求二次函数解析式的几种方法
十种二次函数解析式求解方法

十种二次函数解析式求解方法〈一〉三点式。
1, 已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点,求抛物线的解析式。
2, 已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。
〈二〉顶点式。
1, 已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。
2, 已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。
〈三〉交点式。
1, 已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。
2, 已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21a(x-2a)(x-b)的解析式。
〈四〉定点式。
1, 在直角坐标系中,不论 a 取何值,抛物线2225212-+-+-=a x a x y 经过x 轴上一定点Q ,直线2)2(+-=x a y 经过点Q,求抛物线的解析式。
2, 抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。
3, 抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。
〈五〉平移式。
1, 把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解析式。
2, 抛物线32-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式.〈六〉距离式。
1, 抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。
2, 已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物线的解析式。
〈七〉对称轴式。
1、 抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2倍,求抛物线的解析式。
二次函数三种解析式的求法

二次函数三种解析式的求法二次函数是高中数学中的重要概念,它的解析式有三种常见的求法。
本文将分别介绍这三种求法,并且给出相应的例题加以说明。
第一种求法是通过顶点坐标和另一点坐标来确定二次函数的解析式。
二次函数的标准形式为f(x) = a(x-h)² + k,其中(h,k)为顶点坐标。
假设已知顶点坐标为(h,k),另一个已知点的坐标为(x₁,y₁),我们可以将这两个点的坐标代入二次函数的标准形式,得到两个方程:k = a(x-h)²y₁ = a(x₁-h)² + k通过解方程组,我们可以求解出a的值,进而得到二次函数的解析式。
例如,已知二次函数过点(2,5),顶点坐标为(-1,3),我们可以代入上述方程组进行求解。
将顶点坐标代入第一个方程,可得:3 = a(2-(-1))²解得a = 1/3。
然后将a的值代入第二个方程,可得:5 = (1/3)(2-(-1))² + 3化简后得到二次函数的解析式为f(x) = (1/3)(x+1)² + 3。
第二种求法是通过顶点坐标和对称轴与顶点的距离来确定二次函数的解析式。
对称轴与顶点的距离等于顶点的纵坐标的绝对值,即|k|。
假设已知顶点坐标为(h,k),对称轴与顶点的距离为|k|,我们可以将这些信息代入二次函数的标准形式,得到方程:f(x) = a(x-h)² + k代入|k|,可得:f(x) = a(x-h)² + |k|通过解这个方程,我们可以求解出a的值,进而得到二次函数的解析式。
例如,已知二次函数过点(2,5),顶点坐标为(-1,3),对称轴与顶点的距离为3。
我们可以代入上述方程进行求解。
将顶点坐标代入方程,可得:5 = a(2-(-1))² + 3化简后得到a = 1/3。
然后将a的值代入方程,可得:f(x) = (1/3)(x+1)² + 3这就是二次函数的解析式。
求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解二次函数是一种常见的函数形式,其解析式可以通过四种方法求得。
下面将详细介绍这四种方法。
方法一:配方法求解二次函数解析式配方法是一种常用的求解二次函数解析式的方法。
对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以通过配方法将其转化为$(px+q)^2$形式,然后利用完全平方公式求解。
1. 将二次项与常数项系数乘以2,即将原函数表示为$f(x) = a(x^2 + \frac{b}{a}x) + c$;2. 将中间项$\frac{b}{a}x$除以2,并在括号外面加上一个平方项和一个负号,即表示为$f(x) = a(x^2 + \frac{b}{a}x +(\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;3. 将括号内部的三项利用完全平方公式进行转化,即表示为$f(x) = a((x+\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;4. 化简后得到$f(x) = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$。
其中,$(x+\frac{b}{2a})^2$是一个完全平方项,可以展开得到$x^2 + bx + \frac{b^2}{4a^2}$。
所以上述表达式可以进一步简化为:$f(x) = ax^2 + bx + c = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$这就是二次函数的配方法解析式。
方法二:因式分解法求解二次函数解析式对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以使用因式分解法对其解析式进行求解。
1.如果二次函数可以因式分解为$(x-x_1)(x-x_2)$的形式,其中$x_1$和$x_2$是函数的根,则此二次函数的解析式形式为$f(x)=a(x-x_1)(x-x_2)$;2.将一般形式的二次函数进行因式分解,即将二次项系数a与常数项c进行合适的分解,得到$(x-x_1)(x-x_2)$的形式。
二次函数解析式的求解

二次函数解析式的求解二次函数的解析式有以下三种表示法:1、 一般式:2,(0)y ax bx c a =++≠ 此种表示法适合于我们知道函数图像上的三点,把三点的坐标代入上式,联接待定系数从而求得函数的解析式。
例1已知二次函数经过(1,2),(2,3),(3,4)A B C 三点,求此二次函数的解析式。
2、 顶点式:2(),(0)y a x m k a =++≠,其中点(,)m k -为二次函数的顶点。
此种表示法适合于知道它的顶点和图像上的另外一点,此时把顶点代入上式,只剩下一个未知系数,此时再把我们知道的另外一点代入,从而求出解析式。
例2已知二次函数的顶点为(4,5)M ,且函数图像经过点(6,8)A ,求此二次函数的解析式。
3、交点式:12()(),(0)y a x x x x a =--≠例3已知函数经过(1,0),(1,0),(3,4)A B C -三点,求此解析式。
特殊的二次函数:1、函数的顶点是坐标系的原点:2(0)y a x a =≠,例如我们学过的函数:221,22y x y x ==,此类函数图像的对称轴是y 轴。
例4已知二次函数图像的顶点是坐标系的原点,且函数图像经过点(2,1)A ,求此二次函数的解析式。
2、函数的顶点在y 轴上:2,(0)y ax c a =+≠,例如我们学过的函数:221y x =+,此类函数图像的对称轴也是y 轴。
例5已知二次函数图像的顶点在y 轴上,且函数经过点(2,1),(3,4)A B ,求此二次函数。
3、函数图像经过原点:2,(0)y ax bx a =+≠例如函数:224y x x =+。
例6已知二次函数经过原点,且过点(3,0),(3,4)A B -,求此二次函数。
例题分析例7如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。
(1)求抛物线的解析式; (2)设抛物线顶点为D ,求四边形AEDB 的面积; (3)△AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。
如何求二次函数的解析式

怎样求二次函数的解析式(2013.11.27)求二次函数解析式的问题,由于其类型繁多,灵活性较大,同学们感到难以掌握.下面将二次函数解析式的求法归纳为五种类型,供同学们参考.一、三点型若已知二次函数图像上任意三点的坐标,则可以用一般式y= ax2+bx+c.解题策略:通过各种途径搜索转化题目的各个信息找到三个点的坐标,然后用待定系数法求解析式,此类问题是中考中最常见的一类。
例1 已知二次函数图像经过(1,0)、(-1,-4)和(0,-3)三点,求这个二次函数解析式.二、顶点型若已知二次函数图像的顶点坐标或对称轴方程和函数的最大(小)值,则可以用顶点式y=a(x -h)2+k.解题策略:想方设法找到顶点的坐标,然后用待定系数法求解析式,此法比较简单。
例2 已知抛物线的顶点坐标为(2,-3),且经过点(3,1),求其解析式.三、交点型若已知二次函数图像与x轴的两交点坐标或两交点间的距离及对称轴,则可以用交点形式y=a(x-x1)·(x-x2).解题策略:要注意题目所给的点的坐标特征,如果已知或可求出与x轴的交点坐标(纵坐标为0),就可以采用此法。
例3已知二次函数图像与x轴交于(-1,0)、(3,0)两点,且经过点(1,-5),求其解析式.四、平移型将二次函数图像平移,形状和开口方向、大小没有改变,发生变化的是顶点坐标.故可先将原函数解析式化成顶点形式,再按照“左加右减,上加下减”的法则,即可得出所求的抛物线的解析式.例4将抛物线y=x2+2x-3向左平移4个单位,再向下平移3个单位,求所得到的抛物线的解析式.五、对称型(1)抛物线y=a(x-h)2+k绕它的顶点旋转180°,得到的抛物线的解析式为;(2)抛物线y=a(x-h)2+k关于x轴对称的抛物线的解析式为.(3)抛物线y=a(x-h)2+k关于y轴对称的抛物线的解析式为.例5 已知抛物线1l:1322++-=xxy.则将1l绕它的顶点旋转180°得到的抛物线2l的解析式为,2l关于x轴对称的抛物线3l的解析式为,3l关于y轴对称的抛物线4l的解析式为六、综合型综合运用几何性质求二次解析式.例6 如下图,二次函数y=ax2+bx+c的图像与x轴交于A、B两点,与y轴交于C点,若AC=20,BC=15,∠ABC=90°,求这个二次函数解析式.【小试牛刀】1.(2001宁夏)已知二次函数的图象经过(0,0),(1,2),(-1,-4)三点,求这个二次函数的解析式.2.(1999江西)某抛物线的顶点为B(-1,2),并经过点A(1,0),求此抛物线的解析式.3.(2010重庆綦江县)已知抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为x=2.求该抛物线的解析式;4.(2001云南曲靖)已知直线y=x-3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、B两点,且对称轴方程为x=1,求此二次函数的解析式。
求二次函数解析式几种常用方法

求二次函数的解析式的几种方法山东省沂水县高桥镇初级中学 王瑞辉二次函数解析式的求法是二次函数知识的重点,也是中考必考内容。
现在举例,说明求二次函数解析式的常用方法,希望对同学们学习有所帮助。
一、二次函数常见的三种表达式:(1)一般式:y ax bx c a =++≠20();(2)交点式:y a x x x x =--()()12,其中点(,)()x x 1200,,为该二次函数与x 轴的交点;(3)顶点式:()2()0y a x h k a =-+≠,其中点(),h k 为该二次函数的顶点。
二、利用待定系数法求二次函数关系式(1)、已知二次函数图象上任意三个点的坐标,可设一般式求二次函数的关系式。
例1、已知抛物线2y ax bx c =++,经过点(2,1)、(-1,-8)、(0,-3).求这个抛物线的解析式. 解:根据题意得421,8,3,a b c a b c c ++=⎧⎪-+=-⎨⎪=-⎩ 解之得1,4,3,a b c =-⎧⎪=⎨⎪=-⎩所以抛物线为243;y x x =-+-说明:用待定系数法求系数a b c 、、需要有三个独立条件,若给出的条件是任意三个点,可设解析式为2(0)y ax bx c a =++≠,然后将三个点的坐标分别代入,组成一次方程组用加减消元法来求解.(2)、已知抛物线与x 轴的两个交点坐标和图象上另一个点坐标,可设交点式求二次函数的关系式。
若知道二次函数与x 轴有两个交点()()1200x x ,,,,则相当于方程20ax bx c ++=有两个不相等的实数根12x x ,,从而212()()ax bx c a x x x x ++=--,故二次函数可以表示为12()()(0)y a x x x x a =--≠.例2、已知一个二次函数的图象经过点A (-1,0),B (3,0),C (0,-3)三点.求此二次函数的解析式.解:根据题设,设此二次函数的解析式为(1)(3)y a x x =+-.又∵该二次函数又过点(0,-3), ∴(01)(03)3a +-=-. 解得1a =.因此,所求的二次函数解析式为(1)(3)y x x =+-,即223y x x =--.说明:在把函数与x 轴的两个交点坐标代入12()()(0)y a x x x x a =--≠求值时,要注意正确处理两个括号内的符号.(3)、已知抛物线顶点和另外一个点坐标时,设顶点式y =a (x -h )2+k (a ≠0)例3、对称轴与y 轴平行的抛物线顶点是(-2,-1),抛物线又过(1,0),求此抛物线的函数解析式。
二次函数解析式的方法

二次函数解析式的方法
二次函数是高中数学中的一个重要概念。
它是一种二次方程,通常用y=ax+bx+c的形式表示。
其中,a、b、c是常数,a不等于0。
求解二次函数的解析式可以使用以下方法:
1. 完全平方公式:将二次函数的一般式y=ax+bx+c转化为顶点式y=a(x-h)+k,其中(h,k)为顶点坐标。
这个转化可以使用完全平方公式完成,即将x+bx部分平方,得到(x+ b/2a)- (b-4ac)/4a,再乘以a后,得到y=a(x+ b/2a)- (b-4ac)/4a。
2. 配方法:当二次函数的a不为1时,可以使用配方法将其转化为一个完全平方的形式。
具体来说,对于y=ax+bx+c,我们可以先将a提出来,得到y=a(x+ bx/a+c/a),然后将x+ bx/a部分配方,即将它写成(x+b/2a)- (b-4ac)/4a的形式。
这样,原来的二次函数就可以表示为y=a(x+b/2a)- (b-4ac)/4a+c。
3. 公式法:对于已知二次函数的解析式y=ax+bx+c,我们可以使用求根公式来求解它的两个解。
根据二次方程的求根公式,
y=ax+bx+c的解析式可以表示为x=(-b±√(b-4ac))/2a。
以上三种方法都可以求解二次函数的解析式,具体使用哪种方法取决于具体情况。
在解决实际问题时,可以根据需要选择合适的方法,以便更准确地求解问题。
- 1 -。
求二次函数解析式的五种常见类型

因此AM+OM的最小值为4 2 .
返回
方法2 利用顶点式求二次函数解析式
4.在平面直角坐标系内,二次函数图象的顶点为A(1,
-4),且过点B(3,0),求该二次函数的解析式.
解:∵二次函数图象的顶点为A(1,-4),
∴设y=a(x-1)2-4.
x2+4x. 解得a=- .
解:把A(-2,-4),O(0,0),B(2,0)三
故y=(x-1)2-4,即y=x2-2x-3.
点的坐标代入y=ax +bx+c, 方法1 利用一般式求二次函数解析式
由函数的基本形式求二次函数解析式)
2
当x=0时,y=-1;
4 a- 2 b+ c= - 4, a = - 1 , 即y=-x2+4x-3.
解法三:∵抛物线的顶点坐标为(-2,4),与x轴的一个交点坐标为(1,0), 解法二:设抛物线对应的函数解析式为y=a(x+2)2+4,将点(1,0)的坐标代入得0=a(1+2)2+4,解得a=- .
设抛物线的解析式为y=a(x-2)2,
OM的最小值. 由函数的基本形式求二次函数解析式)
解法二:设抛物线对应的函数解析式为y=a(x+2)2+4,将点(1,0)的坐标代入得0=a(1+2)2+4,解得a=- .
返回
2.一个二次函数,当自变量x=-1时,函数值y=2; 当x=0时,y=-1;当x=1时,y=-2.那么这个 二次函数的解析式为____y_=__x_2-__2_x_-__1____.
返回
3.如图,在平面直角坐标系中,抛 物线y=ax2+bx+c经过A(-2, -4),O(0,0),B(2,0)三点.
组,得 (2)将抛物线C1向左平移3个单位长度,可使所得的抛物线C2经过坐标原点.如图,所求抛物线C2对应的函数解析式为y=x(x+4),即y=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沁乐教育沁心学习乐在其中2015年秋季九年级数学辅导资料第二讲函数图像性质及应用学校:姓名:二次函数的图象与基本性质(一)、知识点回顾【知识点二:抛物线的图像与a 、b 、c 关系】(1) a 决定抛物线的开口方向:a>0,开口向 ________ ;a<0,开口向 ________ (2) c 决定抛物线与 ________的位置:c>0,图像与y 轴的交点在___________; c=0,图像与y 轴的交点在___________;c<0,图像与y 轴的交点在___________;(3)a ,b 决定抛物线对称轴的位置,我们总结简称为:___________;(4)△=b 2-4ac 决定抛物线与________交点情况:△=b 2-4ac ⎪⎩⎪⎨⎧<=>轴没有交点与轴有一个交点与轴有两个交点与x x x 000【知识点三:二次函数的平移】设0,0>>n m ,将二次函数2ax y =向右平移m 个单位得到___________;向左平移m 个单位得到___________;向上平移n 个单位得到___________;向下平移n 个单位得到___________。
简单总结为___________,___________。
(注意:要用以上方法对二次函数图象进行平移,要先化成顶点式再操作)【知识点四:二次函数与一元二次方程的关系】二次函数)0(2≠++=a c bx ax y ,当0=y 时,即变为一元二次方程)0(02≠=++a c bx ax ,从图象上来说,二次函数)0(2≠++=a c bx ax y 的图象与x 轴的交点的横坐标x 的值就是方程)0(02≠=++a c bx ax 的根。
【知识点五:二次函数解析式的求法】(1) 知抛物线三点,可以选用一般式:c bx ax y ++=2,把三点代入表达式列三元一次方程组求解;(2)知抛物线顶点或对称轴、最大(小)值可选用顶点式:k h x a y +-=2)(;其中抛物线顶点是),(k h ;(3)知抛物线与x 轴的交点坐标为)0,(),0,(21x x 可选用交点式:))((21x x x x a y --=,特别:此时抛物线的对称轴为直线)(2121x x x +=(二)、感悟与实践例1: (1)求二次函数y =x 2-4x +1的顶点坐标和对称轴.(2)已知二次函数y =-2x 2-8x -6,当___________时,y 随x 的增大而增大;当x =________时,y 有_________值是___________.变式练习1-1:二次函数y =-x 2+mx 中,当x =3时,函数值最大,求其最大值.例2(1)a ___0,b___0 ,c___0(2)b 2-4ac___0 (3)a+b+c___0 (4)a-b+c___0变式练习﹣1,给出下列结果:①b 2>4ac ;②abc >0;③2a +b =0;④a +b +c >0;⑤a ﹣b +c <0,则正确的结论是 ( ) A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤变式练习2-2:已知二次函数2y ax bx c =++的图像如图3所示,那么一次函数y bx c =+和反比例函数ay x=在同一平面直角坐标系中的图像大致是( )C Dy-图1x224682112O图2图3A B例3:(2012•广州)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)变式练习3-1:(2012泰安)将抛物线23y x=向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.23(2)3y x=++B.23(2)3y x=-+C.23(2)3y x=+-D.23(2)3y x=--例4:二次函数22y x x k=-++的部分图象如图4所示,则关于x的一元二次方程220x x k-++=的一个解13x=,另一个解2x=()A、1B、1- C、2- D、0变式练习5-1:(2009广州25)如图6,二次函数2y x px q=++(0p<)的图象与x轴交于A B、两点,与y轴交于点(01)C-,,ABC△的面积为54.(1)求该二次函数的关系式;二次函数的性质的综合应用图4yxBACO例1. 已知抛物线y x x =+-12122(或223y x x =--) (1) 把它配方成2()y a x h k =++的形式;(2) 写出抛物线的开口方向,顶点M 的坐标、对称轴方程;(3)求函数的最大值和最小值,并求出相应的自变量的值 。
(4)当-2<x ≤1时,求函数y 的最值(4) 当1<x<4时,求函数y 的取值范围;(6)求出与y 轴交点N 的坐标及与x 轴的交点P,Q 的坐标(点P 在点Q 的左边)(7)作出函数的大致图像(8当x 取何值时,函数值y 随x 增大而增大,y 随x 值的增大而减小;(9)图像过点A (2-,1y )、B (0,2y )、C (6,3y )、D (4,4y )比较1y ,2y ,3y ,4y 的大小(10)观察图象,当x 取何值时,y y y >=<000,,;(11)当x 取何值时,y<2;(12)求△PQM 的面积。
(13)求四边形PQMN 的面积例2. 已知抛物线2222y x kx k k =-++-,根据下列条件,求k 的值。
(1) 抛物线过原点;(2) 顶点在x 轴上;(3) 顶点在y 轴上;(4) 顶点在y 轴左侧;(5) 当x=–1时,函数有最小值;(6) 关于直线x=-1对称;(7) 函数y 的值恒大于0;(8) 顶点在x 轴上方;(9) 抛物线在x 轴上截得的线段长为1;8.如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(- 3,0)两点, (1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小若存在,求出Q 点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△ABCPBC 的面积最大,若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.二次函数应用题归类【基本思想】一、转化思想————实际问题中的最优化问题转化为求二次函数的最值问题。
1、方案设计最优问题:费用最低利润最大储量最大等等。
2、面积最优化问题:全面观察几何图形的结构特征,挖掘出相应的内在联系,列出包含函数,自变量在内的等式,转化为函数解析式,求最值问题。
二、建模思想————从实际问题中发现、提出、抽象、简化、解决、处理问题的思维过程。
1、建立图像模型:自主建立平面直角坐标系,构造二次函数关系式解决实际问题。
2、方程模型和不等式模型:根据实际问题中的数量关系,列出方程或不等式转化为二次函数解决问题。
3、根据实际问题情境抽象出二次函数模型。
三、运动思想————图像上的动点问题及几何图形的形状的确定。
四、分类讨论的思想————二次函数与其他知识的综合题时经常用到。
【最值的确定方法】1.二次函数在没有范围条件下的最值:二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式224()24b ac b y a x a a-=++,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).2.二次函数在有范围条件下的最值:如果自变量的取值范围21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当2bx a=-,244ac b y a-=最值,如果顶点不在范围,则需考虑函数在自变量的取值范围内的增减性〖2014年中考第23题分类汇总分析〗 一、分段函数型1.【四月调考】某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求与的函数关系式并直接写出自变量的取值范围;(2)设每月的销售利润为W,请直接写出与的函数关系式;(3)每件商品的售价定位多少元时,每个月可获得最大利润最大的月利润是多少元二、与不等式结合型2.【2009四月调考】某商场将进货价为30元的书包以40元售出,平均每月能售出600个。
调查表明:这种书包的售价每上涨1元,其销售量就减少10个。
(1)请写出每月售出书包的利润y(元)与每个书包涨价x(元)间的函数关系式;(2)设某月的利润为10000元,此利润是否为该月的最大利润,请说明理由;(3)请分析并回答售价在什么范围内商家获得的月利润不低于6000元3.某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润最大的月利润是多少元(3)当售价的范围是是多少时,使得每件商品的利润率不超过80%且每个月的利润不低于2250元三、前期投入,亏损、盈利型4.【2011年四月】杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元。
按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示。
(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元,若能,求出第二年产品售价;若不能,请说明理由。
四、面积有关问题5.【2010年中考】星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成。
已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米。
(1)若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;18米苗圃园(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围。
五、二次函数与建模(高频型)6.〖2015调考〗要修建一个圆形喷水池,在池中心竖直安装一根2.25m 的水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m 处达到最高,高度为3m .(1)建立适当的平面直角坐标系.,使水管顶端的坐标为(0,,水柱的最高点的坐标为 (1,3),求出此坐标系中抛物形水柱对应的函数关系式(2)道之间的宽度为0.3 m ,最内轨道的半径为r m ,其上每0.3 m 的弧长上安装一个地漏,其它轨道上的地漏个数与最内轨道上的个数相同,水柱落地处为最外轨道,其上不安装地漏,求当r 为多少时池中安装的地漏的个数最多六、细节变化、陷阱题9.中百超市每天购进一种水产品300千克,其进货成本(含运输费)是每千克3元,根据超市规定,这种水产品只能当天销售,并且每千克的售价不能超过10元,一天内没有销售完的水产品只能按2元处理给食品深加工公司,而且这种水产品每天的损耗率是10%,根据市场调查这种水产品每天在市场上的销售量y (单位:千克,y ≥0)与每千克的销售价x (元)之间的函数关系如下图所示:(1)求出每天销售量y 与每千克销售价x 之间的函数关系式;(2)根据题中的分析:每天销售利润w 最多是多少元(3)请你直接回答:当每千克销售价为多少元时,每天的销售利润不低于960元【巩固练习】A 组:1. 二次函数y=x 2-2x-6的图象开口方向 ,顶点坐标是 ,对称轴是 ;2、抛物线242my x x =-+与x 轴的一个交点的坐标为(l,0), 则它与x 轴的另一个交点的坐标是__________3、二次函数y=2(1)x --2的图像的对称轴是直线_____________.4、抛物线y =22x -bx +3的对称轴是直线x =1,则b 的值为__________;若抛物线y=2()a x h m ++形状与它一样,则a=______________5抛物线3)2(2+-=x y 的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 6二次函数2(1)2y x =++的最小值是( ). A .2 B .1 C .-3 D .237抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( ) A .()m n ,B .()m n -,C .()m n -,D .()m n --,8、若抛物线2y ax =+c 的图像经过点P(m,m),则此抛物线也经过点( )A(-m,n) B(m,-n) C(n,m) D(-n,m) 9、二次函数2365y x x =--+的图象的顶点坐标是( ) A .(18)-,B .(18),C .(12)-,D .(14)-,10、二次函数2(1)2y x =--的图象上最低点的坐标是 A .(-1,-2) B .(1,-2)C .(-1,2)D .(1,2)11、若把代数式223x x --化为()2x m k -+的形式,其中,m k 为常数,则m k +=.12、已知A 、B 是抛物线243y x x =-+上位置不同的两点,且关于抛物线的对称轴对称,则点A 、B 的坐标可能是_____________.(写出一对即可)13、函数)32(x x y -=,当x 为 时,函数的最大值是 ;14、若二次函数2)1(2-+-=mx x m y 的最大值为49,则常数_____=m ; B 组:1.向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y =ax 2bx 。