低温空气预热器
回转式空气预热器低温腐蚀产生原因及其处理措施

回转式空气预热器低温腐蚀产生原因及其处理措施摘要:关于大容量锅炉使用回转式空预器运行中,发生低温腐蚀原因及如何防治,结合实践运行参数和经验,给出了相关意见和方法关键词:三分仓回转式空气预热器低温腐蚀过量空气系数烟气温度0 引言作为锅炉尾部受热面,空气预热器布置在锅炉对流烟道的最后。
当受热面壁温接近或低于烟气露点温度时,烟气中的硫酸蒸汽就会在壁面凝结和对壁面产生腐蚀。
我厂空预器进口烟温一般在260-360℃左右,出口烟温大约在110-160℃之间,在这样的烟温下工作的受热面,空气预热器低温区段烟气温度较低时,烟气中的水蒸汽和硫酸蒸汽有可能在管壁上凝结,从而导致受热面金属产生低温腐蚀。
1 回转式空预器介绍我厂锅炉主设备为东方锅炉股份有限公司生产的DG1163/17.35—Ⅱ13型锅炉,该锅炉为亚临界参数、单炉膛自然循环汽包锅炉。
平衡通风,摆动燃烧器四角切圆燃烧,干式排渣煤粉炉,同步建设烟气脱硫、脱硝装置。
尾部烟道设有两台三分仓回转式空气预热器。
由于设计煤种水分高,需采用较高的干燥剂温度,故空气预热器器先加热一次风,以获得较高的热一次风温,满足炉内燃烧的需要。
这种空气预热器是以逆流方式运行的热交换器。
加工成特殊波纹的金属蓄热元件被紧密地放置在转子扇形隔仓格内,转子以0.99转/分的转速旋转,其左右两侧分别分为烟气通道和空气通道。
空气侧又由一次风通道及二次风通道组成,当烟气流经转子时,烟气将热量传给蓄热元件,烟气温度降低;当蓄热元件旋转到空气侧时,又将热量传给空气,空气温度升高。
循环往复,以此实现烟气与空气的热交换。
2 腐蚀原因锅炉尾部受热面的腐蚀,属低温腐蚀,它是由于燃料中含有硫,燃烧后形成SO2,其中少量的进一步氧化生成SO3,SO3与烟气中的水蒸气H2O结合成为硫酸H2SO4,含有硫酸蒸汽的烟气露点温度大为升高。
当受热面低于露点温度时,硫酸蒸汽就会在受热面上凝结腐蚀金属。
为了减轻低温腐蚀,应首先设法了解影响烟气中硫酸形成的因素、硫酸蒸汽冷凝在受热面上的因素,这些均是影响低温腐蚀速度的主要因素。
浅谈燃煤锅炉中暖风器的作用及运行中的注意事项

浅谈燃煤锅炉中暖风器的作用及运行中的注意事项摘要:本文针对燃煤锅炉,在环境温度比较低的情况下,空气预热器存在着发生低温腐蚀的现象。
解决此类问题的途径较多,比如:更换空预器蓄热原件、加强空预器吹灰、投入暖风器运行等等。
本文着重对暖风器相关问题进行简要分析。
关键词:暖风器低温腐蚀振动平衡门前言:暖风器用于加热送粉所需的一次风温和燃料所需的二次风温,所以暖风器被分为一二次风暖风器。
暖风器的正确投退,在提高排烟温度、防止空预器低温腐蚀中起着不可忽视的作用。
及时投入暖风器有利于启炉初期,提高风温,提高点火能量,也可以达到节约燃油的目的。
当环境温度过低时,空气预热器入口进风温度降低,会使烟气温度降得更低,降至烟气中SO2、SO3的露点温度以下时,SO2、SO3和烟气中的水蒸气凝结生成亚硫酸和硫酸,造成空气预热器冷端低温腐蚀。
另外环境温度过低时会使空气预热器冷热两端热变形加大应力增加,严重时会造成动静摩擦,空气预热器过流而跳闸,引发不安全事件的发生。
由于暖风器在燃煤锅炉中发挥着比较重要的作用,本文对本厂(四川广安发电厂)实际情况进行简要概述,并根据实际运行经验,简要说明暖风器的投运及注意事项。
一、本厂简介锅炉型式:亚临界、自然循环、前后墙对冲燃烧方式、一次中间再热、单炉膛、平衡通风、固态排渣、尾部双烟道、全钢构架的Π型汽包炉,再热汽温采用烟气挡板调节,空气预热器置于锅炉主柱内。
暖风器分为一二次风暖风器,位于空预器入口一二次风道上。
二、暖风器运行方式1、机组正常运行时由辅汽供暖风器用汽。
2 、气温高时,可根据锅炉排烟温度和一、二次风冷风温度,调节一、二次风暖风器进汽调门开度,维持合格的排烟温度和防止暖风器系统振动。
当暖风器进汽调门开度变小时,进汽压力变小,疏水不畅容易引发管道汽水两相流,从而引发管道振动。
3、暖风器投入初期疏水水质不合格时,疏水扩容器疏水倒定排扩容器。
4、暖风器疏水水质合格后,疏水扩容器疏水回收至除氧器。
锅炉空气预热器及辅助设备改造实践

锅炉空气预热器及辅助设备改造实践发布时间:2023-03-03T07:26:06.544Z 来源:《中国科技信息》2022年10月19期作者:杨进[导读] 目前,我国在线运行的300MW以上机组的空气预热器大多为回转式空气预热器杨进贵州西能电力建设有限公司贵州贵阳 550081摘要:目前,我国在线运行的300MW以上机组的空气预热器大多为回转式空气预热器。
为了满足国家对环保的要求,实现超低排放,大部分机组都增加了脱硝系统。
选择性催化还原SCR技术的投入,使得传统回转式空气预热器的堵塞更加严重,定期吹灰清洗无法彻底解决堵塞问题。
由于堵塞问题日益严重,回转式空气预热器漏风大、压差高、维护困难等问题更加突出,也降低了锅炉运行的经济性和安全性。
要彻底解决上述问题,只有从换热方式和结构上彻底改造空气预热器才有可能实现。
关键词:空气预热器;辅助设备;改造;通过对锅炉空气预热器及其辅助设备、引风机和送风机轴承箱在日常运行中存在的腐蚀漏风、漏油问题的研究和分析,提出了相应的解决方案,实现了避免空气预热器漏风、引风机和送风机轴承箱漏油的目的,提高了锅炉运行的稳定性。
一、两级空气预热器的改造1.高温段空气预热器上管板耐磨层的改造。
(1)设置耐磨短管的机理。
某钢铁设备能源部5#锅炉空气预热器为垂直管,分高温段和低温段两级布置在锅炉尾部对流竖井烟道内,按锅炉纵向和横向中心线分为四个烟气通道。
立式预热器是指烟气在管内纵向流动,空气在管外横向洗管。
其典型结构由钢管、管板(上、中、下)、框架、连接盖、导流板、壁板、膨胀节和冷热风道连接接口组成。
英国物理学家雷诺兹通过实验发现,流体流动有两种形式:层流和湍流。
由于内部结构不同,层流和湍流具有不同的能量损失规律。
实验结果表明,等颈支管上下游截面的压力损失与层流中截面平均速度的一次方成正比,即h∝v 1.0;湍流与速度的1.75 ~2.0次方成正比,即h ∝ v 1.75 ~ 2.0。
浅析空气预热器低温腐蚀的原因及预防措施

浅析空气预热器低温腐蚀的原因及预防措施摘要:本文结合本厂实际情况,理论联系实际简要阐述空气预热器结构特性、发生低温腐蚀的原因及运行过程中如何预防等措施。
关键词:空气预热器;低温腐蚀;低氧燃烧前言:我厂锅炉型式:亚临界、自然循环、前后墙对冲燃烧方式、一次中间再热、单炉膛、平衡通风、固态排渣、尾部双烟道、全钢构架的∏型汽包炉,再热汽温采用烟气挡板调节,空气预热器置于锅炉主柱内。
烟气飞灰含量较大,容易磨损,温度低,由于本厂增设脱硝装置,空预器处极易产生硫酸及硫酸铵,对空预器造成腐蚀。
一、空气预热器的内部结构及工作原理1、结构空气预热器主要由转子、蓄热元件、壳体、梁、扇形板、烟风道、密封系统、控制系统、驱动装置、轴承、润滑系统、吹灰和清洗装置组成。
工作原理空气预热器是利用排烟的余热加热空气的热交换器。
空預器可以进一步降低排烟温度,减少排烟热损失:同时提高燃烧所需空气温度,改善燃料着火和燃烧条件,降低各项不完全燃烧损失,提高锅炉机组热效率等。
其内部高效传热元件紧密排列在圆筒形转子中按径向分割的扇形仓格里。
转子周围的外壳与两端连接板连接,形成空气和烟气两个通道。
预热器转子缓慢旋转,烟气和空气交替流过传热元件。
当转子转至烟气通道时,传热元件表面吸收高温烟气的热量:当转子转至空气通道时,传热元件释放出热量加热空气。
如此反复循环,转子每旋转一周就进行一次热交换,通过转子的连续旋转,不断地将热量传给冷空气,提高进入炉膛燃烧的空气温度,以满足锅炉燃烧需要。
空预器按传热方式分为导热式和再生式(密热式或回转式)。
导热式为管式预热器:回转式空气预热器属于再生式,回转式空气预热器分为两种,受热面回转式和烟风罩转动受热面固定不动。
锅炉配有2台50%容量、单级、三分仓容克式空气预热器,型号为xx型,三分仓与分仓的区别在于可以加热压力较高的一次风,以干燥煤粉,并将煤粉吹到炉膛。
另外的二次风直接经过空预器后进入锅炉风箱,用于燃烧。
一般空預器冷端烟、气侧压差为762mm水柱,而三分仓由于多了路一次风,压差般为1016 -1524mm 水柱.三分仓空预器漏风率较大,本空预器设计漏风率投运年内为8%,一年后为10%. 对基本结构元件和密封系统,除由于压差增大而进行了些加强外,三分仓与两分仓空预器基本相同,本厂采用的三分仓式空预器。
浅析焦炉煤气电站锅炉空气预热器低温腐蚀的原因及对策 张魏雄 曹虎银

浅析焦炉煤气电站锅炉空气预热器低温腐蚀的原因及对策张魏雄曹虎银作者:来源:《商品与质量·学术观察》2013年第05期陕西神木洁能电厂两台蒸发量为240t/h燃气发电锅炉,2010年安装调试正式运行,半年后锅炉小修时发现空气预热器低温段的管子腐蚀严重。
本文就这种现象进行了分析,查找在很短时间内管子腐蚀的原因,并提出了预防治理建议。
1、锅炉参数及燃料特性:1.1锅炉相关参数(见表1)1.2锅炉设计燃料特性(见表2)2、腐蚀情况腐蚀发生在空气预热器低温段。
1#、2#锅炉空气预热器四个管箱,每个管箱靠前段的几排管子严重腐蚀,有的管壁腐蚀开孔,内部有白色结晶体。
空气预热器材质为考登钢(Corten),管子规格¢40x1.5mm,锅炉低负荷运行烟道温度低时,有凝结水流出,严重的地方被腐蚀溶解。
根据运行经验将冷风温度提高到20度以上,两台引风机运行保持烟气均衡时腐蚀不是很严重,冷风温度低时腐蚀就比较严重,虽然烟道用高温环氧树脂漆防腐,但油漆全部成片脱落,不起作用。
采用搪瓷内外封面的空预器管子,用烟道的凝结水浸泡几天,搪瓷管腐蚀严重。
在夏季、由于环境温度比较高对管子腐蚀就比较小。
由于时间短,腐蚀数量少,电厂将腐蚀透的管子上下封堵,暂时不影响锅炉运行。
3、腐蚀成因分析对空气预热器内部白色结晶体进行化验为硫化物结晶体,对凝结水化验PH为2.0为酸性。
经过分析认为属于低温腐蚀。
经化验煤气中硫化氢含量过高。
在燃烧过程中,燃烧中的硫化氢在燃烧后生成二氧化硫,二氧化硫与火焰高温区域内的氧原子反应生成三氧化硫。
烟气中的全部或一部分三氧化硫与烟气中的水蒸气化合生成硫酸蒸汽。
三氧化硫转化为硫酸蒸汽的转化率为:X=PH2SO4/(PSO3+PH2O)计算得出,燃料燃烧后烟气中水蒸气体积比为18.59%,水露点为59.220C。
燃烧后燃料中的SO2和H2S都将被部分氧化成SO3,假设SO3转化率为2%,则在烟气中的SO2含量为80PPm,假设SO3转化率为2%,则SO3的含量为1.6PPm,对应的酸露点温度为1190C。
浅谈空气预热器的低温腐蚀及预防措施

浅谈空气预热器的低温腐蚀及预防措施引言空气预热器是电厂锅炉的重要辅机,主要是利用锅炉尾部烟道中的烟气通过其内部散热片,将进入锅炉前的空气预热到一定的温度,用于提高锅炉的热效率,降低能量消耗。
由于锅炉长时间低负荷运行,空气预热器低温腐蚀现象严重,造炉空气预热器受热面的损坏和泄漏,导致引风机负荷增加,限制锅炉出力,严重影响锅炉运行的安全性和经济性。
一、锅炉空气预热器的作用锅炉中煤粉与助燃空气燃烧后产生的高温烟气依次流经不同的辐射对流受热面后进入空预器预热进口冷风,进入炉膛的空气被加热,有利于稳燃和燃尽。
电站锅炉装设空预器的主要作用包括如下几点:首先,降低排烟温度,提高锅炉效率。
在现代燃煤电站中,由于回热循环的存在,锅炉给水经各级加热器加热后温度参数大大提高,如中压锅炉的给水温度为172℃左右,高压锅炉的给水温度为215℃左右,超高压锅炉的给水温度为240℃左右,亚临界压力锅炉的给水温度达到了260℃左右。
因此,烟气在省煤器处与给水换热后的温度仍然较高,要使省煤器后排烟温度降到100℃左右是不现实的,而如果直接排放必然造成相当大的排烟热损失。
装设空气预热器后,20摄氏度左右的冷空气与省煤器出来的高温烟气进行换热,一方面显著地降低了排烟温度,另一方面回收了排烟的热量重新进入炉膛,达到了提高燃料利用率的目的。
其次,入炉风温的提高改善了燃料的着火与燃烧条件,同时有利于降低燃料燃烧不完全的损失,这一点对着火困难的煤种尤其重要。
由于提高了燃烧所需的空气温度,改善了燃料的着火环境和燃烧效率,同时也降低了不完全燃烧热损失q3、q4,锅炉效率得到提高。
其三,可以允许辐射受热面设计数量的减少,降低钢材消耗。
由于炉内理论燃烧温度得到提高,炉内的辐射换热得到强化,在给定蒸发量的前提下,炉内水冷壁可以布置得少一些,这将节约金属材料,降低锅炉造价。
其四,有利于改善引风机的工作条件。
排烟温度降低后,直接改善了引风机的工作条件,同时也降低了引风机的电耗,提高了效率。
浅析空气预热器低温腐蚀问题与对策

浅析空气预热器低温腐蚀问题与对策摘要:空气预热器就是以当进入锅炉前的空气被锅炉底部烟道中的烟气通过里部的散热片预先进行加热到一定温度的受热面为原理进行工作的机器。
它的存在之合理就是用来提高锅炉的关于热交换性能,降低能量的不必要消耗。
在它工作时会慢慢的旋转圈,空预器的烟气侧中的烟气会在进去之后再被放出,而空预器中的散热片会吸收烟气中所带的热量,之后空预器慢慢旋转,散热片运动到空气侧,此时热量会被传递给进入锅炉前的空气。
由此,使用时显露的问题也应受到重视,存在待解决的问题,需要进一步优化完善,方便使用途中有应对措施。
本文就空气预热器低温腐蚀问题的种种现象有一个深入分析,对于现存在的问题,提出相关解决措施,旨在推动空气预热器的长远发展。
关键词:空气预热器;低温腐蚀;问题与对策结语漏风和在低温情况下受到腐蚀已然成为了回转式形式的空气预热器最通常的问题。
密封部件(轴向、径向和环向密封)漏风和风壳漏风是漏风现象的主要因由;烟气中的水蒸气与硫一起燃烧,而后变成的三氧化硫会继而形成可怕的硫酸水汽进人空气预热器是致使在低温情况下受到腐蚀的导火索,就会与低温度情况下的热表面金属相结合,致使硫酸蒸汽凝结,这就是金属壁面腐蚀的原因。
受热面产生腐蚀是因为遇冷凝结后形成酸雾,这就是在低温情况下它会形成销蚀的决定性因素,GAL16V8D-15LP其影响因素主要包括烟气露点、硫酸浓度、凝结在空气预热器换热表面的酸量以及受热面金属温度等。
【1】一、分析空气预热器的作用1、改善并强化燃烧空气在受过余热器后再进入炉里部,就会为燃料的脱水、着火和燃烧过程提供强而有力的“加速器”,为锅炉内能够持续燃烧而保驾护航。
2、强化传热炉内燃烧已经得到了护身符,进入炉里的热风温度也在紧随其的脚步,而且炉内平均温度水平也有所改善,这样的话炉内辐射传热就稳定前行。
3、将炉内不必要损失尽量降低,排烟温度也随之尽量下降降低化学不完全燃烧所带来的弊处,可以就炉里的燃烧持续性,辐射热交换的强化展开应有的措施;其次,为了提高锅炉现阶段的热效率,它能够充分发挥烟气余热的作用,这样就深深减少了放烟损失。
空预器冷端腐蚀原因分析及防范措施

空预器冷端腐蚀原因分析及防范措施空气预热器的低温腐蚀主要发生在空气预热器的冷端(即冷风进口处的低温段)。
对回转式空气预热器而言,腐蚀会加重堵灰,使烟道阻力增大,严重影响锅炉的经济运行。
由低温腐蚀会对锅炉造成很大危害,因此必须预防发生低温腐蚀。
一、低温腐蚀的原因烟气进入低温受热面后,随着受热面的不断吸热,烟气温度逐渐降低,其中的水蒸气可能由于烟气温度降低或在接触温度较低的受热面时发生凝结。
烟气中水蒸气开始凝结的温度称为水露点。
纯净水蒸气露点取决于它在烟气中的分压力。
常压下燃用固体燃料的烟气中,水蒸气的分压力p=0.01-0.015Mpa,水蒸气的露点低至45-54℃,一般情况下不易在受热面上发生结露。
而当锅炉燃用含硫燃料时,硫燃烧后全部或大部分生成二氧化硫,其中一部分二氧化硫(占总含量的1%左右,体积分数)又在一定条件下进一步氧化生成三氧化硫(SO3)。
SO3与烟气中水蒸气化合后生成硫酸蒸汽,硫酸蒸气的凝结温度称为酸露点。
酸露点比水露点要高得多,而且烟气中SO3含量越高,酸露点越高,酸露点可达110-160℃。
当受热面的壁温低于酸露点时,这些酸就会凝结下来,对受热面金属产生严重的腐蚀作用,这种腐蚀称为低温腐蚀。
烟气酸露点的高低,表明了受热面低温腐蚀的范围大小及腐蚀程度高低,酸露点越高,更多受热面要遭受腐蚀,而且腐蚀越严重。
因此,烟气中酸露点是一一个表征低温腐蚀是否会发生的指示。
烟气的酸露点与燃料硫含量和单位时间送入炉内的总硫量有关,而后者是随燃料发热量降低而增大的。
两者对露点的影响,综合起来可用折算硫分来反映。
而且折算硫分越高,燃烧生成SO2就越多,SO3也将增多,致使烟气酸露点升高。
当燃用固体燃料时,烟气中带有大量的飞灰粒子。
飞灰粒子含有钙和其他碱金属化合物,它们可以部分地吸收烟气中的硫酸蒸气,从而可以降低它在烟气中的浓度,使得烟气中硫酸蒸气分压力降低,酸露点也降低。
烟气中飞灰粒子数量越多,影响越显著。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1摘要关键词:低温空气预热器、结构计算、热力计算电厂锅炉,火电厂三大主设备之一。
由锅炉本体和辅助设备构成。
它利用燃料(如煤、重油、天然气等)燃烧时产生的热量使水变成具有一定温度和压力的过热蒸汽,以驱动汽轮发电机发电。
以燃煤锅炉为例,电厂锅炉本体由炉膛、燃烧器、水冷壁、过热器、省煤器、空气预热器以及钢架炉墙等组成。
此外,还有重要的辅助设备,如制粉设备、除灰设备、除尘装置、自动控制装置与仪表、阀门等。
这次老师给分配的是低温空气预热器,这次设计分为低温空气预热器的结构计算和热力计算,计算量最大的是热力计算,我通过老师给的数据结合《锅炉课程设计指导书》完成了这次,在计算过程中我查找出了书中的公式,查表确定计算中所需要的数值来完成这次课程设计。
目录摘要 (1)1 绪论 (1)1.1 锅炉课程设计的目的和意义 (1)1.2 研究本课题的现状和发展趋势 (1)2 低温空气预热器设计 (3)2.1 低温空气预热器设计参数 (3)2.2 锅炉结构示意图 (4)2.3 低温空气预热器的结构计算 (5)2.3.1 低温空气预热器作用 (5)2.3.2 低温空气预热器的结构计算 (5)2.3.3 低温空气预热器的热力计算 (6)3低温空气预热器 (12)3.1低温空气预热器基本尺寸汇总 (12)3.2低温空气预热器热力计算汇总 (13)4结束语 (16)参考文献 (17)1绪论1.1锅炉课程设计的目的和意义锅炉课程设计是锅炉原理课程的重要教学实践环节,通过课程设计,使我对锅炉原理课程的知识得以巩固、充实和提高,提高感性认识,增强动手能力,为以后的毕业设计打下夯实的基础。
课程的重要教学实践环节。
通过课程设计来达到以下目的:对锅炉原理课程的知识得以巩固、充实和提高;掌握锅炉机组的热力计算方法,学会使用热力计算标准方法并具有综合考虑锅炉机组设计与布置的初步能力;培养对工程技术问题的严肃认真和负责的态度。
1.2研究本课题的现状和发展趋势空气预热器一般简称为空预器。
多用于燃煤电站锅炉。
可分为管箱式、回转式两种,其中回转式又分为风罩回转式和受热面回转式两种。
电站锅炉较常采用受热面回转式预热器。
在锅炉中的应用一般为两分仓、三分仓、四分仓式,其中四分仓较常用于循环流化床锅炉中。
空气预热器(air pre-heater)就是锅炉尾部烟道中的烟气通过内部的散热片将进入锅炉前的空气预热到一定温度的受热面。
用于提高锅炉的热交换性能,降低能量消耗。
中国调研报告网发布的2016年中国空气预热器市场调查研究与发展趋势预测报告认为,空气预热器按空气预热器的传热方式可将空气预热器分为导热式和再生式两大类。
在导热式空气预器中最常用的是管式空气预热器。
随着锅炉参数的提高和容量的增加,管式空气预热器的受热面也增大,这给尾部受热面的布置带来了困难。
因此,在大容量机组中多数采用结构紧凑、质量较轻的回转式空气预热器。
《2016年中国空气预热器市场调查研究与发展趋势预测报告》通过空气预热器项目研究团队多年对空气预热器行业的监测调研,结合中国空气预热器行业发展现状及前景趋势,依托国家权威数据资源和一手的调研资料数据,对空气预热器行业现状及趋势进行全面、细致的调研分析,采用定量及定性的科学研究方法撰写而成。
《2016年中国空气预热器市场调查研究与发展趋势预测报告》可以帮助投资者准确把握空气预热器行业的市场现状及发展趋势,为投资者进行投资作出空气预热器行业前景预判,挖掘空气预热器行业投资价值,同时提出空气预热器行业投资策略、营销策略等方面的建议。
2低温空气预热器设计2.1低温空气预热器设计参数2.2锅炉结构示意图图 2-1锅炉示意图A-炉膛;B-水平烟道;C-尾部烟道;1-屏式过热器;2-高温过热器;3-低温过热器; 4-高温省煤器; 5-高温空气预热器; 6-低温省煤器; 7-低温空气预热器本课程设计的对象是:低温空气预热器2.3低温空气预热器的结构计算2.3.1低温空气预热器作用1、改善并强化燃烧经过余热器后的空气进入炉内,加速了燃料的干燥、着火和燃烧过程,保证了锅炉内的稳定燃烧,提高了燃烧效率。
2、强化传热由于炉内燃烧得到了改善和强化,加上进入炉内的热风温度提高,炉内平均温度水平也有提高,从而可强化炉内辐射传热。
3、减小炉内损失,降低排烟温度,提高锅炉热效率由于炉内燃烧稳定,辐射热交换的强化,可以降低化学不完全燃烧损失;另一方面空气预热器利用烟气余热,进一步降低了排烟损失,因此提高了锅炉热效率。
根据经验,当空气在预热器中升高1.5℃,排烟温度可以降低1℃.在锅炉烟道中安装空气预热器后,如果能把空气余热150-160℃,就可以降低排烟温度110-120℃,可将锅炉热效率提高7%-7.5%。
可以节约燃料11%-12%。
4、热空气可以作燃料干燥剂对于层燃炉,有热空气可以使用水分和灰分较高的燃料,对于电站锅炉,热空气是脂粉系统的重要干燥剂和煤粉输送介质。
2.3.2低温空气预热器的结构计算1)横向节距比(2-1)2)纵向节距比1.140d σ22===(2-2) 3) 受热面积2xs 89987.8m 8.560.03853.148696A =⨯⨯⨯= (2-3)4) 烟气流通面积22y 6.99m 410.0323.148696A =⨯⨯⨯*= (2-4) 5) 空气流通面积2K12.25m1.7180.04)27(1.976A=⨯⨯⨯-= (2-5)6) 烟气有效辐射层厚度0.061πσ4σ0.9d s 21=⎪⎪⎭⎫⎝⎛-=m(注:d 单位为m ) (2-6) 2.3.3 低温空气预热器的热力计算 1) 进口空气温度℃30t 'XK =2) 进口空气焓kg 239.784kJ/h 'xk =3) 高温空气预热器漏风系数查表1-5漏风系数和过量空气系数得sk4) 高温空气预热器漏风系数1.05β''xk =5) 低温空气预热器空气侧出口过量空气系数1Δαβsk ''sk =+ (2-7)6) 出口空气温度213.6t ''xk =℃7) 出口理论空气焓/kg 2426.271kJ h ''xk =8) 低温空气预热器对流吸热量J/kg 2459.8371k Q xkdl =9) 进口烟气温度Θ'xk =315℃10) 进口烟气焓/kg3898.642kJ h 'yxk =11) 空气平均温度t pj =(t'k,xk +t"k,xk )/2=121.8℃ (2-8)12) 漏风理论空气焓/kg 1305.124kJ h 01k =13) 出口烟气温度℃136.301Θ''xk =14) 出口烟气焓/kg1490.705kJ h ''yxk =15) 烟气平均温度Θpj =(Θ'xk +Θ"xk )/2Θpj =225.65℃ (2-9)16) .烟气流速225.65℃2315136.3012ΘΘΘ'xk ''xk pj=+=+= (2-10)s w /m 543.12y =17) 烟气侧对流放热系数ωC C a a 10d xk = 查附录A-9得44dxk =a W/(m 2·℃) 18) 低温烟气有效辐射层厚度S=0.06m19) 烟气压力=p 0.1MPa20) 水蒸气容积份额查表2-9烟气特性表得0726.02=O H r21) .三原子气体和水蒸气容积总份额查表2-9烟气特性表得 =r 0.197922) 三原子气体辐射减弱系数⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⨯+=1000T 0.371110.2rps r 1.60.7810.2K pj O H q2 (2-11) 222.742215230.482t t T 'xs ''xs pj =+=+=℃ (2-12)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⨯⨯⨯⨯+=100074.22237.0110.1260.10.20242.100.073986.178.02.10q R =q R 66.902 1/(m·MPa )23) 灰粒的辐射减弱系数k h =160.787 1/(m·MPa )24) 烟气质量飞灰浓度查表2-9烟气特性表得3y 0.0205kg/m μ=25) 烟气的辐射减弱系数1/(m·Mpa)1r k μk kyhq=+=(2-13) 26) 烟气黑度0.006e 1e 10.060.11Kps ska=-=-=⨯⨯-- (2-14)27) 管壁灰污层温度()()173.7℃2225.65121.82t Θt pjpjbbxk=+=+=(2-15)28) 烟气侧辐射放热系数3.1848a a a 0f xk ==W/(㎡·℃) (2-16)29) 烟气侧放热系数α1=ξ×(f xk a +d xk a )=47.184 (其中ξ为利用系数,取1)30) 空气流速()m 7.3)2730273))/(360+(/2)Δ+((A t a βV B ωk pj xk xkj k=⨯⨯⨯"⨯⨯= (2-17)31) 空气侧放热系数w s z 0d C C C a =a 查附录A-758W/(㎡·℃)=a 2 32) 传热系数K sk =ξ×α2×α1/(α2+α1) =24 W/(m 2﹒℃) (2-18) (ξ=0.8)33) 传热温差103.831)/ΔΔ)/ln(Δ/Δt -(Δt Δt x d x d nl ==℃ (2-19) t Θt Θxkxkx xkxkd ,Δt Δt ''''''--==℃ (2-20)116.862℃Δt ΨΔt nl xs =⨯= (2-21)34) 计算误差10℃7.6℃206-213.6t t Δt 'sk ''xk <==-= (2-22)3低温空气预热器3.1低温空气预热器基本尺寸汇总表3-1;低温空气预热器结构尺寸3.2低温空气预热器热力计算汇总表3-2低温空气预热器热力计算4结束语正如我们所了解的,课程设计是考察大学生综合运用所学知识、发现、提出、分析和解决实际中的应用问题,培养大学生实践能力的必要环节,是对一个大学生实际工作能力和建立团队协作能力的具体训练和考察过程。
本次设计是为低温空气预热器,设计时长为三周。
通过这次设计,让我更进一步理解了低温空气预热器及其设备的基本作用和操作原理,也使我在思维上对低温空气预热器的运作过程有了比较具体的掌握。