手性药物色谱拆分法研究发展

手性药物色谱拆分法研究发展

手性分子的拆分技术

手性分子的拆分技术 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

手性分子的拆分技术 郝婷玉 57 15级材料工程 摘要:对外消旋体实施拆分是获得手性物质的重要途径。本文综述了外消旋体的拆分方法,主要有直接结晶拆分法、化学拆分法、动力学拆分法、色谱拆分法( 含毛细管电泳法) 和手性膜拆分法等五大类。其中, 包括目前作为手性拆分主要方法的色谱技术在内的前 4 类方法, 由于批处理能力小、工业放大成本高 ,不适合大规模生产 ; 相反,膜分离技术具有能耗低、易于连续操作等优点 ,被普遍认为是进行大规模手性拆分非常有潜力的方法之一,具有良好的应用前景。 关键词:手性分子;拆分;对映体;外消旋化合物 手性是自然界存在的一种普遍现象, 在药物化学领域尤为突出 ,已知药物中有 30 %~ 40 %是手性的。手性是生物体系的一个基本特征, 很多内源性大分子物质,如酶、蛋白、核酸、糖, 以及各种载体、受体等都具有手性特征。此外,手性还在医药、食品添加剂、杀虫剂、昆虫性信息素、香料和材料等领域有着深刻影响。特别是在医药行业,手性药物对映体通过与体内大分子的立体选择性结合, 产生不同的吸收、分布、代谢和排泄过程, 可能具有不同的药理毒理作用。随着医药行业对手性单体需求量的增加和对药理的探究,如何获得高纯度手性单体已成为一个令人困扰的问题。因此 ,手性药物的分离分析就显得尤为重要。随着对手性分子认识的不断深入,人们对单一手性物质的需求量越来越大,对其纯度的要求也越来越高。 单一手性物质的获得方法大致有以下三种:(1)手性源合成法:是以手性物质为原料合成其它手性化合物,这是最常用的方法。但由于天然手性物质的种类有限,要合成多种多样的目的产物会遇到很大困难,而且合成路线步骤繁多,也使得产物成本十分高昂。(2)不对称合成法:是在催化剂或酶的作用下合成得到过量的单一对映体化合物的方法。化学不对称合成高旋光收率的反应仍然有限,即使如此,所得产物的旋光纯度对于多

药物色谱分析(气相色谱部分复习要点)

《药物色谱分析》复习重点 第二章 色谱法的基本术语及理论 掌握教材中所有知识点 第三章 气相色谱法 1. 了解气相色谱法的特点及分类; 2. 气相色谱的固定液 (1)对固定液的要求 (2)样品组分与固定液之间的分子作用力的种类 (3)固定液的极性与分离特性评价,主要掌握Rohrschneider 常数,了解McReynolds 常数 (4)固定液的分类,掌握几种常见常见固定液如聚二甲基硅氧烷类、聚苯基甲基硅氧烷类、氰烷基聚硅氧烷类和聚乙二醇的特点及使用分析对象,特别是一些商品代码所表示的对应的固定液名称。 (5)气相色谱中如何选择固定液 3、气-液色谱柱气相色谱法 (1)气-液色谱柱气相色谱法中对担体的要求; (2)使用前担体的表面处理的原因及方法,其中担体表面处理时釉化的目的是什么? (3)了解填充柱的制备过程,掌握填充柱的老化的目的、方法及注意事项。 (4)掌握填充柱气相色谱条件的选择,重点是载气和温度的选择。 4.气-固色谱与气-液色谱的特点比较 5. 毛毛细细管管柱柱气气相相色色谱谱法法 ((11))掌掌握握毛毛细细管管气气相相色色谱谱仪仪的的流流程程示示意意图图((P P 4477图图33--66,,会会画画出出主主要要流流程程和和标标出出主主要要部部件件)) (1)毛细管柱的柱管使用聚酰亚胺涂层的原因及作用。 (2)交联毛细管柱的特点及常用交联方法,毛细管气相色谱柱交联引发剂主要有哪些? (3)毛细管柱进样方式,掌握分流及吹尾气目的。

(4)分流比及测定方法;线性分流与非线性分流及影响样品失真的因素。 (5)分流进样法的优缺点。 第四章 气相色谱检测器 气相色谱检测器的种类及其原理、性能特点(主要FID 、ECD 、NPD ),会会画画F F I I D D 检检测测器器的的示示意意图图((P P 6644图图44--33,,标标出出主主要要部部件件))。。 第五章 气相色谱相关技术 1.程序升温色谱法 (1)特点 (2)主要方式及适用对象 2.顶空气相色谱法 (1)特点、分类 (2)静态顶空分析的原理及影响静态顶空气相色谱分析的因素 (3)动态顶空分析的原理及动态顶空法操作条件选择 第六章 GC 在药物分析中的应用 1. 如何判断待测物是否可以直接进行GC 分析 2. 哪些化合物经过衍生化后可以进行GC 分析 3.当待测物用GC 法和HPLC 法均可分析时应如何选择 4.了解GC 在药物分析中的应用 第十四章 毛细管电泳法 1、了解毛细管电泳的基本装置,特别是进样方式、常用检测器等。 2、掌握毛细管电泳的基本的基本原理,特别是电渗及电渗流。 3、了解毛细管电泳的主要有哪几种分离模式及毛细管电泳的应用。

手性药物拆分的研究进展

手性药物拆分的研究进展 许多药物具有光学活性(opitical activeity)。一般显示光学活性的药物分子,其立体结构必定是手性(chirality)的,即具有不对称性。手性是指其分子立体结构和它的镜像彼此不能重合。互为镜像关系而又不能重合的一对分子结构称为对映体(enantiomer)。虽然对映异构体药物的理化性质基本相同,但由于药物分子所作用的受体或靶位是由氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,后者对与之结合的药物分子的空间立体构型有一定的要求。因此,对映异构体在动物体内往往呈现出药效学和药动学方面的差异。鉴于此,美国食品药品监督管理局规定,今后研制具有不对称中心的药物,必须给出手性拆分结果,欧盟也提出了相应的要求。因此,手性拆分已成为药理学研究和制药工业迫切需要解决的问题。 目前,利用酶法、超临界流体色谱(SFC)法、化学法、高效液相色谱(HPLC)法、气相色谱(GC)法、毛细管电泳(capillary electrophoreisis,CE)法和分子烙印法拆分对映体,已成为新药研究和分析化学领域的重要课题。笔者在本文综述了近年来利用上述方法拆分手性药物的研究进展。 1酶法 酶的活性中心是一个不对称结构,这种结构有利于识别消旋体。在一定条件下,酶只能催化消旋体中的一个对映体发生反应而成为不同的化合物,从而使两个对映体分开。该法拆分手性药物已有较久的历史,反应产物的对映过剩百分率可达100%。酶催化的反应大多在温和的条件下进行,温度通常在0~50℃,pH 值接近7.0。由于酶无毒、易降解、不会造成环境污染,适于大规模生产。酶固定化技术、多相反应器等新技术的日趋成熟,大大促进了酶拆分技术的发展。脂肪酶、酯酶、蛋白酶、转氨酶等多种酶已用于外消旋体的拆分。脂肪酶是最早用于手性药物拆分的一类酶,是一类特殊的酯键水解酶,具有高度的选择性和立体专一性,反应条件温和,副反应少,适用于催化非水相递质中的化学反应,在B 一受体阻滞药、非甾体类抗炎药和其他多种药物的手性拆分中都有广泛的应用。意大利的Batlistel等用固定于载体Amberlite AD-7上的脂肪酶对萘普生的乙氧基乙酯进行酶法水解拆分,对温度、底物浓度和产物抑制等进行了研究,最后使用500 mL的柱式反应器,在连续进行了1200h的反应后,得到了l8kg的光学纯S-萘普生,且酶活性几乎无损失。另外,酯酶具有很高的工业价值,其应用前景也极为广阔。Jiaxin等利用pseudomaonas cepacia脂肪酶拆分了一类酰基取代的1.环己烯衍生物,通过酶催化酯交换反应,得到产率较高的光学纯化合物,且提供了反应过程监测方法。这种方法可推广到该类化合物系列衍生物的合成与拆分。 2 SFC法 根据手性选择剂种类不同,该分离方式主要包括氨基酸和酰氨类手性固定相、Prikle型手性固定相、环糊精型键合固定相如聚甲基异丁烯酯等。由于SFC 法尚处于发展阶段,各种参(如温度、压力、流动相的组成和密度等) 对分离度的影响机制还未完全清楚。SFC法具有简单、高效、易于变换操作条件等优点,已成为与HPLC法和GC法互补的拆分方法,因其具有独特的优越性,应用前景极为广阔。Nozal等用Chiralpak AD柱和Chiralcel OD柱在SFC条件下拆分了驱肠蠕虫药阿苯唑亚砜化合物,并研究了甲醇、乙醇、乙丙醇及乙腈等有机溶剂对立体构型的影响。结果表明,在以Chiralpak AD柱为固定相时,用2丙醇可以获得最好的拆分效果;而在Chiralcel OD柱上用甲醇效果最好。

色谱法在药品研发中的应用及常见问题分析

色谱法在药品研发中的应用及常见问题分析 审评三部张哲峰 摘要:色谱方法在药物研发中占据重要地位,本文介绍了一些常用的色谱方法原理以及在药物研发,尤其质量控制中应用的注意之处,并列举了申报资料中色谱法应用的一些常见问题,以引起大家的关注。 关键词:色谱法类型常见问题 色谱法是一种分离分析技术,通过将样品中的组分分离,再逐个分析,因此是分析混合物、检测化合物纯度的有力手段,因而在药物研发中广为应用,包括原料药、中间体、制剂和生物体液中化合物的定性和定量,涉及的待测物包括手性或非手性药物、过程杂质、残留溶媒、附加剂(如防腐剂)、分解产物、从容器和密闭包装或制造过程中带入的杂质、植物药中的农药和代谢物等,包括制备工艺研究、中间体控制、质控检验、稳定性及药物动力学研究等过程。因此,色谱方法在药物研发中占据举足轻重的地位。 一、色谱法的几种常见类型 1、HPLC法: (1)手性液相色谱 将“手性识别”或“手性环境”引入色谱系统中,以形成暂时非对映异构体复合物,从而直接分离药物对映体;或将对映体衍生化生成非对映体,而得以分离。即分离光学异构体可用手性固定相、衍生化后在非手性固定相上或在非手性固定相上用流动相手性添加剂形成非对映体来实现。 (2)离子交换色谱 使用表面有离子交换基团的离子交换剂作为固定相。带负电荷的交换基团(如磺酸基和羧酸基)可以用于阳离子的分离;带正电荷的交换基团(如季胺盐)可以用于阴离子的分离。不同离子与交换基的作用力大小不同,在树脂中的保留时间长短不同,从而被相互分离。可用pH程序洗脱。 (3)离子对/亲和色谱

常用反相离子对色谱,用缓冲液和加入的对离子(与被分离的样品荷相反电荷)分离。分离受pH、离子强度、温度、浓度和共存的有机溶剂类型的影响,亲和色谱,一般用于大分子,使用配合体(共价结合在固体基质上的生物活性分子),与其同类的抗原(分析介质)反应,生成可逆转的复合物,通过改变缓冲条件洗脱。 (4)正相色谱 将各种不同的有机官能团通过化学反应共价结合到固定相惰性载体上,固定相极性>流动相极性。常用固定相:二醇基、醚基、氰基、氨基等极性基团的有机分子。适于分离水溶性的极性、强极性化合物,此时较小极性的组分比较大极性组分更快地洗脱。 (5)反相色谱 将各种不同的有机官能团通过化学反应共价结合到固定相惰性载体上,固定相极性<流动相极性。常用固定相:烷基、苯基等非极性有机分子,最常用ODS柱或C18柱,其极性很小,适于分离非机性、弱极性离子型样品。是目前药物研发中液相色谱的主要分离模式,通常用紫外检测器,用水作基本溶剂,选择性受溶剂强度、柱温和pH的影响,一般来说较大极性比较小极性组分洗脱更快。 紫外检测器可以用于各类液相色谱,这类检测器要注意的是氘灯老化后的灵敏度降低,其灵敏度因仪器的设计和/或者制造厂家的不同而异。用紫外检测器和反相HPLC组合得到的色谱图不一定能真实的反映实际情况,原因是:①极性比目标化合物大得多的化合物可能被掩盖(在溶剂前沿或死体积时同时洗脱);极性比目标化合物小得多的化合物洗脱出来晚,甚至保留在柱上。为避免此情况发生,最好使用梯度洗脱法。②无紫外吸收或在检测波长处吸收相差较大的多种化合物,有时在某一检测波长处不能被检出,因为通常只用一个检测波长。为避免此情况发生,可改用其它类型检测器,如示差折光检测器;流动相许可时,最好使用蒸发光散射检测器。 (6)分子排阻色谱 以多孔凝胶(如葡萄糖,琼脂糖,硅胶,聚丙烯酰胺等)作固定相,依据样品分子量大小达到分离目的。大分子不进入凝胶孔洞,沿多孔凝胶胶粒间隙流出,先被洗脱;小分子进入大部分凝胶孔洞,在柱中被滞留,后被洗脱。

手性化合物的拆分技术

手性化合物的拆分技术研究进展 许多药物具有光学活性。一般显示光学活性的药物分子,其立体结构必定是手性的,即具有不对称性。手性是指其分子立体结构和它的镜像彼此不能重合。互为镜像关系而又不能重合的一对分子结构称为对映体。虽然对映异构体药物的理化性质基本相同,但由于药物分子所作用的受体或靶位是由氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,后者对与之结合的药物分子的空间立体构型有一定的要求。因此,对映异构体在动物体内往往呈现出药效学和药动学方面的差异。鉴于此,美国食品药品监督管理局规定,今后研制具有不对称中心的药物,必须给出手性拆分结果,欧盟也提出了相应的要求。因此,手性拆分已成为药理学研究和制药工业迫切需要解决的问题。 1.生成非对映体拆分 此方法是利用外消旋混合物与手性试剂反应后生成有不同性质的非対映体,从而利用生成物的不同物理性质(溶解度、蒸汽压、结晶速率等)将其分离,再将分离后的物质分别还原成之前的対映体。 还可以使用拆分剂家族代替单一拆分剂进行拆分,所谓拆分剂家族是指有类似结构的2~3个手性剂拆分剂。组合拆分提高了产品收率和纯度。 2.动力学拆分 利用两个対映体和手性试剂发生反应的速度不一样,在混合物中添加不足量的手性试剂。一个対映体与手性试剂结合,从而得到纯的反应慢的対映体。可以分为经典动力学拆分和动态动力学拆分,动态动力学拆分是指将经典动力学拆分和底物消旋化相结合的拆分方法,理论产率可以达到100%。底物消旋化分为化学消旋化和酶消旋化,由于酶消旋化具有操作条件温和、产率高、副反应少等优点而具有广泛的工业应用价值[4]。 3.液膜拆分 将具有手性识别功能的物质溶解在溶剂中制备液膜,利用内外向间推动力(浓度差、pH 差等)使待分离物中的某种物质得到富集。液膜分离方法又分为本体液膜、乳化液膜、支撑液膜3种类型。 4.固体膜拆分 此方法是基于対映体间亲和力的差异,利用推动力(浓度差、压力差、电势差)进行分

薄层色谱法在治疗药物与检测中的应用

薄层色谱法在治疗药物与监测中的应用 药学二班黄纯1011074238 佳木斯大学药学院 摘要:本文阐明了薄层色谱的定义、原理、操作方法、特点、发展和它在治疗药物检测中的应用。介绍了薄层色谱法鉴别硝苯地平的试验。 关键字:薄层色谱、流动相、比移值、硝苯地平 前言 薄层色谱法是一种常用的微量分离方法,是色谱法的一个分支。与经典的分离提纯手段(重结晶、升华、萃取和蒸馏等)相比,薄层色谱法具有微量、快速、分离效率高和灵敏度等优点[9]。薄层色谱法在很多方面得到广泛的应用,如判断有机合成反应进行的程度;合成药物的质量控制及杂质检查;中草药的分离提纯;药物分析及含量测定等。举出实例讨论薄层色谱法在鉴别药物等方面的应用[1]。色谱法是本世纪初发明的,当时用的是吸附剂柱色谱法,其渐发展,到四十年代出现了分配色谱法、纸色谱法,五十年出现气相色谱法、薄层色谱法,六十年代又有了分子排阻色谱法与高效液相色谱法等。薄层色谱法由于是不连续的多步操作,而且薄层板是一次性使用,所以在试样处理、显色、检测、同时分析多个试样等方面有它的独特优越性[2]。本文通过薄层色谱鉴别硝苯地平的试验来体现它在治疗药物监测中的应用。

薄层色谱(TLC) 薄层色谱法(thin layer chromatography)是平面色谱法中应用最广泛的方法之一。 原理:它的特点是把吸附剂涂布在一块平面板上,形成一个均匀的薄层,在这个薄层上进行色谱分离,操作时将试样溶液用毛细管点在薄层板的一端,放在密闭槽中,加入适宜溶剂为流动相,由于毛细管作用,溶剂被吸上,沿板移动而流过试样点,试样点中的各组分被溶剂带动向前移动,由于各组分物理化学性质不同,与吸附剂的作用不同,因此移动距离也不相同,跑到一定距离之后,各组分即可互相分开[2]。 通常所说的薄层色谱一般是指吸附薄层色谱,可根据TLC所采用的涂层材料性质的不同,其物理化学原理也有所不同,可分为: (1)吸附薄层色谱。采用硅胶、氧化铝等吸附剂铺成薄层,利用吸附剂表面对不同组分吸附能力的差别达到分离的方法。 (2)分配薄层色谱。由硅胶、纤维素铺成薄层,不同组分在指定的两相中有不同的分配系数。 (3)离子交换薄层色谱。由含有交换活性基团的纤维素辅成薄层。 (4)排阻薄层色谱。利用样品中分子大小不同,受阻情况

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti 等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法

毛细管电泳色谱在手性药物拆分中的应用

毛细管电泳色谱在手性药物拆分中的应用 摘要:毛细管电泳色谱法是手性药物拆分的重要方法之一,是一种高效、快速、简便的手性分离手段。该技术在药物对映体的拆分、定量方面发挥了重要作用。近年来,手性药物的毛细管电泳拆分技术得到快速发展,本文参阅了国内外相关文献,对毛细管电泳技术的手性拆分模式及主要手性选择剂作了简单介绍,并介绍了一些新的手性选择剂在手性药物拆分中的应用。 关键词:毛细管电泳手性试剂手性拆分

The Application of Capillary Electrophoresis in Chiral Drug Separation Abstract:Capillary Electrophoresis is one of the crucial methods in chiral drug analysis. It is an important method with highly efficient, rapid and convenient features. This technology plays a crucial role in enantiomeric separation and quantitative analysis. In recent years, the application of capillary electrophoresis in chiral drug analysis has been developing rapidly. According to recent references, this paper makes a brief discription about the application of capillary electrophoresis in chiral drug separation. Keywords: Capillary electrophoresis; Chiral reagent; Chiral separation; 引言 手性是自然界的基本属性,也是生命系统最重要的属性之一,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质都是手性的。据统计,在研发1200种新药中,有820种是手性的,占世界新药开发的68 %以上[1],而用于治疗的手性化合物中约88 %为外消旋体,作为单一对映体用药的只占手性药物的11%左右[2]。手性药物的立体结构与其生物活性有着密切的关系。药物在吸收、分布、代谢与排泄过程中,通过与体内大分子的不同立体结合,产生不同的药理作用和不良反应。如著名的“反应停事件”,沙利度胺只有( S ) -对映体具有致畸作用,( R ) -对映体具有镇静作用而无致畸作用。 目前,手性药物的拆分方法主要有经典结晶法、化学拆分法、生物拆分法、膜分离法、手性液-液拆分法和色谱法等[3, 4],其中色谱法由于简便快捷、分离效

药物色谱分析课程教学大纲

药物色谱分析课程教学大纲 (理论课程) ◆课程编号:171018 ◆课程英文名称:Chromatographic Analysis of Pharmaceuticals ◆课程类型:?通识通修?通识通选?学科必修?学科选修?跨学科选修 ?专业核心?专业选修(学术研究)?专业选修(就业创业) ◆适用年级专业(学科类):药学专业三年级 ◆先修课程:分析化学、仪器分析、药物化学 ◆总学分:2 ◆总学时:34 一、课程简介与教学目标 (一)课程简介 本课程是药学专业的一门专业课。色谱分析是分析化学中发展最快、应用最广的分离分析技术。本课程涉及的内容较广泛,其主要内容包括色谱学基本概念和理论,色谱仪器的基本原理和结构,各类色谱方法的分离机理和技术及其在药学中的应用。色谱分析直接关系到药物研制、药物质量评价、药物生产过程监控、药物临床监控、药物临床实验、药物作用机理探讨等各阶段的工作;它在制订药物的质量标准、探求科学用药规律与安全、有效、合理用药、新药开发等方面具有重要作用。 (二)教学目标 通过本课程的学习,使学生基本掌握色谱分析的基本理论,常用的定性和定量分析方法,仪器的构造;了解各种仪器分析方法的特点、适用范围、发展方向以及在药学中的应用,并初步具有应用此类方法解决相应问题的能力。鉴于色谱分析内容非常广泛并考虑到本身的实验条件,本课程的实验内容主要开设高效液相色谱分析(HPLC)、气相色谱分析(GC)、毛细 管电泳分析(CE)内容。 二、教学方式与方法 讲授(powerpoint)、提问、学生讲解等综合性教学方式。 三、教学重点与难点 (一)教学重点 色谱基本理论,塔板理论和速率理论;药物色谱定性定量分析方法及其验证;色谱技术在中药质控分析中的应用;色谱技术在化学药物质控分析中的应用;色谱技术在抗生素质控分析中的应用。 (二)教学难点 色谱塔板理论和速率理论;色谱的定性和定量分析;色谱技术在中药质控分析中的应用;色谱技术在化学药物质控分析中的应用;色谱技术在抗生素质控分析中的应用。 四、学时分配计划 章内容概要学时 1药品质量的分析现状与进展2 2药物分析中常用的色谱方法4 3色谱法的基本术语及理论4 4药物色谱定性定量分析方法及其验证4 5色谱技术在中药质控分析中的应用6 6色谱技术在化学药物质控分析中的应用8

手性药物拆分技术的研究进展

手性药物拆分技术的研究进展 摘要:简要阐述了手性药物的世界销售市场。综述了目前实验室和工业生产领域手性药物的拆分方法,包括:结晶拆分法,化学拆分法,动力学拆分法,生物拆分法,色谱拆分法,手性萃取拆分法和膜拆分法等,并简要介绍了每种方法的应用情况及优缺点。 关键词:手性药物; 外消旋体; 手性拆分 自然界存在各种各样的手性现象,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质,都是手性的。据统计,在研发的1200种新药中,有820种是手性的,占世界新药开发的68%以上[ 1 ]。美国FDA在1992年发布了手性药物指导原则,该原则要求各医药企业今后在新药研发上,必须明确量化每一对映异构体的药效作用和毒理作用,并且当两种异构体有明显不同作用时,必须以光学纯的药品形式上市。随后欧共体和日本也采取了相应的措施。此项措施大大促进了手性药物拆分技术的发展,手性药物的研究与开发,已经成为当今世界新药发展的重要方向和热点领域[ 2 ]。当前大多数药物是以外消旋体的形式出现,即药物里含有等量的左右两种对映体。但是近年来单一对映体药物市场每年以20%以上的速度增长。1993年全球100个热销药中,光学纯的药物仅仅占20%;然而到了1997年, 100个中就有50个是以单一对映体形式存在,手性药物已占到世界医药市场的半壁江山。在1993年,手性药物的全球销售额只有330亿美元;到了1996年,手性药物世界市场已增长到730亿美元; 2002年总销售额更是达到1720亿美元, 2010年可望超过2500亿美元[ 3~5 ]。广阔的应用前景和巨大的市场需求触发了更多的医药企业和学者探索更新更高效地获得单一手性化合物的方法。 不同的立体异构体在体内的药效学、药代动力学和毒理学性质不同,并表现出不同的治疗作用与不良反应,研究与开发手性药物是当今药物化学的发展趋势。随着合理药物设计思想的日益深入,化合物结构趋于复杂,手性药物出现的可能性越来越大;另一方面,用单一异构体代替临床应用的混旋体药物,实现手性转换,也是开发新药的途径之一[ 1 - 3 ]。1985~2004年上市的550个新化学合成药物中,有313个药物具有手性中心,其中以单一异构体上市的手性药物为167个,手性药物数量呈逐年上升趋势; 2005年世界药物的销售总额为6 020亿美元,而手性药物的销售总额为 2 250亿美元,占全球制药市场销售总额的37% , 2010年可望超过 5 000亿美元[ 4 - 6 ]。总之, 手性药物大量增长的时代已经来临,手性药物制备技术的发展亦日趋完善,这为以制备和生产手性药物为主要内涵的手性工业的建立和发展奠定了基础。 手性药物的制备技术由化学控制技术和生物控制技术两部分组成。手性药物的化学控制技术可分为普通化学合成、不对称合成和手性源合成3类;手性药物的生物控制技术包括天然物的提取分离技术和控制酶代谢技术。以前手性化合物为原料,经普通化学合成可得到外消旋体,再将外消旋体拆分制备手性药物中间体或手性药物,这是工业生产手性药物的主要方法。1985~2004年上市的58个含有一个手性中心的手性药物中,有27个手性药物是通过手性拆分法生产的[ 4 ]。 1结晶法拆分 结晶法拆分包括直接结晶法拆分( direct crys ta llization resolution )和非对映异构体拆分( dias te reom er crys tallization resolution) ,分别适用于外消旋混合物( conglom e rate)和外消旋化合物( racem ic compound)的拆分。在一种外消旋混合物的过饱和溶液中,直接加入某一对映体的晶种,即可得到一定量的该对映体,这种直接结晶的拆分方法仅适用于外消旋混合物,其应用几率不到10%。外消旋化合物较为常见,大约占所有外消旋体的90%。通过与非手性的酸或碱成盐可以使部分外消旋化合物转变为外消旋混合物,扩大直接结晶法拆分的应用范围。 对于外消旋化合物,可采用与另一手性化合物(即拆分剂, reso lving agent)形成非对映异

手性拆分进展

手性拆分技术进展

手性拆分技术进展 手性拆分(chial resolution)称光学拆分或外消旋体拆分(optical resolution),为立体化学上,用以分离外消旋化合物成为两个不同的镜像异构的方法。近几十年在工业上应用很广,尤其在手性药物开发上,已逐渐成为新药发展重要方向和热点领域。当前,用于手性物质拆分的方法主要有:化学拆分法、毛细管电泳技术、色谱分析法、萃取拆分法、聚合膜拆分法。 一、化学拆分法 (一)晶种结晶法是在饱和或过饱和的外消旋体溶液中加入其中一个对映异构体的晶种, 使该对映异构体稍稍过量而造成不对称环境, 结晶就会按非平衡的过程进行。应当指出的是,优先结晶方法仅适用于拆分能形成聚集体的外消旋体, 而且该聚集体是稳定的结晶形式。换句话讲,假若该外消旋体可以是以聚集物或外消旋化合物的形式存在, 但在某一定的温度范围内,只可以用聚集物的形式结晶出来,而不是产生外消旋化合物的结晶。1934 年,Duschinsky【1】首次应用该方法实现了盐酸组氨酸的分离。 (二)外消旋体的不对称转换一对合成的外消旋体由于在非手性条件下物理、化学性质相同,普通的分离方法如蒸馏、重结晶等在这种情况下时无能为力的。因此要设法先将一对对映异构体变成非对映体,然后再借用二者物理、化学性质的区别,将他们分开,制纯,再分别将非对映异构体分解,得回两个纯的对映体。这种方法一般需要被拆分的分子中有一个易发生反应的基团,如羧酸、碱基等,然后让它们与一个纯的(+)或(-)光活性化合物反应,形成盐或酯,这样就形成了一对非对映异构体。如: 常用的光化学试剂有:光活性碱:奎宁、马钱子碱等 光活性酸:酒石酸、樟脑磺酸等 1853 年,Pastrure【2】对该种拆分方法进行了全面概括酸碱性的外消旋体的拆分方面具有明显的优势,但也存在一定的局限性拆分过程中使用的手性试剂是拆分成功与否的关键合适的拆分剂应具备以下条件: 1 、必须容易与外消旋体中的2、个对映体结合生成非对映异构体,经拆分后又容易实现原

手性拆分

手性拆分 手性拆分(Chiral resolution),亦称光学拆分(Optical resolution)或外消旋体拆分,为立体化学上,用以分离外消旋化合物成为两个不同的镜像异构物的方法。[1]为生产具有光学活性药物的重要工具。 与不对称合成法比较,手性拆分的缺点为尽有50%的产率。有时在拆分的同时将不需要的对映异构体外消旋化,使其不断转化为需要的一个对映体,将拆分和外消旋化同时进行,从而使拆分的产率超过50%。这种方法称为动态动力学拆分。酮的烯醇化是常用的外消旋化反应。 拆分方法 结晶拆分法 晶种结晶法:也称优先结晶法。是向热的饱和或过饱和的外消旋溶液中,加入一种纯光活性异构体的晶种,创造出不对称的环境。冷却到一定的温度。这时稍微过量的与晶种相同的异构体就会优先结晶出来。滤去晶体后,在剩下的母液中再加入水和消旋体制成的热饱和溶液,再冷却到一定的温度。这时另一个稍微过剩的异构体就会结晶出来。理论上讲,如果原料能形成聚集体的外消旋体,那么将上述过程反复进行就可以将一对对映体转化为纯的光学异构体。 没有纯对映异构体晶种的情况下,有时用结构相似的手性化合物,甚至用非手性的化合物作晶种,也能成功进行拆分。 晶种结晶法是在路易·巴斯德的工作的基础上发现的。文献上最早报道的应用是肾上腺素的拆分。 路易·巴士德首先发现酒石酸有右旋和左旋现象,并于1849年第一次进行手性拆分以分离两者。直到1882年,他示范了借着引晶技术从过饱和的酒石酸钠铵溶液中生成d-晶体及l-晶体,相反的手性晶体将会排列成相反的形状。 直接结晶拆分法:也称自发结晶拆分法。这是巴斯德最早发现的拆分方法。是指外消旋体在平衡时结晶自发形成聚集体(conglomerate),两个对映体都自发析出等量的互为镜像的对映结晶。对映结晶可以人工分开。 外消旋美沙酮可以通过这种方法拆分。[2]以50g的dl-美沙酮为起始原料,溶于石油醚并浓缩,加入两个毫米大小d-和l-晶体,在40°C下搅拌125小时后便可得到两个大的d-和l-晶体,产率各为50%。

164色谱法在药品研发中的应用和常见问题分析

发布日期20061130 栏目化药药物评价>>化药质量控制 标题色谱法在药品研发中的应用及常见问题分析 作者张哲峰 部门 正文内容 审评三部张哲峰 摘要:色谱方法在药物研发中占据重要地位,本文介绍了一些常用的色谱方法原理以 及在药物研发,尤其质量控制中应用的注意之处,并列举了申报资料中色谱法应用的 一些常见问题,以引起大家的关注。 关键词:色谱法类型常见问题 色谱法是一种分离分析技术,通过将样品中的组分分离,再逐个分析,因此是分析混合物、检测化合物纯度的有力手段,因而在药物研发中广为应用,包括原料药、中 间体、制剂和生物体液中化合物的定性和定量,涉及的待测物包括手性或非手性药物、过程杂质、残留溶媒、附加剂(如防腐剂)、分解产物、从容器和密闭包装或制造过 程中带入的杂质、植物药中的农药和代谢物等,包括制备工艺研究、中间体控制、质 控检验、稳定性及药物动力学研究等过程。因此,色谱方法在药物研发中占据举足轻 重的地位。 一、色谱法的几种常见类型 1、HPLC法: (1)手性液相色谱 将“手性识别”或“手性环境”引入色谱系统中,以形成暂时非对映异构体复合物, 从而直接分离药物对映体;或将对映体衍生化生成非对映体,而得以分离。即分离光 学异构体可用手性固定相、衍生化后在非手性固定相上或在非手性固定相上用流动相 手性添加剂形成非对映体来实现。 (2)离子交换色谱

使用表面有离子交换基团的离子交换剂作为固定相。带负电荷的交换基团(如磺酸基 和羧酸基)可以用于阳离子的分离;带正电荷的交换基团(如季胺盐)可以用于阴离 子的分离。不同离子与交换基的作用力大小不同,在树脂中的保留时间长短不同,从 而被相互分离。可用pH程序洗脱。 (3)离子对/亲和色谱 常用反相离子对色谱,用缓冲液和加入的对离子(与被分离的样品荷相反电荷)分离。分离受pH、离子强度、温度、浓度和共存的有机溶剂类型的影响,亲和色谱,一般用于大分子,使用配合体(共价结合在固体基质上的生物活性分子),与其同类的抗原(分析介质)反应,生成可逆转的复合物,通过改变缓冲条件洗脱。 (4)正相色谱 将各种不同的有机官能团通过化学反应共价结合到固定相惰性载体上,固定相极性> 流动相极性。常用固定相:二醇基、醚基、氰基、氨基等极性基团的有机分子。适于 分离水溶性的极性、强极性化合物,此时较小极性的组分比较大极性组分更快地洗脱。 (5)反相色谱 将各种不同的有机官能团通过化学反应共价结合到固定相惰性载体上,固定相极性< 流动相极性。常用固定相:烷基、苯基等非极性有机分子,最常用ODS柱或C18柱,其极性很小,适于分离非机性、弱极性离子型样品。是目前药物研发中液相色谱的主 要分离模式,通常用紫外检测器,用水作基本溶剂,选择性受溶剂强度、柱温和pH的影响,一般来说较大极性比较小极性组分洗脱更快。 紫外检测器可以用于各类液相色谱,这类检测器要注意的是氘灯老化后的灵敏度降低,其灵敏度因仪器的设计和/或者制造厂家的不同而异。用紫外检测器和反相HPLC组合 得到的色谱图不一定能真实的反映实际情况,原因是:①极性比目标化合物大得多的 化合物可能被掩盖(在溶剂前沿或死体积时同时洗脱);极性比目标化合物小得多的 化合物洗脱出来晚,甚至保留在柱上。为避免此情况发生,最好使用梯度洗脱法。② 无紫外吸收或在检测波长处吸收相差较大的多种化合物,有时在某一检测波长处不能 被检出,因为通常只用一个检测波长。为避免此情况发生,可改用其它类型检测器, 如示差折光检测器;流动相许可时,最好使用蒸发光散射检测器。 (6)分子排阻色谱 以多孔凝胶(如葡萄糖,琼脂糖,硅胶,聚丙烯酰胺等)作固定相,依据样品分子量 大小达到分离目的。大分子不进入凝胶孔洞,沿多孔凝胶胶粒间隙流出,先被洗脱; 小分子进入大部分凝胶孔洞,在柱中被滞留,后被洗脱。

手性药物的结晶拆分方法

手性药物的结晶拆分方法--直接结晶法---逆向结晶法 在优先结晶法中,通过加入不溶的添加物即晶种形成晶核,加快或促进与之晶型或立体构型相同的对映异构体结晶的生长。而逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。例如在外消旋的酒石酸钠铵盐的水溶液中溶入少量的(S)—(—)—苹果酸钠铵或(S)—(—)—天冬酰胺时,可从溶液中结晶得到(R,R)—(十)—酒石酸钠铵。 逆向结晶中的添加物必须和溶液中的化合物在结构和构型上有相关之处。这样所添加的物质才能嵌入生长晶体的晶格中,取代其正常的晶格组分并能阻止该晶体的生长。逆向结晶是一种晶体生长的动力学现象,添加物的加入造成了结晶速度上的差别。由于逆向结晶是晶体生长的动力学的现象,因此当结晶时间无限制的延长下之,最终得到的仍是外消旋的晶体。从化合物的性质上来看,逆向结晶只能用于能形成聚集体的化合物。在结晶法的拆分过程中,若能将优先结晶法中“加入某种单—对映异构体晶体可诱导相同构型结晶生长”的原理和逆向结晶中“加入另一个对映异构体溶液可抑制相同构型的对映异构体生长”的原理相结合,可使结晶拆分的效率大大提高 手性药物的结晶拆分方法--直接结晶法---优先结晶法 优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。优先结晶方法是在巴士德的研究基础上发现的。文献最早报道的优先结晶方法是用于肾上腺素的拆分。1934年Duschinsky第一次用该方法分离得到盐酸组氨酸,使人们认识到该方法的实用性。但直到1963年工业化学家Secor对该方法进行综述后,才引起人们关注并逐渐发展成为众所周知的科学实用方法。Secor根据优先结晶法是聚集物的结晶的原理,可用其溶解度曲线的相图来进行结晶分离过程的分析。20世纪60~70年代,优先结晶方法在工业生产上大规模的用于由丙烯腈制备L—谷氨酸的拆分,每年的产量可达1.3万吨。这一技术不仅在工业生产上有非常显著的应用价值,在'实验室也可用于拆分数克到数十克的光学活性的化合物。应当指出的是,优先结晶方法仅适用于拆分能形成聚集体的外消旋体,而且该聚集体是稳定的结晶形式。换句话讲,假若该外消旋体可以是以聚集物或外消旋化合物的形式存在,但在某一定的温度范围内,只可以以聚集物的形式结晶出来,而刁;是产生外消旋化合物的结晶。例如盐酸组氨酸在45℃以上温度进行的优先结晶拆分。减肥药物芬氟拉明(fenfluramine,6)及其前体去乙基芬氟拉明(7)的拆分研究说明了优先结晶拆分的局限性。在对(6)和(7)与非手性的有机酸形成的50多个盐进行聚集物性质研究时,发现只有五个(6)的盐和三个(7)的盐是聚集体,但其中有两个盐不能使用优先结晶法结晶,这两个盐是(6)的苯氧乙酸盐和(7)的二氯乙酸盐。(6)的苯氧乙酸盐在室温下以不稳定的聚集体和稳定的外消旋化合物的形式发生共结晶,而(7)的二氯乙酸盐在结晶过程中会发生异手性(heterochiral growth)生长,即—种对映异构体的晶体生长在另一种异构体晶体的表面,得到晶体的光学纯度很低。聚集体通常在一定的温度范围内是稳定的,一旦超过该温度范围则叫咱S形成聚集体的亚稳态的形式,这种亚稳态的形式也可以用优先结晶的方法拆分,但得到的将是亚稳态多晶型的形式。例如盐酸组氨酸在25℃时的结晶。也有些化合物,例如外消旋的3—(3—氯苯基)—3—羟基丙酸(8),可以形成热力学稳定的聚旧体的形式,但在溶剂中结晶时总是生成亚稳态的外消旋化合物,而且该外消旋化合物的溶解度约是其对映异构体的7倍,这种情况难以用优先结晶法进行结晶。优先结晶法是一种高效、简单而又快捷的拆分方法,晶种的加入造成两个对映异构体具有不同的结晶速率是该动态过程控制的关键。延长结晶时间可提高产品的产率,但产品的光学纯度有所下降。从优先结晶法中得到晶体后,如要进一步提高产物的光学纯度,可经过反复的重结晶实现。 在实际应用过程中,尤其在工、限生产过程中,利用优先结晶方法的特点进行循环往复的结晶分离。这一方法从20世纪50年代起用于抗生素氯霉素(chloramphenicol,9)的中间体D—苏型?1—对硝基苯基—2—氨基—1,3—丙二醇(10)的拆分,至今工业生产中仍然在使用。循环优先结晶方法又称为“交*诱导结晶拆分

阿司匹林药物的高效液相色谱法测定

实验四阿司匹林药物的高效液相色谱法测定 [目的要求] 1、了解高效液相色谱法分离有机化合物的基本原理及操作条件; 2、掌握高效液相色谱仪的基本结构及作用; 3、了解HPLC法测定阿司匹林药片中水杨酸的方法。 [基本原理] 高效液相色谱法是20世纪70年代急剧发展起来的一项高效、快速的分离分析技术。液相色谱法是指流动相为液体的色谱技术。在经典的液体柱色谱法基础上,引入了气相色谱法的理论基础,在技术上采用了高压泵、高效固定相和高灵敏度检测器,实现了分析速度快,分离效率高和操作自动化。这种柱色谱技术称做高效液相色谱法。它可用来作液固吸附,液液分配,离子交换和空间排阻色谱(即凝胶渗透色谱)分析,应用非常广泛。据估计,世界上几百万种化合物中除20%宜用气相色谱(GC) 分离分析外,其余80%的化合物,包括大(高)分子化合物、离子型化合物、热不稳定化合物以及有生物活性的化合物都可以用不同模式的HPLC ( 正相HPLC、反相HPLC、离子交换色谱和离子色谱、体积排除色谱、亲合色谱等等) 进行分离分析。而且高效液相色谱法还具有以下几个突出的特点: (1)分离效能高由于新型高效微粒固体相填料的使用,液相色谱填充柱的柱效可达5000~30000块/m理论塔板数,远远高于气相色谱填充柱的1000块/m 理论塔板数的柱效; (2)选择性高由于液相色谱具有高柱效,并且流动相可以控制和改善分离过程的选择性,因此高效液相色谱不仅可以分析不同类型的有机化合物及其同分异构体,还可以分析在性质上极为相似的旋光异构体; (3)检测灵敏度高高效液相色谱法使用的检测器大多数都具有较高的灵敏度,紫外检测器灵敏度可达10-9g,荧光检测器灵敏度可达10-12g; (4)分析速度快由于高压泵的使用,相对于经典液相(柱)色谱法其分析时间大大缩短。 高效液相色谱仪器系统的主要部件:储液罐、高压输液泵、进样装置、色谱柱、检测器、记录仪和数据处理装置(色谱工作站): (1) 输液系统输液系统要为HPLC仪器提供流量恒定、准确、无脉冲的流动相,流量的精度和长期的重复性要好,同时还要提供精度好、准确度高、重现性好的多元溶剂梯度。流量的范围要宽,既能满足微柱(内径l~2mm)分析,也能满足常规柱(内径4mm)分析,甚至还可满足半制备柱(内径10mm) 的需求。目前HPLC常用的是双泵头往复式柱塞泵,流速范围一般为0.001-10 ml/min 。 (2) 色谱柱色谱柱通常为不锈钢柱,内装各种填充剂。常用的填料为硅胶,

相关文档
最新文档