谱法(HPLC)和毛细管电泳法。

HPLC通常使用手性固定相柱,通过选择性地吸附左旋或右旋手性分子,实现对手性药物的分离。

毛细管电泳是一种高效的手性药物分析方法,基于对映异构体在电场中的迁移速率不同,通过毛细管中背景电解质的浓度和pH值调节来分离手性药物。

光学活性法是一种基于光学活性性质来分析和测定手性药物的方法。

光学活性手性药物由于具有旋光性,可以引起光的偏振方向发生旋转。

常用的光学活性法包括旋光仪法和圆二色光谱法。

旋光仪法是通过测定手性分子对光的旋转角度来判断手性药物的对映异构体的含量和比例。

圆二色光谱法则是测量手性分子对不同波长光的吸收性质,通过对波长的差异来判断手性药物的对映异构体。

核磁共振(NMR)是一种基于核磁共振现象来分析手性药物的方法。

NMR技术通过检测手性碳原子或核自旋的信号来确定手性药物的结构和对映异构体的比例。

通过对样品进行核磁共振实验后,通过解释谱图的峰位和峰形等信息,可以得到手性药物的分析结果。

此外,还有一些其他的手性药物分析方法,如质谱法、X射线衍射法和环光谱法等。

这些方法在手性药物分析中各有优劣,适用于不同类别和性质的手性药物。

总之,手性药物分析技术对于药物研究和评估的重要性不可忽视。

科学家们通过不断研究和发展新的手性分析技术,为新药开发和治疗提供了更可靠和准确的手性药物分析方法。

手性药物的分离在色谱法中的应用

手性药物的分离在色谱法中的应用

手性药物的分离在色谱法中的应用一、手性药物的概念手性药物是指由手性分子组成的药物,其分子结构中存在手性中心。

手性中心是指分子中的一个碳原子与四个不同的基团连接而成的结构,使得该碳原子存在立体异构体。

手性药物的两种立体异构体分别为左旋体和右旋体,分子在空间构型上存在镜像对映关系,它们的生物活性和药理作用通常差异显著。

右旋非甾体类抗炎药布洛芬的镜像体左旋布洛芬具有更强的抗炎作用,而氨基酸赖氨酸的D-型和L-型对应两者的生理学作用亦有明显区别。

二、色谱法的基本原理色谱法是一种分离、检测和定量分析化合物的方法,其基本原理是利用不同物质在固定相和移动相之间的分配系数不同而实现分离。

色谱法在手性药物分离中的应用主要包括气相色谱法(GC)、液相色谱法(LC)和超临界流体色谱法(SFC)等。

在色谱分离中,手性药物通常需要使用手性固定相(手性色谱柱)进行分离。

手性色谱柱通常由手性固定相和手性移动相组成,能够有效地区分手性异构体。

1. 气相色谱法(GC)气相色谱法是一种常用的手性药物分离技术,其分离原理是将混合物在气相流动条件下通过手性固定相进行分离。

气相色谱法广泛应用于手性酯类、醇类、醚类、酮类、胺类和芳香类手性药物的分离。

在气相色谱分离中,手性色谱柱通常采用手性聚合物、手性配体和手性盐酸盐等手性固定相。

气相色谱法分离手性药物的优势在于操作简便、分离效率高、分析速度快,但也存在柱效验领域窄、结构分析不直观等问题。

3. 超临界流体色谱法(SFC)四、手性药物分离中的色谱法展望随着手性药物研究的不断深入,对手性药物分离技术的要求也越来越高。

色谱法在手性药物分离中的应用已经取得了显著的进展,但仍然存在一些挑战和问题。

柱效验领域窄、分离效率不高、分析速度慢等。

未来,需要进一步研究开发新型手性固定相,提高手性药物分离的效率和速度。

结合质谱、核磁共振等分析手段,实现对手性药物的全面分析和表征。

相信随着科学技术的不断发展,色谱法在手性药物分离领域的应用将会更加广泛和成熟,为手性药物研究和开发提供更有力的支持。

手性药物的分离在色谱法中的应用

手性药物的分离在色谱法中的应用

手性药物的分离在色谱法中的应用【摘要】手性药物是指分子中存在手性中心使得其具有手性的药物,具有非对映体间药效和毒性的差异。

手性药物的分离常使用色谱法,包括手性色谱、液相色谱等技术。

色谱法在手性药物分离中具有高效、高选择性和分辨率等优势。

手性药物的药理作用和应用在药物研发中具有重要意义,而手性药物的分离技术则为深入研究和开发手性药物提供了有效手段。

未来,色谱法在手性药物分离中有望提高分离效率和降低成本,对医药行业的发展将产生积极影响。

色谱法在手性药物分离中的应用将会在未来发展中扮演重要角色,为医药行业的进步做出贡献。

【关键词】手性药物、分离、色谱法、药物研发、药理作用、优势、发展趋势、医药行业1. 引言1.1 手性药物的重要性手性药物是指具有手性结构的药物,即它们包含手性中心并存在两种镜像异构体。

这两种异构体可能在生物活性、药物代谢、副作用等方面表现出明显的差异,甚至可能导致完全不同的药理作用。

对手性药物的立体结构进行分离和研究至关重要。

1. 生物活性差异:手性药物的两个异构体可能对生物体的效应产生明显差异。

选用正确的手性异构体可以提高药物的疗效,减少不良反应。

2. 药代动力学差异:手性药物的两个异构体在体内的代谢速率和清除速率可能存在差异,影响药物的代谢和排泄过程。

3. 安全性:某些手性药物的镜像异构体可能会导致不良反应或毒性反应,因此对其分离研究尤为重要。

4. 法律规定:许多国家对手性药物的镜像异构体进行了严格的监管,要求药品中只含有特定的手性异构体。

手性药物的分离研究对药物研发、临床治疗以及药品监管具有重要意义。

色谱法在手性药物分离中的应用则是一种有效的手段,可以高效地对手性药物进行分离和检测。

1.2 手性药物的分离方法手性药物的分离是一项至关重要的工作,因为手性药物存在于自然界中的各种生物体内,而不同手性体可能具有完全不同的药理作用和毒性。

为了确保药物的疗效和安全性,必须对手性药物进行有效分离和纯化。

药物研究中手性分离分析方法及技巧

药物研究中手性分离分析方法及技巧

药物研究中手性分离分析方法及技巧药物研究中手性分离分析是指将手性药物中的手性异构体(也称为对映体)分离出来,并进行定量分析。

由于手性异构体具有不对称的结构,其物理化学性质和药理活性可能差异巨大,因此手性分离分析对于药物研究具有重要意义。

以下将介绍几种常用的手性分离分析方法及技巧。

1.气相色谱法(GC法):GC法是通过在手性固定相柱上进行气相色谱分析,分离手性异构体。

该方法基于手性碳氢化合物在手性固定相上的不同吸附能力来实现手性分离。

同时,通过合适的手性底物和手性固定相的选择,还可以更好地提高手性分离的选择性和灵敏度。

2.液相色谱法(HPLC法):HPLC法是手性分离分析中最常用的方法之一、常见的手性固定相有手性液相、手性离子对和手性硅胶等。

通过在手性固定相上进行液相色谱分析,利用手性化合物在固定相上的差异相互作用,实现手性分离。

此外,还可以结合负载式手性液相色谱法、手性离子对液相色谱法等技术,提高手性分离效果。

3.毛细管电泳法(CE法):CE法是一种高效、快速的分离技术,特别适用于分析手性药物。

通过在毛细管中施加电场,利用手性化合物在毛细管中的迁移速率差异实现分离。

此外,还可以通过改变运行缓冲液的组成、pH值等条件,调节手性分离的选择性和分离效果。

除了上述主要的手性分离分析方法外,还存在一些辅助技巧和方法,可以进一步提高手性分离的效果:1.共处理:将两个手性化合物混合在一起进行共处理,通过比较混合物中手性峰的相对峰度等信息,来判断手性分离的效果。

2.离子对调整:通过调整分析液中离子对的浓度和种类,来改变手性分离的效果。

一般来说,手性离子对可以提高手性分离的分辨率和选择性。

3.pH调控:通过改变液相色谱系统中溶液的pH值,可以影响毛细管电泳法和液相色谱法中手性分离效果。

pH值的改变可以调节化合物分子的电荷状态,从而影响手性分离的选择性。

总之,手性分离分析方法及技巧在药物研究中起着重要的作用。

通过合理选择合适的手性分离方法,并结合辅助技巧和方法,可以实现对手性异构体的高效、准确的分离和定量分析,从而为药物研究提供有价值的数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1 间接拆分法
[1]Zukowski J,De Biasi V,Berthod A. Chiral
等特点,并具在手性分离方面与高效液相色谱、
间接拆分法[8]虽需进行衍生化反应,但生 separation of basic drugs by capillary elec-
气相色谱相互补充,在光学纯药物的制备方面 成的非对映体异构体,物化性质不同,可用常规 trophoresis with carboxymethylcyclodextrins [J].J
的技术,它以高压电场为驱动力,以毛细管为分 - NHCO- 基团。苯环的取代基的性质,数目及位 [11]LI Bing,SHI Jie -hua,YANG Gen -sheng,.
离通道,依据样品中各组分间电荷及质量的差 置对手性化合物的拆分影响很大[11]。蛋白质类 Cellulose-based chiral stationary phase in high
副作用。因此手性药物拆分近年来引起人们的 D- 10- 樟脑磺酸胺作为手性离子对试剂添加到 是很广泛;GC 法对于药物的沸点要求严格,故
广泛关注。目前,手性药物的拆分主要有化学拆 流动相中,在硅胶 GF254 薄层板上分离了两种芳 GC 应用范围有限;CE 法和 TLC 法检测灵敏度
分法、结晶法、生物拆分法和色谱法等等,其中 香醇胺类药物对映体拉贝乐尔和倍它乐克,并 较低,有待研究提高发展;HPLC 法因手性固定
也有其局限性,如检测灵敏度不足,重现性差等 磺酰基 - 1,2- 二苯基乙二胺,研究了流动相中 对甲基苯磺酰基-1,2-二苯基乙二胺在卵类粘
[6]。
有机调节剂的种类和含量等色谱条件对拆分结 蛋白柱上的手性拆分[J].色谱,2003, 21(4): 407.
4 薄层色谱手性拆分法(TLC)
果的影响。胡玉萍[14]等在卵类粘蛋白手性柱上 [14]胡玉萍,宋雅茹,王德法.在卵类粘蛋白手性
手性药物的拆分具有高效、快速、简便的特点, 剂及流速对分离的影响。王德法[13]等在卵类黏 罗对映体[J].药物分析, 2001, 2: 97.
适用于手性药物的研究领域。但是毛细管电泳 蛋白质柱上拆分了 S,S- 和 R,R- N- 对甲基苯 [13]王德法,宋雅茹,胡玉萍等. S, S-和 R,R-N-
TLC 具备快速、方便、经济的特点,主要用 拆分药物对映体西替利嗪,研究色谱条件对拆 柱上拆分药物对映体西替利嗪的研究[J].药物
于定性分析,定量分析也有报道,但目前检测灵 分结果的影响和该蛋白柱的部分拆分机理。此 分析,2004,24(3):289.
敏度均在 0. 1%以上,如何提高灵敏度,有待进 外,目前研究比较多的还有手性聚合物相、配体
用于气相色谱的手性分离[5]。
有 85%的对映体可在这类手性固定相上得到 [10]徐颖,邓晓燕,李树刚等.β-环糊精手性流动
3 毛细管电泳拆分法(CE)
拆分。纤维素三苯甲酸酯及其衍生物显示出很 相添加剂法拆分左匹克隆对映体[J].药学进展,
CE 为近几十年发展起来的一种高效分离 高 的 手 性 识 别 能 力 , 其 能 力 主 要 受 控 于 2006, 30(9): 418-419.
科技论坛
手性药物色谱拆分法研究发展
项宝石
(天津工业大学 材料科学与化学工程学院,天津 300160)
摘 要:色谱法是手性药物拆分方法中应用最广泛的一种,近年来发展十分迅速。介绍了手性色谱拆分法中的超临界流体色谱法,气象色谱法, 毛细管电泳法,薄层色谱法,高效液相色谱法及其近几年的应用研究进展。
关 键 词 :手性拆分;高效液相色谱;应用
柱可以增加柱效。
入手性源试剂,同样可进行手性拆分,手性源有 Zhang G Y. Separation and Purification Tech-
2 气相色谱拆分法(GC)
金属配合物、环糊精、蛋白质、手性离子对试剂 nology, 2006, 48: 310-313
用 GC 法拆分对映体可通过手性试剂衍生 等。阮宗琴[9]等采用直接磺化法合成了三种不同 [5] 王东新 (Wang D X), Ab电场中分配行为的差异而实 手性固定相可用于对酸、碱和中性对映体的拆 performance liquid chromatography. Chem
现分离。毛细管区带电泳与胶束电动毛细管是 分。杨永健[12]等在 αl- 酸性糖蛋白柱上拆分沙 Bull,2003,(3):169
现在应用最广泛的两种模式。毛细管电泳用于 美特罗对映体,并考察了流动相 pH、有机改性 [12]杨永健,侯美琴.αl-酸性糖蛋白拆分沙美特
责任编辑:袁依凡
-6-
有独到的优越性。该方法一般采用超临界状态 的正相或反相法分离,因此被不少学者采用。该 ChromatogrA,2002,(948)∶331-342.
的二氧化碳作流动相 [1],由于其密度与液体相 法分离效果好,分离条件简便,但需要高纯度的 [2]史雪岩,乔振,郭红超等. 2-苯基-1-环丙烷羧
似,因此它有强的溶解能力,可以迅速将产物洗 衍生试剂,操作比较麻烦,多半在其他方法无法 酸酯对映体的毛细管气相色谱分离研究 [J].色
拟除虫菊酯杀虫剂和糖类衍生物等,而且样品 β- 环糊精手性流动相添加剂法拆分佐匹克隆 色谱, 1999,17(2):153-157.
处理复杂,制备分离也难以进行。目前 GC 法更 对应体的方法,该方法可以达到基线分离,且操 [7]李高兰,黄幕斌,杨国生,等.用薄层色谱法分离
多使用手性固定相,史雪岩[2]等使用 β- 环糊精 作简便,比手性柱法经济。
出,适于分离难挥发和热稳定性差的物质;而且 实现时才采用。如需制备光学纯产物,要在衍生 谱, 2003, 21(3): 281.
二氧化碳无毒,对环境污染小,价格便宜,适用 物分离后,再进行分解反应才能得到所需产物。 [3] Tisse S, Peulorr-Agasse V, Cardinael P, et
芳香醇胺药物对映体 [J]. 色谱, 1999, 17(2):
衍生物作为毛细管气相手性固定相,对 2- 苯基
5.2.2 手性固定相法
215.
- 1- 环丙烷羧酸酯对映体进行了分离研究,并
手性固定相 (CSP) 法的研究始于 20 世纪 [8]徐修容.高效液相色谱分离光学异构体(上)[J].
讨论了色谱柱的性能、固定相的结构对分离的 70 年代后期,发展异常迅速,大量新型 CSP 研 色谱,1991,9(6):363-368.
化形成非对映体衍生物进行分离,但这种方法 取代度的磺化 - β- 环糊精,并作为添加剂应 (Analytical Chemistry), 2005, 33: 1095-1099
只能拆分类型不多的化合物如氨基酸衍生物、 用于毛细管电泳的手性拆分中;徐颖[10]等建立了 [6]朱晓峰, 林炳承.毛细管电泳的手性拆分[J].
谱法 (GC)、毛细管电泳法 (CE)、薄层色谱法 法和直接法两大类。前者又称手性试剂衍生化 深入的研究,手性拆分技术必将得到进一步完
(TLC)、高效液相色谱法(HPLC)等。
法,后者又可分为手性流动相添加剂法(CMPA) 善。
1 超临界流体色谱拆分法(SFC)
和手性固定相法(CSP)。
参考文献
SFC 具有高效、快速、操作条件易于变换
于大量生产。SFC 系统既可使用 HPLC 检测器,
5.2 直接拆分法
al.Analytica Chimia Acta, 2006, 560 : 207 -
也可使用 GC 的检测器,操作简便。超临界流体
5.2.1 手性流动相添加剂法
217
的粘度近于气体,过程阻力小,可采用细长色谱
在普通高效液相色谱柱上,在流动相中加 [4] Qi S H, Ai P, Wang C Y, Yuan L M,
色谱法由于简便快捷,分离效果好而被认为是 考察了流动相的配比和温度对分离的影响。 相的发展,是目前较常用的方法,但手性固定相
手性异构体拆分最有效的方法。手性拆分色谱
5 高效液相色谱拆分法(HPLC)
的成本太高,制约了该法的推广。但是,随着各
方法主要有:超临界流体色谱法(SFC)、气相色
HPLC 分离药物对映体的方法可分为间接 种手性固定相的开发和对映体拆分机制的更加
手性药物的立体结构与其生物活性有着 一步研究。TLC 所使用的手性源有纤维素及其 交换手性固定相。
密切的关系,通常一种对映体具有良好的生物 衍生物、β- 环糊精、手性氨基酸配体、光活性
综上所述,色谱拆分法中,SFC 具有具有
活性,另一种活性很弱或没有活性,甚至还有毒 的酸或碱、手性离子对试剂等。李高兰[7]等用 工业应用前景,但由于条件要求高,目前应用不
影响。近年来又有一些新的环糊精衍生物用于 制成功,并已作为商品出售,得到广泛的应用。 [9]阮宗琴,尤进茂,李菊白等.磺化 β-环糊精的
气相色谱手性固定相[3],也有人使用环糊精的混 多糖类及衍生物手性固定相和蛋白质类手性固 合成及其在毛细管电泳手性拆分中的应用[J].
合固定相[4],还有将环糊精与溶胶凝胶技术结合 定相是应用最广泛、手性拆分能力最强的两类, 色谱, 2000, 18(2): 183.
相关文档
最新文档