2019-2020年佛山市初三中考数学第一次模拟试题【含答案】

合集下载

广东省佛山市2019-2020学年中考数学第一次调研试卷含解析

广东省佛山市2019-2020学年中考数学第一次调研试卷含解析

广东省佛山市2019-2020学年中考数学第一次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.点P (1,﹣2)关于y 轴对称的点的坐标是( ) A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)2.如图,若AB ∥CD ,则α、β、γ之间的关系为( )A .α+β+γ=360°B .α﹣β+γ=180°C .α+β﹣γ=180°D .α+β+γ=180°3.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .三棱锥C .圆柱D .圆锥4.数据”1,2,1,3,1”的众数是( ) A .1 B .1.5 C .1.6 D .3 5.12233499100++++++++L 的整数部分是( )A .3B .5C .9D .66.如图,甲圆柱型容器的底面积为30cm 2,高为8cm ,乙圆柱型容器底面积为xcm 2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y (cm )与x (cm 2)之间的大致图象是( )A .B .C .D .7.下列各运算中,计算正确的是( )A .1234a a a ÷=B .()32639a a =C .()222a b a b +=+D .2236a a a ⋅=8.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )A .B .C .D .9.如图是二次函数y =ax 2+bx +c(a≠0)图象的一部分,对称轴为直线x =12,且经过点(2,0),下列说法:①abc <0;②a +b =0;③4a +2b +c <0;④若(-2,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2.其中说法正确的有( )A .②③④B .①②③C .①④D .①②④10.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m ,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加16002m ,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( ) A .x (x-60)=1600 B .x (x+60)=1600 C .60(x+60)=1600 D .60(x-60)=160011.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-212.下列等式正确的是( ) A .x 3﹣x 2=xB .a 3÷a 3=aC .231(2)(2)2-÷-=- D .(﹣7)4÷(﹣7)2=﹣72二、填空题:(本大题共6个小题,每小题4分,共24分.)13.请写出一个 开口向下,并且与y 轴交于点(0,1)的抛物线的表达式_________ 14.若关于x 的方程x 2+x ﹣a+54=0有两个不相等的实数根,则满足条件的最小整数a 的值是( ) A .﹣1B .0C .1D .215.我国自主研发的某型号手机处理器采用10 nm 工艺,已知1 nm=0.000000001 m ,则10 nm 用科学记数法可表示为_____m .16.若点(),2P m -与点()3,Q n 关于原点对称,则2018()m n +=______. 17.抛物线y=2x 2+4x ﹣2的顶点坐标是_______________.18.在平面直角坐标系xOy 中,点P 到x 轴的距离为1,到y 轴的距离为2.写出一个..符合条件的点P 的坐标________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,△ABC 三个定点坐标分别为A (﹣1,3),B (﹣1,1),C (﹣3,2).请画出△ABC 关于y 轴对称的△A 1B 1C 1;以原点O 为位似中心,将△A 1B 1C 1放大为原来的2倍,得到△A 2B 2C 2,请在第三象限内画出△A 2B 2C 2,并求出S △A1B1C1:S △A2B2C2的值.20.(6分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?21.(6分)如图,直线4y x =+与双曲线0ky k x=≠()相交于1A a -(,)、B 两点. (1)a = ,点B 坐标为 .(2)在x 轴上找一点P ,在y 轴上找一点Q ,使BP PQ QA ++的值最小,求出点P Q 、两点坐标22.(8分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.将三角形、正方形、五边形都整齐的由左到右填在所示表格里: 三角形数 1 3 6 10 15 21 a … 正方形数 1 4 9 16 25 b 49 … 五边形数151222C5170…(1)按照规律,表格中a=___,b=___,c=___.(2)观察表中规律,第n 个“正方形数”是________;若第n 个“三角形数”是x ,则用含x 、n 的代数式表示第n 个“五边形数”是___________.23.(8分)如图,已知一次函数12y kx =-的图象与反比例函数()20my x x=>的图象交于A 点,与x 轴、y 轴交于,C D 两点,过A 作AB 垂直于x 轴于B 点.已知1,2AB BC ==.(1)求一次函数12y kx =-和反比例函数()20my x x=>的表达式; (2)观察图象:当0x >时,比较12,y y .24.(10分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x (x >0)元,让利后的购物金额为y 元. (1)分别就甲、乙两家商场写出y 关于x 的函数解析式; (2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.25.(10分)如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F . (1)求证:EF 是⊙O 的切线. (2)如果⊙O 的半径为5,sin ∠ADE =45,求BF 的长.26.(12分)如图,在电线杆CD 上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B 处安置高为1.5米的测角仪AB ,在A 处测得电线杆上C 处的仰角为30°,求拉线CE 的长(结果保留小数点后一位,参考数据:2 1.41,?3 1.73≈≈).27.(12分)先化简,再求值:22124()(1)442a a a a a a a -+-÷--+-,其中a 为不等式组72230a a ->⎧⎨->⎩的整数解.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P (1,﹣2)关于y 轴对称的点的坐标是(﹣1,﹣2), 故选C .【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键. 关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数; 关于y 轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数. 2.C 【解析】。

2019-2020佛山市数学中考一模试卷附答案

2019-2020佛山市数学中考一模试卷附答案

元,当销售单价 x=
元时,日销售利润 w 最大,最大值是
元;
(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销 售单价仍存在(1)中的关系.若想实现销售单价为 90 元时,日销售利润不低于 3750 元的 销售目标,该产品的成本单价应不超过多少元? 24.距离中考体育考试时间越来越近,某校想了解初三年级 1500 名学生跳绳情况,从中随 机抽查了 20 名男生和 20 名女生的跳绳成绩,收集到了以下数据: 男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165, 158,150,188,172,180,188 女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175, 172,166,155,183,187,184. 根据统计数据制作了如下统计表:
内).在 E 处测得建筑物顶端 A 的仰角为 24°,则建筑物 AB 的高度约为(参考数据:
sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )
A.21.7 米
B.22.4 米
C.27.4 米
8.如图,下列关于物体的主视图画法正确的是( )
D.28.8 米
A.
B.
C.
D.
9.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛 36 场,设有 x 个队参 赛,根据题意,可列方程为()
25.如图, ABC 是边长为 4cm 的等边三角形,边 AB 在射线 OM 上,且 OA 6cm ,点 D 从点 O 出发,沿 OM 的方向以 1cm/s 的速度运动,当 D 不与点 A 重合时,将 ACD 绕 点 C 逆时针方向旋转 60°得到 BCE ,连接 DE. (1)如图 1,求证: CDE 是等边三角形;

佛山市2019年中考数学试卷及答案(Word解析版)

佛山市2019年中考数学试卷及答案(Word解析版)

广东省佛山市2019年中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的)2.(3分)(2019•佛山)一个几何体的展开图如图,这个几何体是()=1y=7.(3分)(2019•佛山)据佛山日报2019年4月4日报道,佛山市今年拟投入70亿元人民22若、若10.(3分)(2019•佛山)把24个边长为1的小正方体木块拼成一个长方体(要全部用完),二、填空题(本大题共5小题,每小题3分,共15分.)11.(3分)(2019•佛山)如图,线段的长度大约是 2.3(或2.4)厘米(精确到0.1厘米).12.(3分)(2019•佛山)计算:(a3)2•a3=a9.13.(3分)(2019•佛山)不等式组的解集是x<﹣6.,由14.(3分)(2019•佛山)如图是一副三角板叠放的示意图,则∠α=75°.15.(3分)(2019•佛山)如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是﹣2.OE=2解答:=π×﹣=2故答案为:﹣三、解答题(写出必要的解题步骤,另有要求的按要求作答,16~20题,每小题6分,21~23题,每小题6分,24题10分,25题11分,共75分)16.(6分)(2019•佛山)计算:÷2﹣1+•[2+(﹣)3].÷).17.(6分)(2019•佛山)解分式方程:=.18.(6分)(2019•佛山)一个不透明的袋里装有两个白球和三个红球,它们除颜色外其他都一样,(1)求“从袋中任意摸出一个球,摸出的一个球是白球”的概率;(2)直接写出“从袋中同时任意摸出两个球,摸出的两个球都是红球”的概率.;P=.19.(6分)(2019•佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.ABAB=××==3cm20.(6分)(2019•佛山)函数y=2x+1的图象经过哪几个象限?(要求:不能直接写出答案,要有解题过程;注:“图象经过某象限”是指“图象上至少有一点在某象限内”.)(2)那一组数据比较稳定?=))﹣22.(8分)(2019•佛山)现有不等式的性质:①在不等式的两边都加上(或减去)同一个整式,不等号的方向不变;②在不等式的两边都乘以同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等式的方向改变.请解决以下两个问题:(1)利用性质①比较2a与a的大小(a≠0);(2)利用性质②比较2a与a的大小(a≠0).23.(8分)(2019•佛山)利用二次函数的图象估计一元二次方程x2﹣2x﹣1=0的近似根(精确到0.1).=124.(10分)(2019•佛山)(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图1写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)](2)如图2,在▱ABCD中,对角线焦点为O,A1、B1、C1、D1分别是OA、OB、OC、OD 的中点,A2、B2、C2、D2分别是OA1、OB1、OC1、OD1的中点,…,以此类推.若ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形3反映的规律,猜猜l可能是多少?BCAB BC CD×,=×=,++)由图可知,+++++25.(11分)(2019•佛山)我们把“按照某种理想化的要求(或实际可能应用的标准)来反映或概括的表现某一类或一种事物关系结构的数学形式”看作是一个数学中的一个“模式”(我国著名数学家徐利治).如图是一个典型的图形模式,用它可测底部可能达不到的建筑物的高度,用它可测河宽,用它可解决数学中的一些问题.等等.(1)如图,若B1B=30米,∠B1=22°,∠ABC=30°,求AC(精确到1);(参考数据:sin22°≈0.37,cos22°≈0.92,tan22°≈0.40,≈1.73)(2)如图2,若∠ABC=30°,B1B=AB,计算tan15°的值(保留准确值);(3)直接写出tan7.5°的值.(注:若出现双重根式,则无需化简)ABC==C=﹣AB=x xC=x+x;BC=a C=2a+a=)==2)C=。

〖精选4套试卷〗广东省佛山市2020年中考第一次适应性考试数学试题

〖精选4套试卷〗广东省佛山市2020年中考第一次适应性考试数学试题

2019-2020学年数学中考模拟试卷一、选择题1.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是( )①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④2.一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是()A.360°B.540°C.180°或360°D.540°或360°或180°3.马大哈做题很快,但经常不仔细,所以往往错误率非常高,有一次做了四个题,但只做对了一个,他做对的是()A.a8÷a4=a2B.a3•a4=a12C.a5+a5=a10D.2x3•x2=2x54.某游乐场新推出了一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB自由上下选择项目难度.其中斜坡轨道BC的坡度(或坡比)为i=1:2,BC=12米,CD=8米,∠D=36°,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为()米.(精确到0.1米,参考数据:tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)A.5.6B.6.9C.11.4D.13.95.cos45°的值等于( )A.2B.1 C.32D.226.在同一直角坐标系中,函数y=kx-k与kyx(k≠0)的图象大致是()A.B.C.D.7.如图,矩形ABCD中,A(﹣2,0),B(2,0),C(2,2),将AB绕点A旋转,使点B落在边CD上的点E处,则点E的坐标为()A.()32,B.()232,C.(1,2)D.()2322-,8.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A.|a|>|b|B.a >﹣3C.a >﹣dD.11c< 9.如图,将曲线c 1:y =kx(x >0)绕原点O 逆时针旋转60°得到曲线c 2,A 为直线y =3x 上一点,P 为曲线c 2上一点,PA =PO ,且△PAO 的面积为63,直线y =3x 交曲线c 1于点B ,则OB 的长( )A .26B .5C .33D .53210.用直尺和圆规作一个直角三角形斜边上的高,作图错误的是( )A .B .C .D .11.某校对部分参加研学旅行社会实践活动的中学生的年龄(单位:岁)进行统计,结果如表: 年龄 12 12 14 15 16 人数12231A .15,14B .15,13C .14,14D .13,1412.如图,在△ABC 中,AC =BC ,∠C =90°,折叠△ABC 使得点C 落在AB 边上的E 处,连接DE 、CE ,下列结论:①△DEB是等腰直角三角形;②AB=AC+CD;③BE BDAC AB=;④S△CDE=S△BDE.其中正确的个数是()A.1 B.2 C.3 D.4 二、填空题13.如图,已知tanα=12,如果F(4,y)是射线OA上的点,那么F点的坐标是______.14.若(x+3)0=1,则x应满足条件_____.15.在平面直角坐标系中,若点(m,2)与(3,n)关于原点对称,则m+n的值是___.16.一个多边形的内角和与外角和的比是4:1,则它的边数是.17.分解因式:x3﹣4x2+4x=______.18.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[43x+]=5,则x的取值范围是_____.三、解答题19.一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4.小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球,记两次取得乒乓球上的数字依次为a、b.(1)求a、b之积为偶数的概率;(2)若c=5,求长为a、b、c的三条线段能围成三角形的概率.20.解一元二次方程(1)(x﹣1)2=4(2)x2﹣4x+1=021.如图,点B在DC上,BE平分∠ABD,∠ABE=∠C,求证:BE∥AC.22.如图,抛物线y=-x2+4x-1与y轴交于点C,CD∥x轴交抛物线于另一点D,AB∥x轴交抛物线于点A,B,点A在点B的左侧,且两点均在第一象限,BH⊥CD于点H.设点A的横坐标为m.(1)当m=1时,求AB的长.(2)若AH=2(CH-DH),求m的值.23.某中学校开展了“献爱心”捐款活动。

广东省佛山市2019-2020学年中考中招适应性测试卷数学试题(4)含解析

广东省佛山市2019-2020学年中考中招适应性测试卷数学试题(4)含解析

广东省佛山市2019-2020学年中考中招适应性测试卷数学试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2 B.2 C.﹣1 D.12.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x个,依题意列方程为()A.21021051.5x x-=B.21021051.5x x-=-C.21021051.5x x-=+D.2102101.55x=+4.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A.7.1×107B.0.71×10﹣6C.7.1×10﹣7D.71×10﹣85.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为()A.30°B.60°C.50°D.40°6.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是()A.B.C.D.7.关于反比例函数y=2x,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上8.已知a m=2,a n=3,则a3m+2n的值是()A.24 B.36 C.72 D.69.下列运算正确的是()A.a3•a2=a6B.(a2)3=a5C.9=3 D.2+5=2510.一次函数112y x=-+的图像不经过的象限是:()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°12.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣23;③sinα=21313;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正确的是()A.①②B.②③C.①④D.③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(11·湖州)如图,已知A、B是反比例函数(k>0,x<0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C .过P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M 、N .设四边形OMPN 的面积为S ,P 点运动时间为t ,则S 关于t 的函数图象大致为14.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.15.已知A 、B 两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A 地到B 地匀速前行,甲、乙行进的路程s 与x (小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x 的增大而增大时,x 的取值范围是___.16.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 .17.因式分解:2xy 2xy x ++=______.184= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x 天后每千克苹果的价格为p 元,写出p 与x 的函数关系式;若存放x 天后将苹果一次性售出,设销售总金额为y 元,求出y 与x 的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?20.(6分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)21.(6分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y=80;x=60时,y=1.在销售过程中,每天还要支付其他费用350元.求y与x 的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?22.(8分)解不等式组:()3x12x x1x132⎧-<⎪⎨+-<⎪⎩23.(8分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数2(0)y xx=<的图象于B点,交函数6(0)y xx=>的图象于C,过C作y轴和平行线交BO的延长线于D.(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;(3)在(1)条件下,四边形AODC的面积为多少?24.(10分)计算:﹣2212+|1﹣4sin60°|25.(10分)实践体验:(1)如图1:四边形ABCD是矩形,试在AD边上找一点P,使△BCP为等腰三角形;(2)如图2:矩形ABCD中,AB=13,AD=12,点E在AB边上,BE=3,点P是矩形ABCD内或边上一点,且PE=5,点Q是CD边上一点,求PQ得最值;问题解决:(3)如图3,四边形ABCD中,AD∥BC,∠C=90°,AD=3,BC=6,DC=4,点E在AB边上,BE=2,点P 是四边形ABCD内或边上一点,且PE=2,求四边形PADC面积的最值.26.(12分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是»BD的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长.27.(12分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.故选B.考点:一元一次方程的解.2.A【解析】【分析】画出从正面看到的图形即可得到它的主视图.【详解】这个几何体的主视图为:故选:A.【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.3.A【解析】【分析】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可.【详解】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,由题意得,21021051.5x x-=故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.4.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.00000071的小数点向或移动7位得到7.1,所以0.00000071用科学记数法表示为7.1×10﹣7,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.A【解析】分析:根据平行线的性质求出∠C,求出∠DEC的度数,根据三角形内角和定理求出∠D的度数即可.详解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故选A.点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C的度数是解答此题的关键.6.C【解析】【分析】根据轴对称和中心对称的定义去判断即可得出正确答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.【点睛】本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.7.C【解析】【分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数2yx的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.8.C【解析】试题解析:∵a m=2,a n=3,∴a3m+2n=a3m•a2n=(a m)3•(a n)2=23×32=8×9=1.故选C.9.C【解析】【分析】结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、实数的运算等运算,然后选择正确选项.【详解】解:A. a3⋅a2=a5,原式计算错误,故本选项错误;B. (a2)3=a6,原式计算错误,故本选项错误;C. ,原式计算正确,故本选项正确;D. 2和故选C.【点睛】本题考查了幂的乘方与积的乘方,实数的运算,同底数幂的乘法,解题的关键是幂的运算法则. 10.C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像11.B【解析】【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=12(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.12.B【解析】【分析】根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入②,不等式kx≤ax2+bx 的解集可以转化为函数图象的高低关系.【详解】解:根据图象抛物线开口向上,对称轴在y轴右侧,则a>0,b<0,则①错误将A(1,2)代入y=ax2+bx,则2=9a+1b∴b=233a -,∴a﹣b=a﹣(233a-)=4a﹣23>-23,故②正确;由正弦定义13==,则③正确;不等式kx≤ax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象则满足条件x范围为x≥1或x≤0,则④错误.故答案为:B.【点睛】二次函数的图像,sinα公式,不等式的解集.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.A【解析】试题分析:①当点P在OA上运动时,OP=t,S=OM•PM=tcosα•tsinα,α角度固定,因此S是以y轴为对称轴的二次函数,开口向上;②当点P在AB上运动时,设P点坐标为(x,y),则S=xy=k,为定值,故B、D选项错误;③当点P在BC上运动时,S随t的增大而逐渐减小,故C选项错误.故选A.考点:1.反比例函数综合题;2.动点问题的函数图象.14.4.02×1.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:40.2万=4.02×1,故答案为:4.02×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.2,0≤x≤2或43≤x≤2.【解析】【分析】(2)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【详解】(2)由函数图象可知,乙比甲晚出发2小时.故答案为2.(2)在整个运动过程中,甲、乙两人之间的距离随x 的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤2;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y =kx ,由图象可知,(4,20)在函数图象上,代入得:20=4k ,∴k =5,∴甲的函数解析式为:y =5x ①设乙的函数解析式为:y =k′x+b ,将坐标(2,0),(2,20)代入得:0202k b k b=+⎧⎨=+⎩ , 解得2020k b =⎧⎨=-⎩ , ∴乙的函数解析式为:y =20x ﹣20 ②由①②得52020y x y x =⎧⎨=-⎩ , ∴43203x y ⎧=⎪⎪⎨⎪=⎪⎩, 故43≤x≤2符合题意. 故答案为0≤x≤2或43≤x≤2. 【点睛】此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据16.21 【解析】试题分析:这四个数中,奇数为1和3,则P (抽出的数字是奇数)=2÷4=12. 考点:概率的计算.17.2(1)x y +【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】xy 1+1xy+x ,=x (y 1+1y+1),=x (y+1)1.故答案为:x (y+1)1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.2【解析】【分析】根据算术平方根的定义,求数a 的算术平方根,也就是求一个正数x ,使得x 2=a ,则x 就是a 的算术平方根, 特别地,规定0的算术平方根是0.【详解】∵22=4=2.【点睛】本题考查求算术平方根,熟记定义是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.()1?0.14p x =+;()22580040000y x x =-++;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解析】【分析】(1)根据按每千克4元的市场价收购了这种苹果10000千克,此后每天每千克苹果价格会上涨0.1元,进而得出x 天后每千克苹果的价格为p 元与x 的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】()1根据题意知,0.14p x =+;()()()220.141000050580040000y x x x x =+-=-++.()3300410000w y x =--⨯Q25500x x =-+25(50)12500x =--+∴当50x =时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出w 与x 的函数关系是解题关键.20. (1)21米(2)见解析【解析】试题分析:(1)根据题意易发现,直角三角形ABC中,已知AC的长度,又知道了∠ACB的度数,那么AB的长就不难求出了.(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的.解:(1)在Rt△BAC中,∠ACB=68°,∴AB=AC•tan68°≈100×2.1=21(米)答:所测之处江的宽度约为21米.(2)①延长BA至C,测得AC做记录;②从C沿平行于河岸的方向走到D,测得CD,做记录;③测AE,做记录.根据△BAE∽△BCD,得到比例线段,从而解答21.(1) y=﹣2x+220(40≤x≤70);(2) w=﹣2x2+300x﹣9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元.【解析】【分析】(1)根据y与x成一次函数解析式,设为y=kx+b(k≠0),把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量,列出w关于x的二次函数解析式即可;(3)利用二次函数的性质求出w的最大值,以及此时x的值即可.【详解】(1)设y=kx+b(k≠0),根据题意得7080 60100k bk b+=⎧⎨+=⎩,解得:k=﹣2,b=220,∴y=﹣2x+220(40≤x≤70);(2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+21;(3)w=﹣2(x﹣75)2+21,∵40≤x≤70,∴x=70时,w有最大值为w=﹣2×25+21=2050元,∴当销售单价为70元时,该公司日获利最大,为2050元.【点睛】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.22.﹣9<x<1.【解析】【分析】先求每一个不等式的解集,然后找出它们的公共部分,即可得出答案.【详解】解不等式1(x﹣1)<2x,得:x<1,解不等式﹣<1,得:x>﹣9,则原不等式组的解集为﹣9<x<1.【点睛】此题考查了解一元一次不等式组,用到的知识点是解一元一次不等式组的步骤,关键是找出两个不等式解集的公共部分.23.(1)线段AB与线段CA的长度之比为13;(2)线段AB与线段CA的长度之比为13;(3)1.【解析】试题分析:(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.试题解析:(1)∵A(0,2),BC∥x轴,∴B(﹣1,2),C(3,2),∴AB=1,CA=3,∴线段AB与线段CA的长度之比为13;(2)∵B是函数y=﹣2x(x<0)的一点,C是函数y=6x(x>0)的一点,∴B(﹣2a,a),C(6a,a),∴AB=2a,CA=6a,∴线段AB与线段CA的长度之比为13;(3)∵ABAC=13,∴ABBC=14,又∵OA=a,CD∥y轴,∴14 OA ABCD BC==,∴CD=4a,∴四边形AODC的面积为=12(a+4a)×6a=1.24.-1【解析】【分析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【详解】解:原式=4412--⨯-=41--=﹣1.【点睛】此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键.25.(1)见解析;(2)PQ min=7,PQ max=13;(3)S min=35425,S max=18.【解析】【分析】(1)根据全等三角形判定定理求解即可.(2)以E为圆心,以5为半径画圆,①当E、P、Q三点共线时最PQ最小,②当P点在2P位置时PQ 最大,分类讨论即可求解.(3)以E为圆心,以2为半径画圆,分类讨论出P点在12P P,位置时,四边形PADC面积的最值即可. 【详解】(1)当P为AD中点时,AP DPAB CDA DQ==∠=∠⎧⎪⎨⎪⎩,)ABP DCP SAS∴∆≅∆(BE CE∴=∴△BCP为等腰三角形.(2)以E为圆心,以5为半径画圆①当E、P、Q三点共线时最PQ最小,PQ的最小值是12-5=7.②当P点在2P位置时PQ最大,PQ的最大值是225+12=13(3)以E为圆心,以2为半径画圆.当点p为1P位置时,四边形PADC面积最大()3+64==182⨯.当点p为1P位置时,四边形PADC最小=四边形2P ADF+三角形2P CF=24144354 52525+=.【点睛】本题主要考查了等腰三角形性质,直线,面积最值问题,数形结合思想是解题关键. 26.(1)证明见解析(2)16 5【解析】【分析】(1)连接OC,根据等腰三角形的性质、平行线的判定得到OC∥AE,得到OC⊥EF,根据切线的判定定理证明;(2)根据勾股定理求出AC,证明△AEC∽△ACB,根据相似三角形的性质列出比例式,计算即可.【详解】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是»BD的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠BCA=90°,∴22AB BC-=4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°,∴△AEC∽△ACB,∴AE AC AC AB=,∴AE=2165 ACAB=.【点睛】本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键.27.1 2 .【解析】试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.试题解析:解:画树状图如答图:∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,∴P(A,C两个区域所涂颜色不相同)=41 82 .考点:1.画树状图或列表法;2.概率.。

2019-2020年佛山市初三中考数学第一次模拟试卷【含答案】

2019-2020年佛山市初三中考数学第一次模拟试卷【含答案】

2019-2020年佛山市初三中考数学第一次模拟试卷【含答案】一、选择题(每小题3分,共30分)1.(3分)下列各数中,比﹣1大的数是()A.B.﹣2 C.﹣3 D.02.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.(3分)如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD 交于点E,连接BE,则BE的值为()A.B.2C.3D.46.(3分)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是()A.84分B.87.6分C.88分D.88.5分7.(3分)如图,平行四边形ABCD的对角线AC平分∠BAD,若AC=12,BD=16,则对边之间的距离为()A.B.C.D.8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.(3分)如图①,在矩形ABCD中,AB>AD,对角线AC、BD相交于点O,动点P由点A 出发,沿AB→BC→CD向点D运动,设点P的运动路径为x,△AOP的面积为y,图②是y 关于x的函数关系图象,则AB边的长为()A.3 B.4 C.5 D.6二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.14.(3分)如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(75分)16.(8分)先化简,再求值:,其中x=4|cos30°|+317.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B 级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.(1)求证:BD是⊙O的切线.(2)若AB=,E是半圆上一动点,连接AE,AD,DE.填空:①当的长度是时,四边形ABDE是菱形;②当的长度是时,△ADE是直角三角形.19.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.20.(9分)如图①,②分别是某款篮球架的实物图和示意图,已知支架AB的长为2.3m,支架AB与地面的夹角∠BAC=70°,BE的长为1.5m,篮板部支架BD与水平支架BE的夹角为46°,BC、DE垂直于地面,求篮板顶端D到地面的距离.(结果保留一位小数,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?22.(10分)(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB=,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为,综上可得∠BPC的度数为;(2)类比迁移如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB=,PC=1,求∠APC 的度数;(3)拓展应用如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=AD.∠BAC=2∠ADC,请直接写出BD的长.23.(11分)如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE ⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、﹣<﹣1,故本选项不符合题意;B、﹣2<﹣1,故本选项不符合题意;C、﹣3<﹣1,故本选项不符合题意;D、0>﹣1,故本选项,符合题意;故选:D.2.【解答】解:44亿=4.4×109.故选:B.3.【解答】解:该几何体的主视图为:故选:C.4.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.【解答】解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,∵AB=2DE,作EH⊥BC交BC的延长线于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=CH=,在Rt△BEH中,BE==2,故选:B.6.【解答】解:张敏的成绩是:=87.6(分),故选:B.7.【解答】解:设AC,BD交点为O,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,又∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BCA=∠BAC,∴AB=BC,∴平行四边形ABCD是菱形;∵四边形ABCD是菱形,且AC=12、BD=16,∴AO=6、BO=8,且∠AOB=90°,∴AB==10,∴对边之间的距离==,故选:C.8.【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.9.【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.10.【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB>BC,所以AB=4.故选:B.二、填空题(每小题3分,共15分)11.【解答】解:原式=2﹣4+4=2,故答案为:2.12.【解答】解:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4,∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,﹣2≤x≤3,y随x的增大而增大,∴a﹣4=﹣3,∴a=1,故答案为1.13.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为8,所以两次抽取的卡片上数字之和为偶数的概率为=,故答案为:.14.【解答】解:连接BG,CG∵BG=BC=CG,∴△BCG是等边三角形.∴∠CBG=∠BCG=660°,∵在正方形ABCD中,AB=4,∴BC=4,∠BCD=90°,∴∠DCG=30°,∴图中阴影部分的面积=S扇形CDG﹣S弓形CG=﹣(﹣×4×2)=4﹣,故答案为:4﹣.15.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.三、解答题(75分)16.【解答】解:原式=÷=•=,当x=4|cos30°|+3=4×+3=2+3时,原式==.17.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.18.【解答】(1)证明:如图1,连接OD,∵在Rt△ABC中,∠BAC=90°,∠C=30°,∴AB=BC,∵D是BC的中点,∴BD=BC,∴AB=BD,∴∠BAD=∠BDA,∵OA=OD,∴∠OAD=∠ODA,∴∠ODB=∠BAO=90°,即OD⊥BC,∴BD是⊙O的切线.(2)①当DE⊥AC时,四边形ABDE是菱形;如图2,设DE交AC于点M,连接OE,则DE=2DM,∵∠C=30°,∴CD=2DM,∴DE=CD=AB=BC,∵∠BAC=90°,∴DE∥AB,∴四边形ABDE是平行四边形,∵AB=BD,∴四边形ABDE是菱形;∵AD=BD=AB=CD=BC=,∴△ABD是等边三角形,OD=CD•tan30°=1,∴∠ADB=60°,∵∠CDE=90°﹣∠C=60°,∴∠ADE=180°﹣∠ADB﹣∠CDE=60°,∴∠AOE=2∠ADE=120°,∴的长度为:=π;故答案为:;②若∠ADE=90°,则点E与点F重合,此时的长度为:=π;若∠DAE=90°,则DE是直径,则∠AOE=2∠ADO=60°,此时的长度为:=π;∵AD不是直径,∴∠AED≠90°;综上可得:当的长度是π或π时,△ADE是直角三角形.故答案为:π或π.19.【解答】解:(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.20.【解答】解:延长AC、DE交于点F,则四边形BCFE为矩形,∴BC=EF,在Rt△ABC中,sin∠BAC=,∴BC=AB•sin∠BAC=2.3×0.94=2.162,∴EF=2.162,在Rt△DBE中,tan∠DBE=,∴DE=BE•tan∠DBE=1.5×1.04=1.56,∴DF=DE+EF=2.162+1.56≈3.7(m)答:篮板顶端D到地面的距离约为3.7m.21.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450;(3)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∵点D的坐标为(18,360),∴试销售期间第18天的日销售量最大,最大日销售量是360件.22.【解答】解:(1)把△BPC绕点C顺时针旋转60°得△AP'C,连接PP′(如图1).由旋转的性质知△CP′P是等边三角形;∴P′A=PB=、∠CP′P=60°、P′P=PC=2,在△AP′P中,∵AP2+P′A2=12+()2=4=PP′2;∴△AP′P是直角三角形;∴∠P′AP=90°.∵PA=PC,∴∠AP′P=30°;∴∠BPC=∠CP′A=∠CP′P+∠AP′P=60°+30°=90°.故答案为:2;30°;90°;(2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′.由旋转的性质知△CP′P是等腰直角三角形;∴P′C=PC=1,∠CPP′=45°、P′P=,PB=AP'=,在△AP′P中,∵AP'2+P′P2=()2+()2=2=AP2;∴△AP′P是直角三角形;∴∠AP′P=90°.∴∠APP'=45°∴∠APC=∠APP'+∠CPP'=45°+45°=90°(3)如图3,∵AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=2AB,∴DG=2BC=6,过A作AE⊥BC于E,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG===,∴BD=CG=.23.【解答】解:(1)在y=﹣x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴抛物线的解析式为:y=x2+x﹣3;(2)设点D的坐标为:(m,m2+m﹣3),则点F的坐标为:(m,﹣m﹣3),∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC=S△ADF+S△DFC=DF•AE+•DF•OE=DF•OA=×(﹣m2﹣m)×6=﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴抛物线开口向下,∴当m=﹣3时,S△ADC存在最大值,又∵当m=﹣3时,m2+m﹣3=﹣,∴存在点D(﹣3,﹣),使得△ADC的面积最大,最大值为;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=x+9,由,解得或,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)中学数学一模模拟试卷一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项.1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b23.下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣34.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种6.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折8.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.9.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个10.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+二、填空题(本大题共6小题,每小题3分,共24分)11.化简:÷=.12.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.13从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.14.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B 落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.15.以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是.16.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是.三、(本大题共3个小题,每小题各6分,共18分)17.先化简,再求值:(﹣2),其中x=2.18.分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.19.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?四、(本大题共2个小题,每小题8分,共16分)20.根据全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?21.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.五、(本大题共2小题,每小题9分,共18分)22.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.23.设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).六、(本大题共2小题,每小题10分,共20分)24.在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.25.在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.(3分)在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|【解答】解:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选:B.2.(3分)下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b2【解答】解:A、﹣(﹣x+1)=x﹣1,故本选项错误;B、=3﹣故本选项错误;C、|﹣2|=2﹣故本选项正确;D、(a﹣b)2=a2﹣2ab+b2故本选项错误;故选:C.3.(3分)下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣3【解答】解:∵2x2+5x﹣3=(2x﹣1)(x+3),2x﹣1与x+3是多项式的因式,故选:A.4.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+6【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.5.(3分)关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【解答】解:△=k2﹣4(k﹣1)=k2﹣4k+4=(k﹣2)2,∵(k﹣2)2,≥0,即△≥0,∴原方程有两个实数根,当k=2时,方程有两个相等的实数根.故选:B.6.(3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,故A选项正确;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,故B选项正确;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,故C选项正确;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,故D选项错误.故选:D.7.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.8.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y >0,图象位于第一象限,所以只有A符合要求.故选:A.9.(3分)下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个【解答】解:①一个角的两边垂直于另一个角的两边,这两个角互补或相等,所以①错误.②数据1,2,2,4,5,7,中位数是(2+4)=3,其中2出现的次数最多,众数是2,所以②正确.③等腰梯形只是轴对称图形,而不是中心对称图形,所以③错误.④根据根与系数的关系有:a+b=7,ab=7,∴a2+b2=(a+b)2﹣2ab=49﹣14=35,即:AB2=35,AB=∴AB边上的中线的长为.所以④正确.故选:C.10.(3分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y =x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接P A.∵PE⊥AB,AB=2,半径为2,∴AE=AB=,P A=2,根据勾股定理得:PE==1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴a=PD+DC=2+.故选:B.二、填空题(本大题共6小题,每小题3分,共24分)11.(3分)化简:÷=.【解答】解:原式=•=.故答案为:12.(3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.13.(3分)从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.【解答】解:共有6种情况,在第四象限的情况数有2种,所以概率为.故答案为:.14.(3分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为80°.【解答】解:由翻折可得∠B′=∠B=60°,∴∠A=∠B′=60°,∵∠AFD=∠GFB′,∴△ADF∽△B′GF,∴∠ADF=∠B′GF,∵∠EGC=∠FGB′,∴∠EGC=∠ADF=80°.故答案为:80°.15.(3分)以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是﹣4≤a≤﹣2.【解答】解:当A、D两点重合时,PO=PD﹣OD=5﹣3=2,此时P点坐标为a=﹣2,当B在弧CD时,由勾股定理得,PO===4,此时P点坐标为a =﹣4,则实数a的取值范围是﹣4≤a≤﹣2.故答案为:﹣4≤a≤﹣2.16.(3分)如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是(2,0)或(4,0)或(2,0)或(﹣2,0)..【解答】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=2,∴P的坐标是(4,0)或(2,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=2,∴OA=OP=2,∴P的坐标是(﹣2,0).故答案为:(2,0)或(4,0)或(2,0)或(﹣2,0).三、(本大题共3个小题,每小题各6分,共18分)17.(6分)先化简,再求值:(﹣2),其中x=2.【解答】解:原式==×=,当x=2时,原式=﹣=﹣1.18.(6分)分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.【解答】解:(1)(2)如图所示:19.(6分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?【解答】解:(1)120×0.95=114(元),若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元;(2)设所付钱为y元,购买商品价格为x元,则按方案一可得到一次函数的关系式:y=0.8x+168,则按方案二可得到一次函数的关系式:y=0.95x,如果方案一更合算,那么可得到:0.95x>0.8x+168,解得:x>1120,∴所购买商品的价格在1120元以上时,采用方案一更合算.四、(本大题共2个小题,每小题8分,共16分)20.(8分)根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?【解答】解:(1)450﹣36﹣55﹣180﹣49=130(万人);(2)第五次人口普查中,该市常住人口中高中学历人数的百分比是:1﹣3%﹣17%﹣38%﹣32%=10%,人数是400×10%=40(万人),∴第六次人口普查中,该市常住人口中高中学历人数是55万人,∴第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是:×100%=37.5%.21.(8分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.【解答】解:(1)连接OD.设⊙O的半径为r.∵BC切⊙O于点D,∴OD⊥BC.∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.∴=,即10r=6(10﹣r).解得r=,∴⊙O的半径为.(2)四边形OFDE是菱形.理由如下:∵四边形BDEF是平行四边形,∴∠DEF=∠B.∵∠DEF=∠DOB,∴∠B=∠DOB.∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°.∵DE∥AB,∴∠ODE=60°.∵OD=OE.∴OD=DE.∵OD=OF,∴DE=OF.又∵DE∥OF,∴四边形OFDE是平行四边形.∵OE=OF,∴平行四边形OFDE是菱形.五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【解答】(1)证明:在△ACD与△ABE中,∵,∴△ACD≌△ABE,∴AD=AE.(2)答:直线OA垂直平分BC.理由如下:连接BC,AO并延长交BC于F,在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.23.(9分)设,,,…,.若,求S(用含n的代数式表示,其中n 为正整数).【解答】解:∵,,,…,.。

中考第一次模拟检测《数学试题》含答案解析

中考第一次模拟检测《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题12个小题,每小题4分,共48分..1.清代·袁牧的一首诗《苔》中的诗句:”白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为()A. 84×10-5B. 8.4×10-6C. 84×10-7D. 8.4×1062.下列计算正确的是()A. 2a+3b=5abB. a2·a4=a8C. (-2a2b)3=-8a6b3D. a6÷a3+a2=2a23.如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是( )A. 50°B. 60°C. 65°D. 70°4.下列图案,既是轴对称图形又是中心对称图形的有( )A. 1个B. 2个C. 3个D. 4个5.估计51的值应在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间6.我国古代数学著作《增删算法统综》记载”绳索量竿”问题:”一条竿子一条索,索比竿子长一托,折回索子去量竿,却比竿子短一托”,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿子长5尺;如果将绳索对半折后去量竿,就比竿子短5尺.设绳索长为x尺,竿长为y尺,则符合题意的方程组是()A.5{152x yx y=-=+B.5{25x yx y=+=-C.5152x yx y=+⎧⎪⎨=-⎪⎩D.5{25x yx y=-=+7.如图,将半径为4,圆心角为90°的扇形BAC 绕A 点逆时针旋转60°,点B 、C 的对应点分别为点D 、E 且点D 刚好在AC 上,则阴影部分的面积为( )A.4433π+ B.8433π+ C.4233π+ D. 23π+8.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依此规律,第9个图形的小圆个数是( )A. 58B. 74C. 92D. 1129.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x(x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A. -3B. 3C.1 3 D. -1310.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕AE=1010,且CE:CF=4:3,那么该矩形的周长为()A. 48B. 64C. 92D. 9611.如图,小明利用所学数学知识测量某建筑物BC高度,采用了如下的方法:小明从与某建筑物底端B在同一水平线上的A点出发,先沿斜坡AD行走260米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C 的仰角为72°,建筑物底端B的俯角为63°,其中点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4,根据小明的测量数据,计算得出建筑物BC的高度约为()米(计算结果精DE确到0.1米,参考数据:sin72°≈0.95,tan72°≈3.08,si n63°≈0.89,tan63°≈1.96)A. 157.1B. 157.4C.257.4 D. 257.112.如果关于x的分式方程2322m xx x+=--的解为非负数,且关于x的不等式组22{342(1)x mx x-≥+>+无解,则所有符合条件的整数m的个数为()A. 6B. 5C.4 D. 3二、填空题:(本大题6个小题,每小题4分,共24分)13.计算:2312743-⎛⎫--+ ⎪⎝⎭=________14.已知x-2y=4,xy=4,则代数式5xy-3x+6y的值为________.15.如图,已知⊙O的半径为4,OA⊥BC,∠CDA=22.5°,则弦BC的长为________.16.经过某十字路口的汽车,它可能继续直行,也可能向左转或者向右转,如果这三种情况的可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向右转的概率是17.甲、乙两车分别从A,B两地相向匀速行驶,甲车先出发两小时,甲车到达B地后立即调头,并保持原速度与乙车同向行驶,乙车到达A地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(干米),甲车行驶的时间为x小时,y与x之间的函数图象如图所示,则当甲车重返A地时,乙车距离C地________千米.18.如图,在边长为6的正方形ABCD中,点E、F、G分别在边AB、AD、CD上,EG与BF交于点I,AE=2,BF=EG,DG>AE,则DI的最小值为________.三、解答题:(本大题7个小题,每小题10分,共70分)19.计算:(1)(2a+b)(2a-b)-(2a+b)2+4ab(2)22412316 81644 x x xx x x x--÷+++++20.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.21.中华文明,源远流长,中华汉字,寓意深广.为传承中华优秀传统文化,某中学德育处组织了一次全校2000名学生参加的”汉字听写”大赛.为了解本次大赛的成绩,学校德育处随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:成绩x(分)分数段频数(人) 频率50≤x<6010 0.0560≤x<7030 01570≤x<8040 0.280≤x<90m 0.3590≤x<10050 n频数分布直方图根据所给的信息,回答下列问题:(1)m=________;n=________;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)为”优”等,请你估计该校参加本次比赛的2000名学生中成绩是”优”等的约有多少人?22.某”兴趣小组”根据学习函数的经验,对函数y=x+1x的图象和性质进行了探究,探究过程如下,请补充完整.(1)函数y=x+1x的自变量取值范围是________;(2)下表是x与y的几组对应值:x …-3 -2 -1 - 12-1414121 2 3 …y …- 103-52-2 -52-17417452252m …则表中m的值为________;(3)根据表中数据,在如图所示平面直角坐标xOy中描点,并画出函数的一部分,请画出(4)观察函数图象:写出该函数的一条性质(5)进一步探究发现:函数y=x+1x图象与直线y=-2只有一交点,所以方程x+1x=-2只有1个实数根,若方程x+1x=k(x<0)有两个不相等的实数根,则k的取值范围是________.23.每年的3月15日是”国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的A 商品成本为600元,在标价1000元的基础上打8折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售A商品,其成本、标价与甲卖家一致,以前每周可售出50件,现乙卖家先将标价提高2m%,再大幅降价24m元,使得A商品在3月15日那一天卖出数量就比原来一周卖出的数量增加了 52m%,这样一天的利润达到了20000元,求m 的值.24.如图,平行四边形ABCD 中,CG ⊥AB 于点G ,∠ABF=45°,F 在CD 上,BF 交CD 于点E ,连接AE ,AE ⊥AD .(1)若BG=1,BC=10,求EF 的长度; (2)求证:CE+2BE=AB .25.设a ,b 是任意两个不等实数,我们规定满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数闭区间[m ,n ]上的”闭函数”.如函数y =﹣x +4.当x =1时,y =3;当x =3时,y =1,即当1≤x ≤3时,有1≤y ≤3,所以说函数y =﹣x +4是闭区间[1,3]上的”闭函数” (1)反比例函数2019y x=是闭区间[1,2019]上 “闭函数”吗?请判断并说明理由. (2)若二次函数y =x 2﹣2x ﹣k 是闭区间[1,2]上的”闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的”闭函数”,求此函数的解析式(用含m ,n 的代数式表示).四、解答题:(本大题1个小题,共8分),26.如图1,在平面直角坐标系xoy 中,二次函数23333y x =-x 轴的交点为A ,B ,顶点为C ,点D 为点C 关于x 轴的对称点,过点A 作直线l :3333y x =+交BD 于点E ,连接BC 的直线交直线l 于K 点.(1)问:在四边形ABKD内部是否存在点P,使它到四边形ABKD四边的距离都相等?若存在,请求出点P的坐标;若不存在,请说明理由;(2)若M,N分别为直线AD和直线l上的两个动点,连结DN,NM,MK,如图2,求DN+NM+MK和的最小值.答案与解析一、选择题:本大题12个小题,每小题4分,共48分..1.清代·袁牧的一首诗《苔》中的诗句:”白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为()A. 8.4×10-5B. 8.4×10-6C. 84×10-7D. 8.4×106【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000084=8.4×10-6故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.下列计算正确的是()A. 2a+3b=5abB. a2·a4=a8C. (-2a2b)3=-8a6b3D. a6÷a3+a2=2a2【答案】C【解析】【分析】根据同底数幂的除法的法则,同底数幂的乘法的法则,合并同类项的法则进行计算即可.【详解】A.2a与3b不是同类项,不能合并,故选项A错误;B.根据同底数幂的乘法法则得:a2·a4=a2+4=a6,故B错误;C.根据积的乘方的法则得:(-2a2b)3=-8a6b3,故C正确;D.a6÷a3+a2=a3+a2,a3和a2不是同类项,所以不能合并,故D错误.故选C.【点睛】本题考查了同底数幂的除法的法则,同底数幂的乘法的法则,合并同类项,熟记法则是解题的关键.3.如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是( )A. 50°B. 60°C. 65°D. 70°【答案】A【解析】【分析】由平行线性质得∠ACD=∠1=65°.由等腰三角形性质得∠DAC=∠ACD,再根据三角形内角和性质得到结果. 【详解】∵AB∥CD,∴∠ACD=∠1=65°.∵AD=CD,∴∠DAC=∠ACD=65°,∴∠2=180°﹣∠DAC﹣∠ACD=180°﹣65°﹣65°=50°.故选:A【点睛】本题考核知识点:平行线性质,等腰三角形性质.解题关键点:熟记平行线性质,等腰三角形性质.4.下列图案,既是轴对称图形又是中心对称图形的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】第一个既是轴对称图形,又是中心对称图形;第二个是轴对称图形,不是中心对称图形;第三个既是轴对称图形,又是中心对称图形;第四个既是轴对称图形,又是中心对称图形.综上所述:既是轴对称图形又是中心对称图形的共有3个,故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.估计1的值应在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】B【解析】【分析】因为2.22=4.84,2.32=5.29,所以4<5,推出3<<4,由此即可解决问题.【详解】∵2.22=4.84,2.32=5.29,∴4<5,∴3<<4.故选B.【点睛】本题考查估算无理数的大小,解题的关键是学会利用逼近法解决问题.6.我国古代数学著作《增删算法统综》记载”绳索量竿”问题:”一条竿子一条索,索比竿子长一托,折回索子去量竿,却比竿子短一托”,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿子长5尺;如果将绳索对半折后去量竿,就比竿子短5尺.设绳索长为x尺,竿长为y尺,则符合题意的方程组是()A.5{152x yx y=-=+B.5{25x yx y=+=-C.5152x yx y=+⎧⎪⎨=-⎪⎩D.5{25x yx y=-=+【答案】C 【解析】【分析】设索长为x 尺,竿子长为y 尺,根据”索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.【详解】设绳索长为x 尺,竿长为y 尺.根据题意,得 5152x y x y =+⎧⎪⎨=-⎪⎩ 故选C.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.如图,将半径为4,圆心角为90°的扇形BAC 绕A 点逆时针旋转60°,点B 、C 的对应点分别为点D 、E 且点D 刚好在AC 上,则阴影部分的面积为( )A. 4433π+B. 8433π+C. 4233π+D. 23π+【答案】A【解析】【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S 阴影=S 扇形ADE -S 弓形AD =S 扇形ABC -S 弓形AD ,进而得出答案.【详解】连接BD ,过点B 作BN ⊥AD 于点N ,∵将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,∴∠BAD=60°,AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,则∠ABN=30°,故AN=2,BN=23,S阴影=S扇形ADE-S弓形AD=S扇形ABC-S弓形AD=229046041423 3603602ππ⎛⎫⋅⨯⋅⨯--⨯⨯⎪⎝⎭=443 3π+故选A.【点睛】此题主要考查了扇形面积求法以及等边三角形的判定与性质,正确得出△ABD是等边三角形是解题关键.8.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依此规律,第9个图形的小圆个数是()A. 58B. 74C.92 D. 112【答案】C【解析】【分析】由题意可知:第一个图形有2+1×2=4个小圆,第二个图形有2+2×3=8个小圆,第三个图形有2+3×4=14个小圆,第四个图形有2+4×5=22个小圆…由此得出,第8个图形的小圆个数为2+9×10=92,由此得出答案即可.【详解】通过观察图形可知:每个图形中,最上端和最下端各有一个小圆,是不变的.然后我们可以得出序号n 与图中小圆的个数有如下规律:序号 小圆个数1 1×2+22 2×3+23 3×4+24 4×5+2… …n n (n+1)+2∴第9个图形中小圆的个数为9×(9+1)+2=92.故选C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题是解答此题的关键.9.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x(x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A. -3B. 3C.13 D. - 13【答案】A【解析】【分析】根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A 、B 的坐标,表示出k 1、k 2,进而得出k 2与k 1的比值.【详解】如图,设AB 交x 轴于点C ,又设AC=a.∵AB ⊥x 轴 ∴∠ACO=90°在Rt △AOC 中,OC=AC·tan ∠OAB=a·tan60°=3a ∴点A 的坐标是(3a ,a )同理可得 点B 的坐标是(3a ,-3a )∴k 1=3a×a=3a 2 , k 2=3a×(-3a )=-33a∴213333k a k a-==-. 故选A.【点睛】考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k ,是解决问题的方法.10.如图,点E 是矩形ABCD 的边CD 上一点,把△ADE 沿AE 对折,使点D 恰好落在BC 边上的F 点处.已知折痕AE=1010,且CE :CF=4:3,那么该矩形的周长为( )A. 48B. 64C. 92D. 96【答案】D【解析】【分析】由CE:CF=4:3,可以假设CE=4k,CF=3k推出EF=DE=5k,AB=CD=9k,利用相似三角形性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.【详解】∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠B=∠C=∠D=90°,∵CE:CF=4:3,∴可以假设CE=4k,CF=3k∴EF=DE=5k,AB=CD=9k,∵∠AFE=∠D=90°,∴∠AFB+∠EFC=90°,∠EFC+∠FEC=90°,∴∠AFB=∠CEF,∴△ABF∽△FCE,∴AB BF CF CE=,∴934k BFk k=,∴BF=12k,∴AD=BC=15k,在Rt△AED中,∵AE2=AD2+DE2,∴1000=225k2+25k2,∴k=2或-2(舍弃),∴矩形的周长=48k=96,故选D.【点睛】本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.11.如图,小明利用所学数学知识测量某建筑物BC高度,采用了如下的方法:小明从与某建筑物底端B在同一水平线上的A点出发,先沿斜坡AD行走260米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为72°,建筑物底端B的俯角为63°,其中点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4,根据小明的测量数据,计算得出建筑物BC的高度约为()米(计算结果精DE 确到0.1米,参考数据:sin72°≈0.95,tan72°≈3.08,sin63°≈0.89,tan63°≈1.96)A. 157.1B. 157.4C.257.4 D. 257.1【答案】D【解析】【分析】 如图作DH ⊥AB 于H ,延长DE 交BC 于F .则四边形DHBF 是矩形,在Rt △ADH 中求出DH ,再在Rt △EFB 中求出EF ,在Rt △EFC 中求出CF 即可解决问题【详解】如图作DH ⊥AB 于H ,延长DE 交BC 于F .在Rt △ADH 中,∵AD=260,DH :AH=1:2.4,∴DH=100(m ),∵四边形DHBF 是矩形,∴BF=DH=100,在Rt △EFB 中,tan63°=BF EF , ∴EF=63BF tan, 在Rt △EFC 中,FC=EF•tan72°, ∴CF=1001.96×3.08≈157.1, ∴BC=BF+CF=257.1(m ).故选D .【点睛】本题考查了解直角三角形,坡度,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.如果关于x 的分式方程2322m x x x+=--的解为非负数,且关于x 的不等式组22{342(1)x m x x -≥+>+无解,则所有符合条件的整数m 的个数为( )A. 6B. 5C.4 D. 3【答案】A【解析】【分析】 解不等式组和分式方程得出关于x 的范围及x 的值,根据不等式组有且仅有三个整数解和分式方程的解为非负数得出m 的范围,继而可得整数m 的个数.【详解】解关于x 的分式方程2322m x x x +=--, 解得m 3x 2-+=, ∵关于x 的分式方程2322m x x x +=--的解为非负数, ∴m 32-+≥0, ∴m≤3; 解不等式223x m -≥,得:x≥2m+6, 解不等式()421x x +>+,得:x <2, ∴不等式组()223421x m x x -⎧≥⎪⎨⎪+>+⎩的解集为2m+6≤x <2,∵关于x 的不等式组()223421x m x x -⎧≥⎪⎨⎪+>+⎩无解,∴2m+6≥2,解得m≥-2,∴--2≤m≤3,∴所有符合条件的整数m有:-2、-1、0、1、2、3共6个.故选A.【点睛】本题主要考查分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的能力,并根据题意得到关于m的范围是解题的关键.二、填空题:(本大题6个小题,每小题4分,共24分)13.计算:2143-⎛⎫-+ ⎪⎝⎭=________.【答案】2【解析】【分析】根据实数的运算法则和运算顺序计算即可.【详解】原式=-3-4+32=2.故答案为:2.【点睛】此题考查了实数的运算,平方根、绝对值以及负整数指数幂,熟练掌握各自的性质是解本题的关键.14.已知x-2y=4,xy=4,则代数式5xy-3x+6y的值为________.【答案】8【解析】【分析】利用因式分解将原式变形为含有xy、x-2y的因式,然后把x-2y=4,xy=4代入求值即可【详解】5xy-3x+6y=5xy-3(x-2y)=5×4-3×4=8.故答案为:8.【点睛】本题考查了求代数式的值.能够利用因式分解将原式变形为含有xy、x-2y的因式是解本题的关键.15.如图,已知⊙O的半径为4,OA⊥BC,∠CDA=22.5°,则弦BC的长为________.【答案】42【解析】【分析】连接CO,∠CDA=22.5°,由圆周角定理知∠EOC=45°,又因为OA⊥BC,OC=4,由锐角三角函数知CE=4×22=22,所以BC=42.【详解】如图,设OA与BC交于点E,连接OC∵∠CDA=22.5°∴∠COA=2∠CDA=45°又∵ OA⊥BC∴ BC=2BE,弧AB=弧AC∴∠AOB= ∠COA=45°∴2∴2故答案为:2.【点睛】本题主要考查了垂径定理,圆周角定理,连接OC运用垂径定理,特殊角的三角函数是解答此题的关键.16.经过某十字路口的汽车,它可能继续直行,也可能向左转或者向右转,如果这三种情况的可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向右转的概率是 【答案】727【解析】 略17.甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发两小时,甲车到达B 地后立即调头,并保持原速度与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B 的方向行驶,经过一段时间后两车同时到达C 地,设两车之间的距离为y (干米),甲车行驶的时间为x 小时,y 与x 之间的函数图象如图所示,则当甲车重返A 地时,乙车距离C 地________千米.【答案】120 【解析】 【分析】根据题意和函数图象可以求得甲乙两车的速度,然后根据题意和函数图象即可求得甲重返A 地时,乙车距离C 地的距离,本题得以解决.【详解】设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,()(52)300{(52)(75)a b b a-⨯+--==,得60{40a b ==,∴A 、B 两地的距离为:60×7=420千米, 设甲车从B 地到C 地用的时间为t 小时, 60t=40t+40×(7-2), 解得,t=10,∴当甲重返A 地时,乙车距离C 地:60×10-40×(7-2)-40×(420÷60)=120千米, 故答案为:120.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.如图,在边长为6的正方形ABCD中,点E、F、G分别在边AB、AD、CD上,EG与BF交于点I,AE=2,BF=EG,DG>AE,则DI的最小值为________.【答案】2132【解析】【分析】过点E作EM⊥CD于点M,取BE的中点O,连接OI、OD,根据HL证明Rt△BAF≌Rt△EMG,可得∠ABF=∠MEG,所以再证明∠EPF=90°,由直角三角形斜边上的中线等于斜边的一半可得OI=12BE,由OD-OI≤DI,当O、D、I共线时,DI有最小值,即可求DI的最小值.【详解】如图,过点E作EM⊥CD于点M,取BE的中点O,连接OI、OD,∵四边形ABCD是正方形,∴AB=AD,∠A=∠D=∠DME=90°,AB∥CD,∴四边形ADME是矩形,∴EM=AD=AB,∵BF=EG,∴Rt△BAF≌Rt△EMG(HL),∴∠ABF=∠MEG,∠AFB=∠EGM,∴∠MGE=∠BEG=∠AFB ∵∠ABF+∠AFB=90°∴∠ABF+∠BEG=90°∴∠EIF=90°,∴BF⊥EG;∵△EIB是直角三角形,∴OI=12 BE,∵AB=6,AE=2,∴BE=6-2=4,OB=OE=2,∵OD-OI≤DI,∴当O、D、I共线时,DI有最小值,∵IO=12BE=2,∴∴,即DI的最小值为,故答案为:【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,三角形的三边关系,熟记性质并作辅助线构造出全等三角形是解题的关键,也是本题的难点,在几何证明中常利用三角形的三边关系解决线段的最值问题.三、解答题:(本大题7个小题,每小题10分,共70分)19.计算:(1)(2a+b)(2a-b)-(2a+b)2+4ab(2)22412316 81644 x x xx x x x--÷+++++【答案】(1)-2b2;(2)4. 【解析】(1)根据整式的运算法则即可求出答案. (2)根据分式的运算法则即可求出答案.【详解】(1)原式22224444a b a ab b ab =----+22b =-;(2)原式24(3)416(4)34x x x x x x -+=⨯++-+4164(4)444x x x x x +=+=+++, =4.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.已知:如图,AB∥CD,E 是AB 的中点,CE=DE .求证: (1)∠AEC=∠BED ; (2)AC=BD .【答案】见解析 【解析】(1)根据CE=DE 得出∠ECD=∠EDC,再利用平行线的性质进行证明即可; (2)根据SAS 证明△AEC 与△BED 全等,再利用全等三角形的性质证明即可. 证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC, ∵CE=DE, ∴∠ECD=∠EDC, ∴∠AEC=∠BED ; (2)∵E 是AB 的中点, ∴AE=BE,在△AEC和△BED中,AE=BE,∠AEC=∠BED,EC=ED,∴△AEC≌△BED(SAS),∴AC=BD.21.中华文明,源远流长,中华汉字,寓意深广.为传承中华优秀传统文化,某中学德育处组织了一次全校2000名学生参加的”汉字听写”大赛.为了解本次大赛的成绩,学校德育处随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:成绩x(分)分数段频数(人) 频率50≤x<6010 0.0560≤x<7030 0.1570≤x<8040 0.280≤x<90m 0.3590≤x<10050 n频数分布直方图根据所给的信息,回答下列问题:(1)m=________;n=________;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)为”优”等,请你估计该校参加本次比赛的2000名学生中成绩是”优”等的约有多少人?【答案】(1)70;0.25;(2)补图见解析;(3)80≤x<90;(4)500人【解析】【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第五组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数2000乘以”优”等学生的所占的频率即可.【详解】(1)样本容量为10÷0.05=200,则m=200×0.35=70,n=50÷200=0.25;(2)补全直方图如下:(3)这 200 名学生成绩的中位数会落在80≤x<90分数段,故答案为:80≤x<90;(4)该校参加本次比赛的 2000 名学生中成绩是”优”等的约有:2000×0.25=500(人).【点睛】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.22.某”兴趣小组”根据学习函数的经验,对函数y=x+1x的图象和性质进行了探究,探究过程如下,请补充完整.(1)函数y=x+1x的自变量取值范围是________;(2)下表是x与y几组对应值:x …-3 -2 -1 - 12-1414121 2 3 …y …- 103-52-2 -52-17417452252m …则表中m的值为________;(3)根据表中数据,在如图所示平面直角坐标xOy中描点,并画出函数的一部分,请画出(4)观察函数图象:写出该函数的一条性质(5)进一步探究发现:函数y=x+1x图象与直线y=-2只有一交点,所以方程x+1x=-2只有1个实数根,若方程x+1x=k(x<0)有两个不相等的实数根,则k的取值范围是________.【答案】(1)x≠0;(2)m=103;(3)见解析;(4)见解析;(5)k<-2.【解析】【分析】(1)根据分式有意义的条件是分母不等于零列出不等式,从而求出自变量x的取值范围;(2)根据表中数据的规律可得m的值;(3)根据表中数据,先描点,再连线即可得这部分的函数图象;(4)观察表中数据和函数图象的特征,写出其中一条性质即可.(5)从图象上可以看出,当x<0时,在直线y=-2的下方,函数y=x+ 1x图象与直线y=k有两个交点,即方程x+1x=k(x<0)有两个不相等的实数根,故可得k的取值范围.【详解】(1)根据分式有意义的条件是分母不等于零得,x≠0(2)当x=3时,y=x+1x=103.∴m=10 3(3)如图:(4)(答案不唯一)该函数无最大值,也无最小值;函数图象关于原点对称;当x<-1时,y随x增大而增大;⋯(5)∵x+1x=k(x<0)有两个不相等实数根,∴k<-2.故答案为:k<-2.【点睛】本题考查了反比例函数的性质、反比例函数的图象、正比例函数的性质以及正比例函数图象,解题的关键是:(1)由x在分母上找出x≠0;(2)代入x=3求出m的值;(3)连点成线,画出函数图象;(4)观察函数图象找出函数性质;(5)观察函数图象找出k的取值范围.23.每年的3月15日是”国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的A 商品成本为600元,在标价1000元的基础上打8折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售A商品,其成本、标价与甲卖家一致,以前每周可售出50件,现乙卖家先将标价提高2m%,再大幅降价24m元,使得A商品在3月15日那一天卖出的数量就比原来一周卖出的数量增加了52m%,这样一天的利润达到了20000元,求m的值.【答案】(1)最多降价80元, 才能使利润率不低于20%;(2)60.【解析】【分析】(1)设降价x元,则实际售价为”标价×折扣数-x”,然后根据题意列出不等式,解得x的取值范围,然后求出x的最大值即可;(2)设m%=a(则m=100a),分别表示出降价后一件商品的利润和销售数量,然后利用”一件利润×销售数量=总利润”列出方程,解方程得m的值即可.【详解】(1)设降价x元,依题意,得:(1000×0.8-x)≥600×(1+20%),解得:x≤80.答:最多降价80元,才能使利润率不低于20%.(2)设m%=a,依题意,得:[1000(1+2a)-2400a-600]•50(1+52a)=20000,整理,得:5a2-3a=0,解得:a1=0(舍去),a2=35,∴m%=35,∴m=60.答:m的值为60.【点睛】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.24.如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CD于点E,连接AE,AE⊥AD.(1)若BG=1,,求EF的长度;(2)求证:.【答案】()1EF 22=()2证明见解析. 【解析】 【分析】(1)根据勾股定理得到22BG CG +,推出BG=EG=1,得到CE=2,根据平行四边形的性质得到AB ∥CD ,于是得到结论;(2)延长AE 交BC 于H ,根据平行四边形的性质得到BC ∥AD ,根据平行线的性质得到∠AHB=∠HAD ,推出∠GAE=∠GCB ,根据全等三角形的性质得到AG=CG ,于是得到结论. 详解】()1CG AB ⊥,AGC CGB 90∠∠∴==,BG 1=,BC 10= 22CG BG CG 3∴+=,ABF 45∠=, BG EG 1∴==,CE 2∴=,四边形ABCD 是平行四边形,AB//CD ∴,GCD BGC 90∠∠∴==,EFG GBE 45∠∠==,CF CE 2∴==, EF 2CE 22∴==()2如图,延长AE 交BC 于H ,四边形ABCD 是平行四边形,BC //AD ∴,AHB HAD ∠∠∴=,AE AD ⊥,AHB HAD 90∠∠∴==,BAH ABH BCG CBG 90∠∠∠∠∴+=+=,GAE GCB ∠∠∴=,在BCG 与EAG 中,90AGE CGB GAE GCB GE BG ⎧∠=∠=⎪∠=∠⎨⎪=⎩, BCG ∴≌()EAG AAS ,AG CG ∴=,AB BG AG CE EG BG ∴=+=++,2BG EG ==, CE 2BE AB ∴+=.【点睛】本题考查平行四边形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,正确的识别图形是解题关键.25.设a ,b 是任意两个不等实数,我们规定满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数闭区间[m ,n ]上的”闭函数”.如函数y =﹣x +4.当x =1时,y =3;当x =3时,y =1,即当1≤x ≤3时,有1≤y ≤3,所以说函数y =﹣x +4是闭区间[1,3]上的”闭函数”。

2020年中考数学一模试卷(带答案)

2020年中考数学一模试卷(带答案)

2020年中考数学一模试卷(带答案)一、选择题1.在数轴上,与表示6的点距离最近的整数点所表示的数是( ) A .1B .2C .3D .42.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A .15 B .14C .15 D .4173.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .94.定义一种新运算:1an nnbn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .255.下表是某学习小组一次数学测验的成绩统计表: 分数/分 70 80 90100 人数/人13x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( ) A .80分 B .85分C .90分D .80分和90分6.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣17.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( ) A .只有乙B .甲和丁C .乙和丙D .乙和丁8.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个9.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A .14cmB .4cmC .15cmD .3cm10.已知直线//m n ,将一块含30°角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30°D .40︒11.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°12.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A.10B.12C.16D.18二、填空题13.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE <15°,∠C的度数为整数,则∠C的度数为_____.14.如果a是不为1的有理数,我们把11a-称为a的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a=,2a是1a的差倒数,3a是2a的差倒数,4a是3a的差倒数,…,依此类推,则2019a=___________.15.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.16.如图,在平面直角坐标系xOy中,函数y=kx(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为_____.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.18.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000A出芽种子数961654919841965发芽率0.960.830.980.980.98B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.20.二元一次方程组627x yx y+=⎧⎨+=⎩的解为_____.三、解答题21.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?22.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?23.如图1,已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+32x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.24.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.25.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ABC三个顶点都在格点上,请解答下列问题:(1)写出A,C两点的坐标;(2)画出△ABC关于原点O的中心对称图形△A1B1C1;(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】的大小,即可得到结果. 【详解】46 6.25<<Q ,2 2.5∴<<,的点距离最近的整数点所表示的数是2, 故选:B . 【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.2.A解析:A 【解析】∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC ,则cos B =BC AB , 故选A3.A解析:A 【解析】【分析】易得BC 长为EF 长的2倍,那么菱形ABCD 的周长=4BC 问题得解. 【详解】∵E 是AC 中点, ∵EF ∥BC ,交AB 于点F , ∴EF 是△ABC 的中位线, ∴BC=2EF=2×3=6, ∴菱形ABCD 的周长是4×6=24, 故选A .【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.4.B解析:B 【解析】根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.5.D解析:D 【解析】 【分析】先通过加权平均数求出x 的值,再根据众数的定义就可以求解. 【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1), x=3∴该组数据的众数是80分或90分. 故选D . 【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x 是解答问题的关键.6.B解析:B 【解析】 【分析】 由题意可知A=111)11x x ++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果. 【详解】 解:A=11111x x ++-=111xx x +-g =21x x -故选B. 【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.8.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.9.A解析:A【解析】运用直角三角形的勾股定理,设正方形D的边长为x,则22222(65)(5)10x+++=,x=(负值已舍),故选A解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】解:Q直线//m n,21180ABC BAC∴∠+∠∠+∠=+︒,30ABC=︒∠Q,90BAC∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B.【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.11.D解析:D【解析】题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BA E+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a2019 解析:34. 【解析】【分析】 利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环, ∵2019÷3=673, ∴a 2019=a 3=34, 故答案为:34. 【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.15.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m 的方程求得m 的值即可【详解】∵关于x 的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,∴m 2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.16.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x 轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q解析:25【解析】【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),则C点的坐标为(a+3,b),∵E为AC的中点,∴EF=12CM=12b,AF=12AM=12OQ=12a,E点的坐标为(3+12a,12b),把D、E的坐标代入y=kx得:k=ab=(3+12a)12b,解得:a=2,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:5∴5故答案为5【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a、b的方程是解此题的关键.17.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=218.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15x y =⎧⎨=⎩ 【解析】【分析】由加减消元法或代入消元法都可求解.【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为:15x y =⎧⎨=⎩ 【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.三、解答题21.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩,∴y1=﹣23x+7;将(3,4)代入y2=a(x﹣6)2+1,4=a(3﹣6)2+1,解得:a=13,∴y2=13(x﹣6)2+1=13x2﹣4x+13.∴y1﹣y2=﹣23x+7﹣(13x2﹣4x+13)=﹣13x2+103x﹣6=﹣13(x﹣5)2+73.∵﹣13<0,∴当x=5时,y1﹣y2取最大值,最大值为73,即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y1﹣y2=﹣13x2+103x﹣6=2.设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22,解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y1﹣y2的值;(2)根据点的坐标,利用待定系数法求出y1、y2关于x的函数关系式;(3)找准等量关系,正确列出一元一次方程.22.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意得:1200090001501.5x x+=解得:x=120,经检验x=120是原分式方程的解,∴1.5x=180.答:银杏树的单价为120元,则玉兰树的单价为180元.23.(1)y=﹣14x2+32x+4;(2)△ABC是直角三角形.理由见解析;(3)点N的坐标分别为(﹣8,0)、(8﹣0)、(3,0)、(0).(4)当△AMN面积最大时,N点坐标为(3,0).【解析】【分析】(1)由点A、C的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B的坐标,再由两点间的距离公式求出线段AB、AC、BC的长度,由三者满足AB2+AC2=BC2即可得出△ABC为直角三角形;(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一点,即可求得点N的坐标;(4)设点N的坐标为(n,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S△AMN关于n的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键. 24.见解析【解析】【分析】首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.【详解】证明:∵AB∥CD,∴∠BAC=∠ECD,∵在△BAC和△ECD中,AB=EC,∠BAC=∠ECD ,AC=CD,∴△BAC≌△ECD(SAS).∴CB=ED.【点睛】本题考查了平行线的性质,全等三角形的判定和性质.25.(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)见解析;(3)10π.【解析】【分析】(1)利用第二象限点的坐标特征写出A,C两点的坐标;(2)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,然后描点得到△A2B2C2,再利用弧长公式计算点C旋转至C2经过的路径长.【详解】解:(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)如图,△A1B1C1为所作;(3)如图,△A2B2C2为所作,OC2213+10,点C旋转至C29010π⋅⋅10π.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年佛山市初三中考数学第一次模拟试题【含答案】一、选择题(本大题共10小题,共30.0分)1.给出四个实数,2,0,-1,其中无理数是()A. B. 2 C. 0 D.2.我国某国产手机使用了新一代移动SOC处理器麒麟980,麒麟980实现了基于Cortex-A76的开发商用,相较上一代处理器在表现上提升75%,在能效上提升58%,采用7nm制程工艺的手机芯片,在指甲盖大小的尺寸上塞进69亿个晶体管数据“69亿”用科学记数法表示为()A. B. C. D.3.如图是正方体的表面展开图,则与“2019”字相对的字是()A. 考B. 必C. 胜D.4.下列计算正确的是()A. B.C. D.5.九年级(15)班小姜同学所在小组的7名成员的中招体育成绩(单位:分)依次为70,65,63,68,64,68,69,则这组数据的众数与中位数分别是()A. 68分,68分B. 68分,65分C. 67分分D. 70分,65分6.某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.求甲、乙两种图书每本价格分别为多少元?我们设乙图书每本价格为x元,则可得方程()A. B.C. D.7.已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.8.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A. B. C. D.9.如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(8,6),以A为圆心,任意长为半径画弧,分别交AC、AO于点M、N,再分别以M、N为圆心,大于MN长为半径画弧两弧交于点Q,作射线AQ交y轴于点D,则点D的坐标为()A. B. C. D.10.如图①,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动.设点P经过的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图②所示,则图②中的b等于()A. B. C. 5 D. 4二、填空题(本大题共5小题,共15.0分)11.如果分式有意义,那么实数x的取值范围是______.12.已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为______.13.关于x的一元二次方程(a-1)x2-2x+1=0有实数根,则a的取值范围是______.14.如图,四边形ABCD为矩形,以A为圆心,AD为半径的弧交AB的延长线于点E,连接BD,若AD=2AB=4,则图中阴影部分的面积为______.15.如图,∠AOB=90°,点P为∠AOB内部一点,作射线OP,点M在射线OB上,且OM=,点M′与点M关于射线OP对称,且直线MM′与射线OA交于点N.当△ONM'为等腰三角形时,ON的长为______.三、计算题(本大题共1小题,共8.0分)16.先化简,再求值,其中a=2sin45°,b=四、解答题(本大题共7小题,共67.0分)17.2019年央视315晚会曝光了卫生不达标的“毒辣条”,“食品安全”受到全社会的广泛关注,“安全教育平台”也推出了“将毒食品拋出窗外”一课我校为了了解九年级家长和学生参“将毒食品抛出窗外”的情况,在我校九年级学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A仅学生自己参与;B.家长和学生一起参与;C仅家长自己参与;D.家长和学生都未参请根据图中提供的信息解答下列问题(1)在这次抽样调查中,共调查了______名学生(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数(3)根据抽样调查结果,估计我校九年级2000名学生中“家长和学生都未参与”的人数18.如图直线y1=-x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点(1)求k的值;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP,且AP把△ABC的面积分成1:2两部分,求此时点P 的坐标.19.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接AD、CD、OC.填空①当∠OAC的度数为______时,四边形AOCD为菱形;②当OA=AE=2时,四边形ACDE的面积为______.20.如图是某户外看台的截面图,长10m的看台AB与水平地面AP的夹角为35°,与AP平行的平台BC长为1.9m,点F是遮阳棚DE上端E正下方在地面上的一点,测得AF=2m,(参考数据:sin35°≈0.57,在挡风墙CD的点D处测得点E的仰角为26°,求遮阳棚DE的长.cos35°≈0.82,sin26°≈0.44,cos26°≈0.90)21.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?22.如图,△ABC与△CDE为等腰直角三角形,∠BAC=∠DEC=90°,连接AD,取AD中点P,连接BP,并延长到点M,使BP=PM,连接AM、EM、AE,将△CDE绕点C顺时针旋转.(1)如图①,当点D在BC上,E在AC上时,AE与AM的数量关系是______,∠MAE=______;(2)将△CDE绕点C顺时针旋转到如图②所示的位置,(1)中的结论是否仍然成立,若成立,请给出证明,若不成立,请说明理由;(3)若CD=BC,将△CDE由图①位置绕点C顺时针旋转α(0°<α<360°),当ME=CD时,请直接写出α的值.23.如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)在点P运动过程中,是否存在点Q,使得△BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.答案和解析1.【答案】A【解析】解:A、=2,是无理数,故本选项符合题意;B、,2是有理数,不是无理数,故本选项不符合题意;C、0是有理数,不是无理数,故本选项不符合题意;D、-1是有理数,不是无理数,故本选项不符合题意;故选:A.分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】B【解析】解:69亿=6.9×109,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:由图形可知,与“2019”字相对的字是“胜”.故选:C.由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.4.【答案】C【解析】解:A、a2•a3=a2+3=a5,故此选项错误;B、(a+b)(a-2b)=a•a-a•2b+b•a-b•2b=a2-2ab+ab-2b2=a2-ab-2b2.故此选项错误;C、(ab3)2=a2•(b3)2=a2b6,故此选项正确;D、5a-2a=(5-2)a=3a,故此选项错误.故选:C.根据同底数幂的乘法法则:底数不变,指数相加;多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn;积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.本题主要考查多项式乘以多项式,同底数幂的乘法,积的乘方,合并同类项的法则,注意正确把握每一种运算的法则,不要混淆.5.【答案】A【解析】解:中招体育成绩(单位:分)排序得:63,64,65,68,68,69,70;处在中间的是:68分,因此中位数是:68分;出现次数最多的数也是68分,因此众数是68分;故选:A.根据众数、中位数的意义,将这组数据从小到大排序后,处在中间位置的数是中位数,出现次数最多的数就是众数考查中位数、众数的意义和求法,准确理解中位数、众数的意义和求法是解决问题的前提.【解析】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:-=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50.答:甲图书每本价格是50元,乙图书每本价格为20元.故选:B.可设乙图书每本价格为x元,则甲图书每本价格是2.5x元,利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案.此题主要考查了分式方程的应用,正确表示出图书的价格是解题关键.7.【答案】A【解析】解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.【解析】解:画树状图得:∵共有16种等可能的结果,两次摸出红球的有9种情况,∴两次摸出红球的概率为;故选:D.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出红球情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.【答案】B【解析】解:如图,过点D作DE⊥AC于点E,∵四边形OABC为矩形,点B的坐标为(8,6),∴OA=8,OC=6∴AC==10由题意可得AD平分∠OAC∴∠DAE=∠DAO,AD=AD,∠AOD=∠AED=90°∴△ADO≌△ADE(AAS)∴AE=AO=8,OD=DE∴CE=2,∵CD2=DE2+CE2,∴(6-OD)2=4+OD2,∴OD=∴点D(0,)故选:B.过点D作DE⊥AC于点E,由勾股定理可求AC=10,由“AAS”可证△ADO≌△ADE,可证AE=AO=8,OD=DE,可得CE=2,由勾股定理可求OD的长,即可求点D坐标.本题考查了矩形的性质,坐标与图形的性质,勾股定理,全等三角形的判定和性质,证明△ADO≌△ADE是本题的关键.10.【答案】B【解析】解:如图,连接AC交BD于O,由图②可知,BC=CD=4,BD=14-8=6,∴BO=BD=×6=3,在Rt△BOC中,CO===,AC=2CO=2,所以,菱形的面积=AC•BD=×2×6=6,当点P在CD上运动时,△ABP的面积不变,为b,所以,b=×6=3.故选:B.连接AC交BD于O,根据图②求出菱形的边长为4,对角线BD为6,根据菱形的对角线互相垂直平分求出BO,再利用勾股定理列式求出CO,然后求出AC的长,再根据菱形的面积等于对角线乘积的一半求出菱形的面积,b为点P在CD上时△ABP的面积,等于菱形的面积的一半,从而得解.本题考查了动点问题的函数图象,主要利用了菱形的对角线互相垂直平分的性质,菱形的面积等于对角线乘积的一半,根据图形得到菱形的边长与对角线BD 的长是解题的关键.11.【答案】x≠2【解析】解:由题意得:x-2≠0,解得:x≠2,故答案为:x≠2.根据分式有意义的条件可得x-2≠0,再解即可.此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.12.【答案】>【解析】解:∵直线经过第一、二、四象限,∴y随x的增大而减小,∵x1<x2,∴y1与y2的大小关系为:y1>y2.故答案为:>.直接利用一次函数的性质分析得出答案.此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.13.【答案】a≤2且a≠1【解析】解:∵一元二次方程(a-1)x2-2x+1=0有实数根,∴△=b 2-4ac=(-2)2-4(a-1)≥0,且a-1≠0,∴a≤2且a≠1.故答案为:a≤2且a≠1.根据根的判别式和一元二次方程的定义可得△=b 2-4ac≥0,且a-1≠0,再进行整理即可.此题考查了根的判别式和一元二次方程的定义,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.14.【答案】 π+2 -4【解析】 解:BC 交弧DE 于F ,连接AF ,如图,AF=AD=4,∵AD=2AB=4∴AB=2,在Rt △ABF 中,∵sin ∠AFB==,∴∠AFB=30°, ∴∠BAF=60°,∠DAF=30°,BF=AB=2,∴图中阴影部分的面积=S 扇形ADF +S △ABF -S △ABD=+×2×2-×2×4=π+2-4. BC 交弧DE 于F ,连接AF ,如图,先利用三角函数得到∠AFB=30°,则∠BAF=60°,∠DAF=30°,BF=AB=2,然后根据三角形面积公式和扇形的面积公式,利用图中阴影部分的面积=S 扇形ADF +S △ABF -S △ABD 进行计算即可.本题考查了扇形面积的计算:设圆心角是n°,圆的半径为R 的扇形面积为S ,则S 扇形=或S 扇形lR (其中l 为扇形的弧长);求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了矩形的性质.15.【答案】3或1【解析】解:M'位置有两种情况,Ⅰ.M'在∠AOB内部,如图1,∵点M′与点M关于射线OP对称,△ONM'为等腰三角形,∴M′N=OM′=OM=,MH=M′H,∵∵∠AOB=90°,cos∠OMN=∴,解得MH=,∴MN=2,在Rt△MON中,ON==3Ⅱ.M'在∠AOB外部,如图2,过N点作QN⊥OM′,∵△ONM'为等腰三角形,即M′N=ON,∴M′Q=M′O,∵OM=,点M′与点M关于射线OP对称,∴M′Q=,OM=OM′,∴∠OM′M=∠OMM′,cos∠OM′M=,cos∠OMM′=,设ON=M′N=x,NH=M′H=y,,解得:x=1,y=,综上所述:当△ONM'为等腰三角形时,ON的长为3或1.故答案为3,1.如图分两种情况,Ⅰ.M'在∠AOB内部,Ⅱ.M'在∠AOB外部,由已知和等腰三角形性质、利用三角函数列方程,解直角三角形即可解答.本题主要考查了等腰三角形存在性问题,解决本题的关键是正确认识到需要讨论,△ONM'为等腰三角形存在情况有两种,并用解直角三角形方法求解.16.【答案】解:原式=•=,当a=2×=,b=2时,原式==.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.【答案】400【解析】解:(1)本次调查总人数80÷20%=400(人),故答案为400;(2)B类人数400-(80+60+20)=240(人),补全统计图如下C类所对应扇形的圆心角的度数=54°;(3)我校九年级2000名学生中“家长和学生都未参与”的人数2000×=100(人),答:我校九年级2000名学生中“家长和学生都未参与”的人数约100人.(1)本次调查总人数80÷20%=400(人);(2)B类人数400-(80+60+20)=240(人),C类所对应扇形的圆心角的度数=54°;(3)我校九年级2000名学生中“家长和学生都未参与”的人数2000×=100(人).本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力,以及条形统计图;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.【答案】解:(1)把A(1,m)代入y1=-x+4,可得m=-1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;(3)y1=-x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=×1+b,∴b=,∴y2=x+,令y=0,则x=-3,即C(-3,0),∴BC=7,∵AP把△ABC的面积分成1:2两部分,∴CP=BC=,或BP=BC=,∴OP=3-=,或OP=4-=,∴P(-,0)或(,0).【解析】(1)求得A(1,3),把A(1,3)代入双曲线y=,可求得k的值;(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:2两部分,则CP=BC=,或BP=CP=BC=,即可得到OP=3-=,或OP=4-=,进而得出点P的坐标.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.19.【答案】30°2【解析】证明:(1)∵F为弦AC的中点,∴AF=CF,且OF过圆心O∴FO⊥AC,∵DE是⊙O切线∴OD⊥DE∴DE∥AC(2)①当∠OAC=30°时,四边形AOCD是菱形,理由如下:如图,连接CD,AD,OC,∵∠OAC=30°,OF⊥AC∴∠AOF=60°∵AO=DO,∠AOF=60°∴△ADO是等边三角形又∵AF⊥DO∴DF=FO,且AF=CF,∴四边形AOCD是平行四边形又∵AO=CO∴四边形AOCD是菱形②如图,连接CD,∵AC∥DE∴△AFO∽△ODE∴∴OD=2OF,DE=2AF∵AC=2AF∴DE=AC,且DE∥AC∴四边形ACDE是平行四边形∵OA=AE=OD=2∴OF=DF=1,OE=4∵在Rt△ODE中,DE==2∴S=DE×DF=2×1=2四边形ACDE故答案为:2(1)由垂径定理,切线的性质可得FO⊥AC,OD⊥DE,可得AC∥DE;(2)①连接CD,AD,OC,由题意可证△ADO是等边三角形,由等边三角形的性质可得DF=OF,AF=FC,且AC⊥OD,可证四边形AOCD为菱形;②由题意可证△AFO∽△ODE,可得,即OD=2OF,DE=2AF=AC,可证四边形ACDE是平行四边形,由勾股定理可求DE的长,即可求四边形ACDE的面积.本题是圆的综合题,考查了圆的有关知识,菱形的判定,等边三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.20.【答案】解:分别过点B、D作BH⊥AP,DG⊥EF,垂足分别为点H,G.∴∠BHA=∠DGE=90°,由题意得:AB=10m,∠A=35°,∠EDG=26°,在Rt△BAH中,AH=AB•cos35°≈10×0.82=8.2(m),∴FH=AH-AF=8.2-2=6.2m,GD=FH+BC=6.2+1.9=8.1(m),在Rt△EGD中,cos∠EDG=,∴DE=≈=9(m)答:遮阳棚DE的长约为9米.【解析】作BH⊥AP,DG⊥EF,根据余弦的定义求出AH,得到DG的长,根据余弦的定义计算即可.本题考查的是解直角三角形的应用-仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.21.【答案】解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10-m)辆,根据题意可得:4m+1.5(10-m)≥33,解得:m≥7.2,令m=8,大货车运费高于小货车,故用大货车少费用就小则安排方案有:大货车8辆,小货车2辆,【解析】(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,且因为大货车运费高于小货车,故用大货车少费用就小进行安排即可.本题以运货安排车辆为背景考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.22.【答案】AM=AE45°【解析】解:(1)结论:AM=AE,∠MAE=45°.理由:如图1中,∵AP=PD,BP=PM,∴四边形ABDM是平行四边形,∴AM∥BC,∴∠MAE=∠C,∵AB=AC,∠BAC=90°,∴∠C=45°,∴∠MAE=45°,∵∠AEM=∠DEC=90°,∴∠AME=∠EAM=45°,∴MA=AE.故答案为:AM=AE,45°.(2)如图2中,连接BD,DM,BD交AC于点O,交AE于G.∵BC=AC,CD=CE,∴==,∵∠ACB=∠DCE=45°,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴∠CBD=∠CAE,==,∴BD=AE,∵∠BOC=∠AOG,∴∠AGO=∠BCO=45°,∵AP=PD,BP=PM,∴四边形ABDM是平行四边形,∴AM∥BD,AM=BD=AE,∴∠MAE=∠BGA=45°,∵EH⊥AM,∴△AHE是等腰直角三角形,∴AH=AE,∵AM=AE,∴AH=MH,∴EA=EM,∴∠EAM=∠EMA=45°,∴∠AEM=90°.(3)如图2中,作EH⊥AM于H.∵EH⊥AM,∠MAE=45°,∴△AHE是等腰直角三角形,∴AH=AE,∵AM=AE,∴AH=MH,∴EA=EM,∴∠EAM=∠EMA=45°,∴∠AEM=90°.如图3-1中,∵EM=EA=CD,设CD=a,则CE=a,BC=2a,AC=2a,EA=a,∴AC2=AE2+EC2,∴∠AEC=90°,∴tan∠ACE==,∴∠ACE=60°,∴旋转角α=60°.如图3-2中,同法可证∠AEC=90°,∠ACE=60°,此时旋转角α=300°.综上所述,满足条件的α的值为60°或300°.(1)证明四边形ABDM是平行四边形即可解决问题.(2)如图2中,连接BD,DM,BD交AC于点O,交AE于G.证明△BCD∽△ACE,推出∠CBD=∠CAE,==,即可解决问题.(3)如图2中,首先证明△AEM是等腰直角三角形,分两种情形画出图形分别求解即可.本题属于四边形综合题,考查了等腰直角三角形的判定和性质的判定和性质,平行四边形的判定和性质,勾股定理的逆定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.23.【答案】解:(1)设抛物线解析式为y=ax2+bx+c,将点A(-1,0),B(4,0),C(0,2)代入解析式,∴ ,∴ ,∴y=-+x+2;(2)∵点C与点D关于x轴对称,∴D(0,-2).设直线BD的解析式为y=kx-2.∵将(4,0)代入得:4k-2=0,∴k=.∴直线BD的解析式为y=x-2.当P点与A点重合时,△BQM是直角三角形,此时Q(-1,0);当BQ⊥BD时,△BQM是直角三角形,则直线BQ的直线解析式为y=-2x+8,∴-2x+8=-+x+2,可求x=3或x=4(舍)∴x=3;∴Q(3,2)或Q(-1,0);(3)两个和谐点;AO=1,OC=2,设A1(x,y),则C1(x+2,y-1),O1(x,y-1),①当A1、C1在抛物线上时,∴,∴ ,∴A1的横坐标是1;当O1、C1在抛物线上时,,∴ ,∴A1的横坐标是;【解析】(1)把点A(1,0)、B(4,0)、C(0,3)三点的坐标代入函数解析式,利用待定系数法求解;(2)分两种情况分别讨论,当∠QBM=90°或∠MQB=90°,即可求得Q点的坐标.(3)(3)两个和谐点;AO=1,OC=2,设A1(x,y),则C1(x+2,y-1),O1(x,y-1),①当A1、C1在抛物线上时,A1的横坐标是1;当O1、C1在抛物线上时,A1的横坐标是2;本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,轴对称-最短路线问题,等中学数学一模模拟试卷一.选择题(每题3分,满分36分)1.3的倒数是()A.﹣3 B.﹣C.D.32.下列由年份组成的各项图形中,是中心对称图形的是()A.B.C.D.3.下列说法正确的是()A.0是无理数B.π是有理数C.4是有理数D.是分数4.下列事件是必然事件的是()A.2018年5月15日宁德市的天气是晴天B.从一副扑克中任意抽出一张是黑桃C.在一个三角形中,任意两边之和大于第三边D.打开电视,正在播广告5.如图所示的某零件左视图是()A.B.C.D.6.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°7.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.8.如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,则乙建筑物的高度为()米.A.30B.30﹣30 C.30 D.309.已知一次函数y=kx﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象可能是()A.B.C.D.10.某农场2016年蔬菜产量为50吨,2018年蔬菜产量为60.5吨,该农场蔬菜产量的年平均增长率相同.设该农场蔬菜产量的年平均增长率为x,则根据题意可列方程为()A.60.5(1﹣x)2=50 B.50(1﹣x)2=60.5C.50(1+x)2=60.5 D.60.5(1+x)2=5011.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,直线x=1是它的对称轴,有下列5个结论:①abc>0;②4a+2b+c>0;③b2﹣4ac>0;④2a﹣b=0;⑤方程ax2+bx+c﹣3=0有两个相等的实数根.其中正确的有()A .1个B .2个C .3个D .4个12.如图,Rt △ABC 的两边OA ,OB 分别在x 轴、y 轴上,点O 与原点重合,点A (﹣3,0),点B (0,3),将Rt △AOB 沿x 轴向右翻滚,依次得到△1,△2,△3,…,则△2020的直角顶点的坐标为( )A .(673,0)B .(6057+2019,0)C .(6057+2019,)D .(673,)二.填空题(满分16分,每小题4分)13.已知一组数据2、﹣1、8、2、﹣1、a 的众数为2,则这组数据的平均数为 . 14.如图,C 、D 是线段AB 上两点,D 是线段AC 的中点若AB =12cm ,BC =5cm ,则AD 的长为 cm .15.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量可以用点P 的坐标表示为=(m ,n ). 已知:=(x 1,y 1),=(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么与互相垂直,下列四组向量: ①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是(填上所有正确答案的符号).16.如图,点A是反比例函数图象上的点,分别过点A向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为.三.解答题17.(12分)(1)计算:(﹣3)2+2﹣2÷sin30°﹣20120;(2)解方程组;(3)先化简再求值:÷,其中m=+1.18.(10分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为A、B、C、D四个等次,绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c═,(2)请将条形统计图补充完整,并计算表示C等次的扇形所对的圆心角的度数为=,(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.19.(8分)甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?20.(12分)如图,矩形ABCD的对角线AC、BD相交于点O,△COD绕点O逆时针旋转得△C′O′D′,连接AC′,BD′,AC′与BD′相交于点P.(1)求证:AC′=BD′;(2)若∠ACB=26°,求∠APB的度数.21.(12分)如图,AB是⊙O的直径,点P是BA延长线上一点,过点P作⊙O的切线PC,切点是C,过点C作弦CD⊥AB于E,连接CO,CB.(1)求证:PD是⊙O的切线;(2)若AB=10,tan B=,求PA的长;(3)试探究线段AB,OE,OP之间的数量关系,并说明理由.22.(14分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N 是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△OD P中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.参考答案一.选择题1.解:3的倒数是:.故选:C.2.解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:B.3.解:A、0是有理数,所以A选项错误;B、π不是有理数,是无理数,所以B选项错误;C、4是有理数中的正整数,所以C选项正确;D、是一个无理数,所以选项D错误.故选: C.4.解:A、2018年5月15日宁德市的天气是晴天是随机事件;B、从一副扑克中任意抽出一张是黑桃是随机事件;C、在一个三角形中,任意两边之和大于第三边是必然事件;D、打开电视,正在播广告是随机事件;故选:C.5.解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.6.解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,。

相关文档
最新文档