生化大题汇总

合集下载

生化大题

生化大题

生化大题1.简述糖有氧氧化的生理意义。

①.糖有氧氧化是机体获得能量的主要方式:1分子葡萄糖经有氧氧化可生成38(或36)分子ATP。

②.三羧酸循环是体内营养物质彻底氧化分解的共同通路:三羧酸循环不仅是糖氧化分解的ATP生成的主要环节,也是脂肪、氨基酸等营养物质彻底氧化分解的共同通路和ATP生成的主要环节。

③.三羧酸循环是体内物质代谢相互联系的枢纽。

2.简述核酸变性、复性,及其应用。

①变性:受理化因素影响,维系核酸三维结构的碱基堆积力和氢键被破坏,其三维结构改变、理化性质及生物学功能发生变化,这种现象称为变性。

变性过程中DNA分子双链间氢键断裂,双螺旋结构可完全解开成两条单链;RNA分子中的局部双螺旋也可解开发生变性。

②复性:在适宜条件下,变性的DNA的两条链之间碱基互补,重新恢复双螺旋结构,称为复性。

③应用分子杂交:不完全互补的两条核苷酸链,依据碱基互补配对的原则部分相互结合的现象,称为分子杂交。

不同来源的DNA加热变性后,只要两条多核苷酸链之间有一定数量的碱基能彼此互补,经退火处理就可以形成双螺旋结构.3.蛋白质各结构中都有哪些键,这些键的作用(1)共价键:维持蛋白质的一级结构,如:肽键、二硫键。

(2)非共价键:即次级键,维持蛋白质的空间构象的稳定性,如:①氢键:主要针对维持蛋白质的二级结构,如:а-螺旋、β-折叠等;②疏水键:主要针对维持蛋白质的三级结构;③离子键:蛋白质中有正负电荷侧链的基团间形成的;④范德华力:蛋白质分子间作用力;⑤次级键(氢键,疏水键,离子键):可以使多肽连结合形成复杂结构。

4.简述真核细胞m RNA前体(hnRNA)的加工过程。

①.在5'-末端加上“帽子”结构:在鸟苷酸转移酶催化下,在hnRNA的5'-末端加上一分子鸟苷酸残基,再对该残基进行甲基化修饰,使其成为7-甲基鸟苷酸,该结构称为“帽子”。

②.在3'-末端加上“尾”结构:在多聚腺苷酸聚合酶的催化下,以ATP为底物,在hnRNA的3'-末端加上一段多聚腺苷酸,该结构称为“尾”。

生化大题

生化大题

1. 简述酶的“诱导契合假说”。

2. 受试大鼠注射DNP(二硝基苯酚)可能引起什么现象?其机理何在?3. 复制中为什么会出现领头链和随从链?4. 简述乳糖操纵子的结构及其调节机制。

5. 何谓限制性核酸内切酶?写出大多数限制性核酸内切酶识别DNA序列的结构特点。

1.酮体是如何产生和利用的?2.为什么测定血清中转氨酶活性可以作为肝、心组织损伤的参考指标?3.讨论复制保真性的机制。

4.试述乳酸异生为葡萄糖的主要反应过程及其酶。

5.举例说明蛋白质一级结构、空间构象与功能之间的关系。

1.胞浆中的NADH如何参加氧化磷酸化过程?试述其具体机制。

2.举例说明蛋白质的变构效应。

3.糖、脂、蛋白质在体内是否可以相互转变?简要说明可转变的途径及不能转变的原因。

4.试述复制和转录的异同点。

5. 试述人体胆固醇的来源与去路。

1.人体生成ATP的方法有哪几种?请详述具体生成过程。

2. 何谓基因克隆?简述基因克隆的基本过程。

3. 细胞内有哪几类主要的RNA?其主要功能是什么?4. 原核生物复制中的引发体是如何形成的?5. 脂肪酸的β-氧化与生物合成的主要区别是什么?1.什么是血浆脂蛋白,它们的来源及主要功能是什么?2.简述谷氨酸在体内转变成尿素、CO2与水的主要代谢过程。

3.试述复制和转录的异同点。

4.已知人类细胞基因组的大小约30亿bp,试计算一个二倍体细胞中DNA 的总长度,这么长的DNA分子是如何装配到直径只有几微米的细胞核内的?5. 原核生物和真核生物翻译起始复合物的生成有何异同?1.试讨论各类核苷酸抗代谢物的作用原理。

2.为什么说真核生物基因是断裂基因?请讨论hnRNA的剪接过程。

3.什么是蛋白质的二级结构?它主要有哪几种?各有何结构特征?4.简述肝糖原合成代谢的直接途径与间接途径。

5.何谓目的基因?写出其主要来源或途径1.比较三种可逆性抑制作用的特点。

2.试述原核生物的转录终止。

3.概述肾上腺素对血糖水平调节的分子机制。

生化考试题+参考答案

生化考试题+参考答案

生化考试题+参考答案一、单选题(共100题,每题1分,共100分)1、血浆中哪种脂蛋白水平高的人群,动脉粥样硬化的发生率低( )A、CMB、VLDLC、LDLD、HDLE、LDL和HDL正确答案:D2、δ-氨基-γ-酮戊酸合成酶的辅基中含有( )A、硫胺素B、钴胺素C、烟酸D、吡哆醛E、核黄素正确答案:D3、帕金森氏病(Parkinson’s diseae)患者体内多巴胺生成减少,这是由于:( )A、蛋氨酸代谢异常B、胱氨酸代谢异常C、精氨酸代谢异常D、酪氨酸代谢异常正确答案:D4、尿毒症患者治疗中采用的血液透析、腹膜透析利用的原理是( )A、蛋白质是亲水胶体B、蛋白质的变性C、蛋白质的两性电离D、蛋白质的沉淀E、蛋白质不能透过半透膜正确答案:A5、下列对脂肪酸β-氧化的叙述中正确的是( )A、反应在胞液中进行B、反应产物为CO2和H2OC、反应在胞液和线粒体中进行D、反应过程中消耗ATPE、起始代谢物是脂酰CoA正确答案:E6、某底物脱下的2H氧化时P/O比值约为3.0,应从何处进入呼吸链:( )A、FADB、NAD+C、CoQD、CytbE、Cytaa3正确答案:B7、完全食肉的个体,下列哪种维生素可能缺乏?( )A、TPP+B、烟酸C、钴胺素D、VitCE、泛酸正确答案:C8、糖无氧分解有一步不可逆反应是下列那个酶催化的?( )A、3-磷酸甘油醛脱氢酶B、醛缩酶C、丙酮酸激酶D、乳酸脱氢酶E、磷酸丙糖异构酶正确答案:C9、苯丙酮尿症是先天性氨基酸代谢缺陷病,原因是( )A、缺乏二氢蝶啶氧化酶B、缺乏酪氨酸氧化酶C、缺乏苯丙氨酸氧化酶D、缺乏苯丙氨酸羟化酶正确答案:D10、细胞色素含有:( )A、胆红素B、铁卟啉C、血红素D、FADE、NAD+正确答案:B11、低血钾是指血钾浓度(mmol/L)低于( )A、5.5B、4.1C、5D、4E、3.5正确答案:E12、Tm是指什么情况下的温度?( )A、双螺旋DNA达到完全变性时B、双螺旋DNA开始变性时C、双螺旋DNA结构失去1/2时D、双螺旋结构失去1/4时正确答案:C13、肺在维持酸碱平衡中的作用是调节( )A、NaHCO3的浓度B、血浆H2CO3的含量C、NaH2PO4的含量D、NaHCO3和H2CO3的含量E、CO2呼出的速度正确答案:E14、在RNA分子中不含有的碱基是( )A、胞嘧啶B、尿嘧啶C、胸腺嘧啶D、鸟嘌呤E、腺嘌呤正确答案:C15、tRNA分子二级结构的特征是( )A、3’端有多聚AB、5’端有C-C-AC、有反密码子环D、有氨基酸残基E、尿嘧啶环正确答案:C16、体内氨的主要运输,贮存形式是:( )A、胺B、谷氨酰胺C、谷氨酸D、尿素E、嘌呤,嘧啶正确答案:B17、DNA复制与转录过程的许多异同点中,描述错误的是( )A、转录是只有一条DNA链作为模板,而复制时两条DNA链均可为模板链B、在复制和转录中合成方向都为5′→3′C、复制的产物通常大于转录产物D、两过程均需RNA引物E、两过程均需聚合酶和多种蛋白因子正确答案:D18、生物氧化CO2的产生是:( )A、呼吸链的氧化还原过程中产生B、有机酸脱羧C、碳原子被氧原子氧化D、糖原的合成E、以上都不是正确答案:B19、含GOT(AST)最多的组织是( )A、心B、肝C、骨D、脑E、肾正确答案:A20、DNA复制时,模板序列5′—TAGA—3′,将合成下列哪种互补结构?( )A、5′—TCTA—3′B、5′—ATCA—3′C、5′—UCUA—3′D、5′—GCGA—3′E、5′—TCUA—3′正确答案:A21、酶具有高效催化能力的原因是( )A、酶能改变化学反应的平衡点B、酶能降低反应的活化能C、酶能催化热力学上不能进行的反应D、酶能提高反应物分子的活化能正确答案:B22、下列关于辅基的叙述哪项是正确的?( )A、一般不能用透析和超滤法与酶蛋白分开B、是一种结合蛋白质C、与酶蛋白的结合比较疏松D、只决定酶的专一性,不参与化学基因的传递正确答案:A23、脂肪酸分解产生的乙酰 CoA的去路是( )A、合成脂肪B、一部分氧化供能,另一部分合成酮体C、合成胆汁酸D、合成胆固醇E、以上都是正确答案:B24、已知某混合物存在A.B两种分子量相同的蛋白质,A的等电点为6.8,B的等电点为7.8,用电泳法进行分离,如果电泳液的PH为8.3,则( )A、蛋白质A向正极移动,B向负极移动B、蛋白质A向负极移动,B向正极移动C、蛋白质A和B都向负极移动,A移动速度快D、蛋白质A和B都向正极移动,A移动速度快E、蛋白质A和B都向正极移动,B移动速度快正确答案:D25、三羧酸循环的限速酶是:( )A、延胡羧酸酶B、琥珀酸脱氢酶C、异柠檬酸脱氢酶D、丙酮酸脱氢酶E、顺乌头酸酶正确答案:C26、下列哪种胆汁酸是次级胆汁酸( )A、甘氨胆酸B、甘氨鹅脱氧胆酸C、牛磺胆酸D、脱氧胆酸E、牛磺鹅脱氧胆酸正确答案:D27、电子按下列各式传递,能偶联磷酸化的是:( )A、Cytaa3→ 1/2 O2B、琥珀酸→ FADC、CoQ → CytbD、SH2 → NAD+E、以上都不是正确答案:A28、下列关于cAMP的论述哪一个是错误的( )A、是由腺苷酸环化酶催化ATP产生B、是由鸟苷酸环化酶催化ATP产生的C、是细胞第二信息物质D、可被磷酸二酯酶水解为5'-AMP正确答案:B29、核酸中核苷酸的连接方式是( )A、氢键B、3’,5’-磷酸二酯键C、2’,5’-磷酸二酯键D、糖苷键E、2’,3’-磷酸二酯键正确答案:B30、天然蛋白质中不存在的氨基酸是( )A、瓜氨酸B、脯氨酸C、丝氨酸D、蛋氨酸E、半胱氨酸正确答案:A31、儿茶酚胺是由那种氨基酸转化生成的?( )A、谷氨酸B、胱氨酸C、赖氨酸D、酪氨酸E、色氨酸正确答案:D32、糖原分解过程中磷酸化酶催化磷酸分解的键是( )A、(-1,4-糖苷键B、(-1,4-糖苷键C、(-1,6-糖苷键D、(-1,6-糖苷键正确答案:A33、肌酸激酶催化的化学反应是:( )A、肌酸→肌酐B、肌酸+ATPC、肌酸+CTPD、乳酸E、肌酸+UTP正确答案:B34、脂肪酸合成时所需的氢来自( )A、NADHB、NADPHC、FADH2D、NFMNH2E、UQH2正确答案:B35、磷酸戊糖途径的真正意义在于产生( )的同时产生许多中间物如核糖等。

生化大题

生化大题

1. 糖酵解的特点及生理意义。

(熟记)(一)特点:(1)糖酵解的全过程没有氧的参与,乳酸是其产物。

(2)糖酵解是糖在无氧条件下发生的不完全氧化,释放的能量较少。

以葡萄糖为原料可净生成2分子ATP,以糖原为原料可净生成3分子的ATP(3)糖酵解是单向的,不可逆的。

糖酵解有三个关键酶:6-磷酸果糖激酶-1 ;己糖激酶;丙酮酸激酶。

(4)红细胞中存在2,3- 二磷酸甘油酸支路。

(二)生理意义(1)在机体缺氧的情况下迅速供能。

(2)成熟的红细胞没有线粒体,即使在氧供充足的情况下也依糖酵解。

(3 )在某些组织中如神经细胞、白细胞、骨髓细胞等, 即使不缺氧也由糖酵解提供能量。

(4)2,3- 二磷酸甘油酸对于调节红细胞带氧功能有重要意义。

(5)为体内其他物质合成提供原料。

2. 三羧酸循环的特点。

(1)必须在有氧的条件下进行。

(2 )三羧酸循环是机体的主要产能途径,其中有四次脱氢,两次脱羧,一次底物水平磷酸化。

(3)三羧酸循环是单向反应体系,其中有三个关键酶:柠檬酸合酶、异柠檬酸脱氢酶、a -酮戊二酸脱氢酶系。

(4 )三羧酸循环的中间产物必须不断补充。

3. 三羧酸循环的生理意义。

(背过)(1)是体内主要的供能方式。

(2)是三大营养物质代谢联系枢纽。

(3)是三大营养物质的最终代谢通路。

(4)为呼吸链提供氢和电子。

(5)为某些物质的生物合成提供小分子前体物质。

3. 磷酸戊糖途径的生理意义。

发生部位及关键酶。

(重点背过)(一)发生部位:细胞的胞液(二)关键酶:6- 磷酸葡萄糖脱氢酶(三)生理意义1. 为核酸的生物合成提供核糖。

2. 提供NADPH乍为供氢体参与多种代谢反应。

(1)NADPH1体内许多合成代谢的供氢体。

(2)NADPH乍为羟化酶的辅酶维持体内的羟化反应。

(3)NADPH乍为谷胱甘肽还原酶的辅酶维持谷胱甘肽的还原状态。

4. 糖异生是否为糖酵解的逆反应?(重点背过)糖异生不完全是糖酵解的逆反应,糖酵解与糖异生的多数反应是可逆的, 仅糖酵解3个限速步骤所对应的逆反应需由糖异生的特有的关键酶催化。

大学生化考试题及答案

大学生化考试题及答案

大学生化考试题及答案一、选择题(每题2分,共20分)1. 蛋白质的基本组成单位是:A. 氨基酸B. 核苷酸C. 葡萄糖D. 脂肪酸答案:A2. 细胞内能量的主要储存形式是:A. ATPB. ADPC. 葡萄糖D. 脂肪答案:D3. 下列哪种物质不是酶的组成部分?A. 蛋白质B. 核酸C. 脂质D. 金属离子答案:C4. 细胞膜的主要功能是:A. 保护细胞B. 传递信息C. 物质交换D. 所有以上答案:D5. 细胞周期中,DNA复制发生在:A. G1期B. S期C. G2期D. M期答案:B二、填空题(每空1分,共20分)1. 细胞膜的流动性主要依赖于膜中的______。

答案:脂质双层2. 基因表达的调控主要发生在______水平。

答案:转录3. 线粒体是细胞的能量工厂,它主要负责______的合成。

答案:ATP4. 在DNA复制过程中,______酶负责解开双螺旋结构。

答案:解旋酶5. 蛋白质的合成是在______上进行的。

答案:核糖体三、简答题(每题10分,共30分)1. 简述细胞凋亡与细胞坏死的区别。

答案:细胞凋亡是一种程序化的细胞死亡过程,由细胞内部的基因调控,通常不会引起炎症反应。

而细胞坏死是一种非程序化的细胞死亡,通常由外界因素如物理损伤、缺氧或毒素引起,会导致炎症反应。

2. 描述光合作用的基本过程。

答案:光合作用是植物、藻类和某些细菌利用光能将二氧化碳和水转化为葡萄糖和氧气的过程。

这个过程主要分为光反应和暗反应两个阶段。

在光反应中,光能被叶绿素吸收,产生ATP和NADPH。

在暗反应中,ATP和NADPH被用于将二氧化碳转化为有机物。

3. 解释什么是基因突变,并给出一个例子。

答案:基因突变是指DNA序列中的一个或多个核苷酸发生改变,这种改变可能导致基因编码的蛋白质发生改变。

一个常见的例子是镰状细胞贫血症,这是一种由于血红蛋白基因发生突变导致的遗传性疾病,使得红细胞形状异常。

四、计算题(每题15分,共15分)1. 假设一个DNA分子含有1000个碱基对,其中腺嘌呤(A)占20%,计算该DNA分子中胞嘧啶(C)的数量。

生化大题

生化大题

1、糖类转化为丙酮酸,而后生成乙酰CoA进入三羧酸循环。
2、脂类生成甘油或者乙酰CoA进入三羧酸循环。
3、蛋白质分解为氨基酸,而后脱氨基或者转氨基生成三羧酸循环及其它糖代谢中间产物,进入三羧酸循环。
1、三羧酸循环中间产物又可转氨基生成氨基酸,再生成蛋白质。
2、乙酰CoA又可以参与脂酸的合成。
需要进一步理解的是,这三类物质的代谢终产物都是二氧化碳和水(蛋白质要加上尿素),而这正是三羧酸循环的作用:将含碳骨架氧化成二氧化碳和水。使用共同的途径,就可以减少参加不同反应所需要的酶,不仅可以减少细胞内蛋白质成分的混乱程度(实际上已经非常混乱了),还可以减少表达这些蛋白质的压力(即需要的原料和酶),更可以减小基因组的大小。
抑制作用:调节基因转录出mRNA,合成阻遏蛋白,因缺少乳糖,阻遏蛋白因其构象能够识别操纵基因并结合到操纵基因上,因此RNA聚合酶就不能与启动基因结合,结构基因也被抑制,结果结构基因不能转录出mRNA,不能翻译酶蛋白。
诱导作用:乳糖的存在情况下,乳糖代谢产生别乳糖(alloLactose),别乳糖能和调节基因产生的阻遏蛋白结合,使阻遏蛋白改变构象,不能在和操纵基因结合,失去阻遏作用,结果RNA聚合酶便与启动基因结合,并使结构基因活化,转录出mRNA,翻译出酶蛋白。
所以,可以说,三羧酸循环是糖、脂、蛋白质的代谢共同通路。
糖经过糖酵解生成丙酮酸,后者进入线粒体脱氢后生成乙酰COA,进入三羧酸循环(TCA循环);脂肪水解成脂酸和甘油,前者经β氧化生成大量的乙酰COA,进入TCA 循环,而甘油经磷酸化并脱氢后成磷酸甘油醛,进入糖酵解,最终还是要通过TCA循环完全氧化;蛋白质水解得到的氨基酸,通过脱氨基反应后,生糖,或者生酮,生糖即生成可 糖异生成葡萄糖的中间物,如琥珀酰COA等,生酮则以生成可以转化为乙酰COA的中间物,但是最终的氧化,都是要通过TCA循环的。

生化专业试题及答案

生化专业试题及答案

生化专业试题及答案一、选择题1. 酶的催化作用是通过改变:A. 反应物的浓度B. 反应的活化能C. 反应的温度D. 反应的pH值答案:B2. 下列哪项不是蛋白质的功能?A. 催化生物化学反应B. 运输氧气C. 储存能量D. 作为细胞结构的组成部分答案:C3. DNA复制过程中,新合成的链与模板链之间的关系是:A. 互补B. 相同C. 相反D. 无关答案:A4. 细胞呼吸的主要场所是:A. 细胞核B. 线粒体C. 内质网D. 高尔基体答案:B5. 以下哪个不是细胞周期的阶段?A. G1期B. S期C. G2期D. M期答案:D二、填空题6. 细胞膜的主要组成成分是_________和_________。

答案:磷脂;蛋白质7. 糖酵解过程中产生的ATP是通过_________途径合成的。

答案:底物水平磷酸化8. 细胞内蛋白质合成的主要场所是_________。

答案:核糖体9. 细胞凋亡是一种_________的细胞死亡方式。

答案:程序化10. 真核细胞的基因表达调控主要发生在_________阶段。

答案:转录三、简答题11. 简述细胞呼吸的三个主要阶段及其能量释放情况。

答案:细胞呼吸的三个主要阶段包括糖酵解、三羧酸循环和氧化磷酸化。

糖酵解在细胞质中进行,将葡萄糖分解为两个丙酮酸分子,释放少量能量。

三羧酸循环在细胞线粒体基质中进行,丙酮酸转化为二氧化碳,释放少量能量。

氧化磷酸化在细胞线粒体内膜上进行,通过电子传递链和ATP合成酶,释放大量能量,合成ATP。

12. 阐述DNA复制的半保留复制机制。

答案:DNA复制的半保留复制机制是指在DNA复制过程中,每个新合成的DNA分子都包含一个原始的亲本链和一个新合成的子代链。

复制开始时,DNA双链被解旋酶解旋,形成复制叉。

随后,DNA聚合酶识别复制起始点,并在每个亲本链上合成新的互补链。

由于亲本链作为模板,所以每个新合成的DNA分子都保留了一个亲本链,这就是半保留复制机制。

生化大题+名词解释

生化大题+名词解释

BiochemistryPart I1.代谢的意义:①将食物转化为能量维持细胞生命活动②合成组成细胞的必需物质,如蛋白质,脂质,核酸,糖类③代谢废物的消除2.糖代谢的意义:①糖类作为能源物质②分解代谢产生的中间物作为合成生物体内重要代谢物质的碳架和前体③是细胞中的结构物质,如细胞壁等④参与分子与细胞特异性识别:由寡糖或多糖组成的糖链常存在于细胞表面,形成糖脂和糖蛋白,参与分子或细胞间的特异性识别和结合3.糖酵解磷酸化中间产物的意义①带有负电荷的磷酸基团使中间产物具有极性,从而使这些产物不易透过脂膜而失散;②磷酸基团在各反应步骤中,对酶来说,起到信号基团的作用,有利于与酶结合而被催化;③磷酸基团经酵解作用后,最终形成ATP的末端磷酸基团,因此具有保存能量的作用。

4.糖酵解意义①在无氧条件下迅速提供能量,供机体需要。

如:剧烈运动、人到高原②是某些细胞在不缺氧条件下的能量来源。

③是某些病理情况下机体获得能量的方式。

④是糖的有氧氧化的前过程,亦是糖异生作用,大部分逆过程。

⑤糖酵解是糖、脂肪和氨基酸代谢相联系的途径⑥若糖酵解过度,可因乳酸生成过多而导致乳酸中毒。

5.糖酵解存在实例?⑴糖酵解与肌肉收缩①肌肉内ATP含量很低;②肌肉中磷酸肌酸储存的能量可供肌肉收缩所急需的化学能;③即使氧不缺乏,葡萄糖进行有氧氧化的过程比糖酵解长得多,来不及满足需要;④肌肉局部血流不足,处于相对缺氧状态。

⑵糖酵解与初到高原:人初到高原,高原大气压低,易缺氧,机体加强糖酵解以适应高原缺氧环境⑶某些组织细胞与糖酵解供能①成熟红细胞无线粒体,无法通过氧化磷酸化获得能量,只能通过糖酵解获得能量②视网膜、肿瘤细胞等,代谢极为活跃,即使不缺氧,也常由糖酵解提供部分能量。

⑷某些病理状态与糖酵解供能:严重贫血,大量失血,呼吸障碍,肺及心血管等疾病,机体主要通过糖酵解获得能量.6.乳酸循环的生理意义:① 乳酸再利用,避免了乳酸的损失。

② 防止乳酸的堆积引起酸中毒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生化大题汇总※参与DNA复制的主要酶和蛋白因子有哪些?各有什么功能?拓扑异构酶:松解DNA的超螺旋。

解链酶:打开DNA的双链。

引物酶:在DNA复制起始处以DNA为模板,催化合成互补的RNA短片断。

DNA聚合酶:以DNA为模板、dNTP为原料,合成互补的DNA新链。

连接酶:连接DNA片断。

DNA结合蛋白:结合在打开的DNA单链上,稳定单链。

※DNA复制有何主要特点?半保留复制,半不连续合成、需RNA引物,以dNTP(A,T,C,G)为原料,新链合成方向总是5’->3’,依赖DNA的DNA聚合酶(DDDP)※DNA复制的高保真性主要取决于哪些因素?DNA复制的高保真性取决于三个方面:1、DNA双链碱基的严格配对与DNA聚合酶对配对碱基的严格选择性;2、5’->3’外切核酸酶的即时校读作用;3、对DNA分子中的错误或损伤的修复机制。

※真核生物DNA复制在何处进行?如何进行?在细胞核内。

复制分为以下几个阶段:1、起始阶段(DNA解旋解链及引物合成):DNa拓扑异构酶、解链酶分别使DNA 解旋、解链,形成复制叉,在起始点由引物酶催化合成RNA引物;2、DNA合成阶段:以DNA的两条链分别作为模板,dNTP为原料按碱基互补原则(A-T,C-G)在RNa引物引导下,由DNA聚合酶催化合成DNA新链(分前导链和随从链);3、终止阶段:水解RNa引物(polI),填补空缺(polI),连接DNA片断(连接酶)。

※何谓反转录?在哪些情况下发生反转录?写出主要酶促反应过程。

以RNA为模板在反转录酶的作用下合成DNA的过程叫做反转录。

反转录可发生于:1、在RNA病毒感染宿主细胞甚至致癌过程中;2、在基因工程中,以mRNA为模板合成cDNA。

病毒RNA(反转录酶dNTP)->RNA-DNA杂化链(RNA酶活性)->cDNA单链(DNA聚合酶活性)->cDNA 双链※概述DNA的生物合成。

DNA的生物合成包括DNA半保留复制,DNA损伤后的修复合成和反转录DNA复制是以DNa的两条链分别作为模板,以dNTP为原料,在DNA聚合酶作用下按照碱基配对原则合成互补新链,这样形成的两个子代DNA分子与原来DNa分子完全相同,一条链来自亲代,另一条链是新合成的,故称为半保留复制。

在某些梨花、生物学因素作用下DNa链发生碱基突变、缺失、交联或链的断裂等损伤后,可进行修复。

修复方式有光修复、切除修复、重组修复与SOS修复等。

切除修复:1、核酸内切酶从损伤处的5’端切开,出现正常的3’端;2、核酸外切酶水解已打开的损伤DNA段;3DNA聚合酶以互补的DNA链为模板,dNTP为原料,5’->3’方向合成新的DNa片段;4、连接酶连接形成完整的DNA链。

以RNA为模板在反转录酶的作用下合成DNA的过程叫做反转录。

反转录在病毒致癌过程中起重要作用;在基因工程中可用于以mRNA为模板合成cDNA的实验。

※催化磷酸二酯键形成的酶有哪些?比较各自不同特点。

有DNA聚合酶、RNA聚合酶、引物酶、反转录酶、连接酶和拓扑异构酶。

酶反应时限底物反应结果DNA聚合酶DNA复制或修复合成模板DNA、引物、dNTP 合成互补DNA新链RNA聚合酶转录或RNA复制DNA/RNA模板、NTP 合成RNA新链引物酶复制起始阶段起始点DNA模板、NTP 合成RNA引物反转录酶反转录RNA模板、dNTP 合成互补DNA连接酶DNa复制或修复合成双链DNA中相邻片段合成DNA长链拓扑异构酶DNA复制起始超螺旋DNA 解旋DNA复制后松弛态DNA 重新形成螺旋※比较复制与转录的异同模板均为DNA,都需要聚合酶催化反应,聚合过程都是在核苷酸之间形成3’,5’-磷酸二酯键,合成方向都是5’->3’,都遵从碱基配对规则。

不同点包括:复制使子代保留亲代的全部遗传信息,方式为半保留不连续复制;转录只是按照生存的需要表达部分遗传信息,方式为不对称转录。

聚合酶分别是DNApol和RNApol,原料分别是dNTP和NTP,碱基配对RNA将A->T改为A->U,复制产物分别为DNA和RNA。

※何谓不对称转录?用实验证明之在双链DNA中只有一股单链作为模板;另外在同一条单链上可以交错出现模板链或编码链。

用核酸杂交方法:用热变性将DNA双链打开,并分离成两股单链分别与转录产物RNA杂交,由此鉴定出哪条链上的特异区段是转录模板。

另外可以进行核酸序列测定。

※试比较原核生物与真核生物RNA聚合酶有何异同?※举例说明转录后加工的主要类型。

mRNA中主要有:1、剪接-去除内含子拼接外显子;2、末端添加核苷酸:5’端加7甲基鸟嘌呤核苷三磷酸,3’端加多聚腺苷酸尾;3、化学修饰:甲基化;4、RNA编辑:某些mRNA转录后还进行插入、删除和取代一些核苷酸残基方能生成具有正确翻译功能的模板。

※讨论原核生物RNA聚合酶各亚基的功能和在转录中的作用。

原核生物RNApol有α、β、β’、σ、ω亚基,还有一个ρ因子。

σ亚基和ρ因子分别是起始和终止因子;α亚基决定哪些基因转录;β亚基在转录过程中起催化作用;β’亚基结合DNA模板起开链作用。

转录起始时需全酶结合模板,这种结合十分稳定。

转录延长只要核心酶,且与模板结合较松弛以利于酶向模板下游移动。

※参与原核RNA转录的成分有哪些?它们的作用?四种核糖核苷酸:RNA合成的原料。

σ因子:辨认DNA上转录起始点。

RNA聚合酶核心酶:以DNA为模板,催化四种核糖核苷酸按碱基互补配对原则形成磷酸二酯键。

ρ因子识别某些RNA上转录终止部位。

※蛋白质生物合成体系由哪些物质组成,各起何作用?蛋白质合成过程就是mRNA翻译的过程,需要mRNA作模板,氨基酸为原料,tRNA作搬运氨基酸的特异工具,核糖体作装配机。

核糖体大亚基具有转肽酶活性,可催化肽键形成。

这一合成体系还需各种氨基酰tRNA合成酶对氨基酸进行活化;起始因子、肽链延长因子、终止因子RF等多种蛋白质因子参与核糖体循环;ATP、GTP供给能量;Mg、K等无机离子参与合成。

※何谓遗传密码?哪些密码子不代表氨基酸?在mRNA任何部位的AUG是否都代表起始信号?mRNA分子内,每三个相互邻近的氨基酸构成的三联体,按其特定排列顺序,在蛋白质生物合成中可被体现为氨基酸或肽链合成的终止信号者,统称遗传密码。

其单个密码字,称为密码子。

密码子共有六十四个,六十一个密码子分别代表各种氨基酸。

另有三个密码子(UAA、UAG、UGA)为肽链合成的终止信号,不代表任何氨基酸。

密码子AUG不仅代表蛋氨酸,而且位于mRNA起始部位的AUG,有事肽链合成的起始信号。

作为起始信号的AUG,位于5’端,其周围核苷酸序列有一定特点,可使得AUG容易被核糖体接触,免受碱基配对区的封闭。

※起始作用的tRNA与一般的蛋氨酸tRNA有何差别?真核生物的tRNA与原核生物的有何不同?起始tRNA与普通蛋氨酸tRNA不同,是一种特殊蛋氨酸tRNA,用甲基化标志f来表示。

起始tRNA能特异识别作为起始信号的密码子AUG。

在原核生物和真核生物,此tRNA首先都携带Met形成Met-tRNA。

然后原核生物的该复合物在转甲基酰基酶作用下甲酰化,称为甲酰蛋氨酰tRNA后,才发挥功能。

真核生物的Met-tRNA无需甲酰化即可发挥作用。

与起始tRNA不同,普通的蛋氨酸tRNA能够识别密码子AUG,所携蛋氨酰不甲酰化,只能识别非起始信号的AUG,所携的蛋氨酰只形成多肽链内部的氨基酸残基。

※真核生物与原核生物的蛋白质合成体系及过程有何不同?哪些物质可以特异的抑制真核生物的蛋白质合成?真核生物的mRNA有帽有尾,无“SD”序列,为单作用子。

原核生物mRNA无帽无尾,在起始信号的5’存在富含嘌呤的“SD”序列,为多作用子。

真核生物的mRNA代谢慢,原核的代谢快。

真核生物的核糖体(80S)由40S小亚基和60S大亚基构成,比原核由30S和50S组成的70S核糖体大,含rRNA与蛋白质多。

原核生物的大亚基只有两种rRNA(5S,23S),真核有三种(28S,5.8S,5S)。

真核生物中的起始氨基酰tRNA复合体的蛋氨酸不用甲酰化,而原核必需。

原核生物的起始因子有三种,真核有十种以上。

翻译所需要的蛋白质因子,两者也有所不同。

合成过程的起始阶段真核生物额外需要ATP,需要更多的起始因子(如帽结合蛋白)。

肽链延长阶段,真核生物种催化氨基酰tRNA进入受位的肽链延长因子只有一种(EFT1),而原核生物有两种(EFTu与EETs)。

真核生物种促进移位的肽链延长因子EFT2,可被白喉毒素所抑制。

原核生物的相应因子EFG不受白喉毒素影响。

终止阶段,真核生物只需一种终止因子RF,可识别三种终止密码子;原核生物的终止因子有三种。

可抑制蛋白质合成的物质很多,但是只抑制真核生物蛋白质合成的物质不多,包括可与60S亚基结合,破坏28SrRNA的蓖麻蛋白等植物蛋白。

※试述肽链合成的起始、肽链延长及终止的重要步骤。

IF2、IF3与肽链延长因子在其中起何作用?蛋白质合成的全过程包括氨基酸的活化、转运与核糖体循环。

核糖体循环分为起始、延长和终止三个阶段,其中起始阶段为翻译调控的主要环节。

原核生物中情况如下:核糖体循环的起始阶段是起始复合体的形成阶段。

1、核糖体小亚基在起始因子IF3与IF1的促进下与mRNA 的起始部位结合,在起始因子IF2的促进下与起始tRNA以及GTP结合形成亚基、mRNA与起始tRNA共同组成的30S起始复合体。

2、30S起始复合体形成后IF3脱落,50S亚基随之与此复合体结合,GTP分解,IF1、IF2脱落,形成大小亚基、mRNA、fMet-tRNA(给位)共同构成的起始复合体。

真核生物需要更多起始因子,小亚基和mRNA结合需要ATP。

起始阶段,IF3可对抗大小亚基缔合,使核糖体30S亚基不与50S亚基结合而与mRNa结合。

IF2具有促进30S亚基与fMet-tRNA结合的作用,在核糖体存在时有GTP酶活性。

IF1对前两者有辅助作用。

核糖体循环的肽链延长阶段,每增加一个氨基酸,按进位、转肽、脱落、移位四步重复进行。

1、氨基酰tRNA 进入受位。

需要延长因子EFTu、EFTs及GTP、Mg2+;2、50S大亚基存在转肽酶,催化肽键形成,需要Mg2+和K+;3、给位上的脱去氨基酰的tRNA从核糖体脱落;4、核糖体向mRNA的3’端移动一个密码子,同时携肽链的tRNA由受位移到给位,此步需要延长因子EFG、GTP与Mg2+。

原核生物延长因子EFTu和EFTs相当于真核生物的EFT1,为氨基酰tRNA进入受位必需;EFG相当于真核生物的EFT2,促进携由肽链的tRNA移位。

在终止阶段,在与核糖体受位对应的mRNA所在位置,转为终止密码子。

相关文档
最新文档