《离散数学(第三版)》方世昌-的期末复习知识点总结含例题
方世昌离散数学第三版教材课件第3章二元关系(可编辑)

方世昌离散数学第三版教材课件第3章二元关系(可编辑)方世昌离散数学第三版教材课件第3章二元关系31 基本概念32 关系的合成33 关系上的闭包运算34 次序关系35 等价关系和划分 31 基本概念311 关系关系的数学概念是建立在日常生活中关系的概念之上的让我们先看两个例子例31-1 设 A abcd 是某乒乓球队的男队员集合 B efg 是女队员集合如果A和B元素之间有混双配对关系的是a 和gd和e我们可表达为 R 〈ag〉〈de〉这里R 表示具有混双配对关系的序偶集合所有可能具有混双配对关系的序偶集合是A×B 〈xy〉x∈A∧y∈B 〈ae〉〈af〉〈ag〉〈be〉〈bf〉〈bg〉〈ce〉〈cf〉〈cg〉〈de〉〈df〉〈dg〉例31-2 设学生集合A1 abcd 选修课集合A2 日语法语成绩等级集合A3 甲乙丙如果四人的选修内容及成绩如下 a 日乙 b 法甲c 日丙 d 法乙我们可表达为S 〈a 日乙〉〈b法甲〉〈c日丙〉〈d法乙〉这里S表示学生和选修课及成绩间的关系而可能出现的全部情况为A1×A2×A3 〈xyz〉x∈A1∧y∈A2∧z∈A3 〈a日甲〉〈a 日乙〉〈a日丙〉〈a法甲〉〈a 法乙〉〈a法丙〉〈b日甲〉〈b日乙〉〈b日丙〉〈b 法甲〉〈b法乙〉〈b法丙〉〈c日甲〉〈c日乙〉〈c日丙〉〈c法甲〉〈c法乙〉〈d法丙〉定〈c法丙〉〈d日甲〉〈d日乙〉〈d日丙〉〈d法甲〉〈d法乙〉义31―1 1 A×B的子集叫做A到B的一个二元关系2 A1×A2××An n≥1 的子集叫做A1×A2××An上的一个n元关系3 从定义可看出关系是一个集合所有定义集合的方法都可用来定义关系例31-1和例31-2是列举法的例子一个谓词Px1x2xn 可以定义一个n元关系R R 〈x1x2xn〉P x1x2xn 例如实数R上的二元关系>可定义如下>〈xy〉x∈R∧y∈R∧x>y 反之一个n元关系也可定义一个谓词当n 1时R 〈x〉P x 称为一元关系它是一重组集合表示论述域上具有性质P的元素集合其意义与R xP x 相同仅记法不同而已例如设P x 表示x是质数论述域是N则质数集合可表示为〈x〉|P x 或x|P x 关系也可归纳地定义自然数上的小于关系可定义如下1 基础〈01〉∈<2 归纳如果〈xy〉∈<那么i 〈xy1〉∈< ii 〈x1y1〉∈< 3 极小性对一切xy∈Nx<y当且仅当〈xy〉是由有限次应用条款 1 和 2 构成定义31―2 设R是的子集如果R 则称R为空关系如果则称R为全域关系现在定义关系相等的概念在关系相等的概念中不仅需要n重组集合相等还需其叉积扩集也相同定义31―3设R1 是上的n元关系R2是上的m元关系那么R1 R2当且仅当n m且对一切i1≤i≤nAi Bi并且R1和R2是相等的有序n重组集合 312 二元关系最重要的关系是二元关系本章主要讨论二元关系今后术语关系都指二元关系若非二元关系将用三元或n元一类术语指出二元关系有自己专用的记法和若干新术语设 A x1x2x7 B y1y2y6 R〈x3y1〉〈x3y2〉〈x4y4〉〈x6y2〉A到B的二元关系R可如图31―1那样形象地表示〈x3y1〉∈R也可写成x3Ry1称为中缀记法读做x3和y1有关系R中缀记法常用来表示诸如<>等关系例如〈35〉∈<通常写作3<5 A叫做关系R的前域B叫做关系R的陪域 D R x|y 〈xy〉∈R 叫做关系R 的定义域R R y|x 〈xy〉∈R 叫做关系R的值域关系是序偶的集合对它可进行集合运算运算结果定义一个新关系设R和S是给定集合上的两个二元关系则R∪SR∩SR-S 等可分别定义如下x R∪S y xRy∨xSy x R∩S y xRy∧xSy x R-S y xRy∧xy x y xRy 例31-3平面上的几何图形是平面R2的子集也是一种关系设参看图31―2 R1 〈xy〉|〈xy〉∈R2∧x2y2≤9 R2 〈xy〉|〈xy〉∈R2∧1≤x≤3 ∧0≤y≤3 R3 〈xy〉|〈xy〉∈R2∧x2y2≥4 则R1∪R2 〈xy〉|〈xy〉∈R2∧ x2y2 ≤9∨ 1≤x≤3∧0≤y≤3 R1∩R3〈xy〉|〈xy〉∈R2∧ x2y2 ≤9∧x2y2≥4 R1-R3 〈xy〉|〈xy〉∈R2∧ x2y2≤9∧ L x2y2≥4 〈xy〉|〈xy〉∈R2∧ x2y2≥4 313 关系矩阵和关系图表达有限集合到有限集合的二元关系时矩阵是一有力工具定义31―4 给定集合A a1a2am 和B b1b2bn 及一个A 到B的二元关系R 使例31-4 设A a1a2 B b1b2b3 R 〈a1b1〉〈a2b1〉〈a1b3〉〈a2b2〉则其关系矩阵为例31-5 设A 1234 A上的二元关系R 〈xy〉|x>y 试求出关系矩阵解R 〈41〉〈42〉〈43〉〈31〉〈32〉〈21〉例31-6 设 A 12345 R 〈12〉〈22〉〈32〉〈34〉〈43〉其图示如图31―3所示图中结点5叫做孤立点利用关系R的图示也可写出关系R 314 关系的特性在研究各种二元关系中关系的某些特性扮演着重要角色我们将定义这些特性并给出它的图示和矩阵的特点定义31―5 设R是A上的二元关系 1如果对A中每一xxRx那么R是自反的即 A上的关系R是自反的x x∈A→xRx A 123 R1 〈11〉〈22〉〈33〉〈12〉是自反的其关系图和关系矩阵的特点如图31―4所示 2 如果对A中每一xxRx那么R是反自反的即 A上的关系R是反自反的 x x∈A→xRx 例如 A 123 R2 〈21〉〈13〉〈32〉是反自反的其关系图和关系矩阵的特点如图31―5所示有些关系既不是自反的又不是反自反的如图31―6 例如R3 〈11〉〈12〉〈32〉〈23〉〈33〉3 如果对每一xy∈AxRy蕴含着yRx那么R是对称的即A上的关系R 是对称的x y x∈A∧y∈A∧xRy→yRx 例如A 123 R4 〈12〉〈21〉〈13〉〈31〉〈11〉是对称的其关系图和关系矩阵的特点如图31―7所示 4 如果对每一xy∈AxRyyRx蕴含着x y那么R是反对称的即A上的关系R是反对称的x y x∈A∧y∈A∧xRy∧yRx→x y 例如A 123 R5 〈12〉〈23〉是反对称的其关系图和关系矩阵的特点如图31―8所示 5 如果对每一xyz∈AxRyyRz蕴含着xRz那么R是传递的即A上的关系R是传递的x y z x∈A∧y∈A∧z ∈A∧xRy∧yRz→xRz 例如A 1234R5 〈41〉〈43〉〈42〉〈32〉〈31〉〈21〉是传递的其关系图和关系矩阵如图31―10所示例31-7 1 任何集合上的相等关系是自反的对称的反对称的和传递的但不是反自反的 2 整数集合I上关系≤是自反的反对称的可传递的但不是反自反的和对称的关系<是反自反的反对称的可传递的但不是自反的和对称的 3 设 ab 试考察上的下列关系 i 关系与有同样长度是自反的对称的可传递的但不是反自反的和反对称的 ii xRy当且仅当x是y的真词头这里R是反自反的反对称的可传递的但不是自反的和对称的 iii xRy当且仅当x的某真词头是y的一个真词尾这里R既不是自反的又不是反自反的因为aaRaa但abRab既不是对称的也不是反对称的并且不是传递的 4 非空集合上的空关系是反自反的对称的反对称的和传递的但不是自反的空集合上的空关系则是自反的反自反的对称的反对称的和可传递的 5 基数大于1的集合上的全域关系是自反的对称的和传递的但不是反自反的和反对称的例如图31―11所示的关系 321 关系的合成前边已经指出关系是序偶的集合因此可以进行集合运算本节介绍一种对关系来说更为重要的运算合成运算假设R1是A到B的关系R2是B到C的关系参看图32-1合成关系R1R2是一个A到C的关系如果在关系图上从a∈A到c∈C有一长度路径中弧的条数为2的路径其第一条弧属于R1其第二条弧属于R2那么〈ac〉∈R1R2合成关系R1R2就是由〈ac〉这样的序偶组成的集合其第一条弧属于R1其第二条弧属于R2那么〈ac〉∈R1R2合成关系R1R2就是由〈ac〉这样的序偶组成的集合定义32―1 设R1是从A到B的关系R2是从B到C的关系从A到C的合成关系记为R1R2定义为R1R2 〈ac〉|a∈A∧c∈C∧b〔b∈B∧〈ab〉∈R1∧〈bc〉∈R2〕例32-11 如果R1是关系是的兄弟R2是关系是的父亲那么R1R2是关系是的叔伯R2R2是关系是的祖父 2 给定集合A 1234 B 234 C 123 设R是A到B的关系S是B到C的关系R 〈xy〉|xy 6 〈24〉〈33〉〈42〉S 〈yz〉|y-z 1 〈21〉〈32〉〈43〉则R·S 〈23〉〈32〉〈41〉如图32―2所示 3 设A 12345 R和S都是A上二元关系如果 R 〈12〉〈34〉〈22〉 S 〈42〉〈25〉〈31〉〈13〉则R·S 〈15〉〈32〉〈25〉S·R 〈42〉〈32〉〈14〉R·S ·R 〈32〉R· S·R 〈32〉R·R 〈12〉〈22〉S·S〈45〉〈33〉〈11〉 4 设R是A到B的二元关系IAIB分别是A 和B上的相等关系则IA·R R·IB R 5 如果关系R的值域与关系S的定义域的交集是空集则合成关系R·S是空关系下边介绍合成关系的性质定理32―1 设R1是从A到B的关系R2 和R3是从B到C的关系R4是从C到D的关系那么1 R1 R2∪R3 R1R2∪R1R3 2 R1 R2∩R3 R1R2∩R1R3 3 R2∪R3 R4 R2R4∪R3R4 4 R2∩R3 R4 R2R4∩R3R41 2 3 部分的证明留作练习我们仅证明 2 部分证先证明公式因为〈ac〉∈R1 R2∩R3 b〔〈ab〉∈R1∧〈bc〉∈R2∩R3 〕b 〔〈ab〉∈R1∧〈bc〉∈R2∧〈bc〉∈R3 〕b〔〈ab〉∈R1∧〈bc〉∈R2 ∧〈ab〉∈R1∧〈bc〉∈R3 〕b〔〈ab〉∈R1∧〈bc〉∈R2〕∧b〔〈ab〉∈R1∧〈bc〉∈R3〕〈ac〉∈R1R2∧〈ac〉∈R1R3 〈ac〉∈R1R2∩R1R3 即〈ac〉∈R1 R2∩R3 〈ac〉∈R1R2∩R1R3 所以R1 R2∩R3 R1R2∩R1R3 再证包含可能是真包含举反例证明如果 A a B b1b2b3 C c A到B的关系R1〈ab1〉〈ab2〉 B到C的关系R2 〈b1c〉〈b3c〉 B到C的关系R3〈b2c〉〈b3c〉那么R1 R2∩R3 R1R2∩R1R3 〈ac〉此时R1 R2∩R3 ≠R1R2∩R1R3证毕定理32―2 设R1R2和R3分别是从A到BB到C和C到D的关系那么 R1R2 R3 R1 R2R3 证先证 R1R2R3 R1 R2R3 设〈ad〉∈ R1R2 R3那么对某c∈C〈ac〉∈R1R2和〈cd〉∈R3因为〈ac〉∈R1R2存在b∈B使〈ab〉∈R1和〈bc〉∈R2因为〈bc〉∈R2和〈cd〉∈R3得〈bd〉∈R2R3所以〈ad〉∈R1 R2R3 这样就证明了 R1R2 R3 R1 R2R3 R1 R2R3 R1R2 R3的证明是类似的留给读者自证上述证明也可用等价序列表达 322 关系R的幂当R是A上的一个关系时R可与自身合成任意次而形成A上的一个新关系在这种情况下RR常表示为R2RRR表示为R3等等我们能归纳地定义这一符号如下定义32―2设R是集合A上的二元关系n∈N那么R的n次幂记为Rn定义如下 1R0是A上的相等关系R0 〈xx〉|x∈A 2 Rn1 Rn·R 定理32―3 设R是A上的二元关系并设m和n是N的元素那么 1Rm·Rn Rmn 2 Rm n Rmn 可用归纳法证明请读者自证定理32―4 设|A|nR是集合A上的一个关系那么存在i和j使Ri Rj而0≤i<j≤证A上的每一二元关系是A×A的子集因为|A×A| n2|ρ A×A |因此A上有个不同关系所以R的不同的幂不会超过个但序列R0R1 有项因此R的这些幂中至少有两个是相等的证毕定理32―5 设R是集合A上的一个二元关系若存在i和ji<j 使Ri Rj记d j-i那么 1 对所有k≥0Rik Rjk 2 对所有km≥0Rimdk Rik 3 记S R0R1R2Rj-1 那么R的每一次幂是S 的元素即对n∈NRn∈S 证 1 和 2 部分用归纳法证明留作练习3 对于 c 设n∈N如果n<j那么根据S的定义Rn∈S假设n≥j那么我们能将n表示为imdk这里k<d根据 b 部分得Rn Rik因为ik<j这证明了Rn∈S定理中的ij在实用时宜取最小的非负整数以保证S中无重复元素例32-2 设A abcd R 〈ab〉〈cb〉〈bc〉〈cd〉其关系图如图32―3所示则R0 〈aa〉〈bb〉〈cc〉〈dd〉 R2 〈ac〉〈bb〉〈bd〉〈cc〉R3〈ab〉〈ad〉〈bc〉〈cb〉〈cd〉R4 〈ac〉〈bb〉〈bd〉〈cc〉它们的关系图如图32―4所示由于R4 R2根据定理32―5 c 对所有n∈NRn∈ R0R1R2R3 可见不必再算了事实上易证R5 R3R6 R4 R2用归纳法可得R2n1 R3和R2n R2这里n≥1 323 合成关系的矩阵表达定理32―6 设X x1x2xm Y y1y2yn Z z1z2zp R是X到Y的关系MR 〔aij〕是m×n矩阵S是Y到Z的关系MS 〔bij〕是n×p矩阵则MR·S 〔cij〕MR·MS这里证因为如果存在某k使aik和bki都等于1则cij 1但aik和bkj都等于1意味着xiRyk和ykSzj所以xi R·S zj可见如此求得的MR·S确实表达了R·S的关系因此上述等式是正确的如果不仅存在一个k使aik和bki都是1此时cij仍为1只是从xi到zj不止一条长度为2的路径但等式仍然正确上段的论证已隐含了不止一个k的情况本定理说明合成关系矩阵可用关系矩阵布尔矩阵的乘法表达例32-3设X 12 Y abc Z αβ R 〈1a〉〈1b〉〈2c〉 S 〈aβ〉〈bβ〉则定理32―7 关系矩阵的乘法是可结合的证利用关系合成的可结合性证明MR·MS ·MT MR·S·MT M R·S ·T MR· S·T MR·MS·T MR· MS·MT 不仅合成关系可用关系矩阵表达而且关系的集合运算也可用关系矩阵表达设R和S是X到Y上的二元关系MR 〔aij〕MS 〔bij〕cij是运算后所得新关系之关系矩阵的元素则MR∩S MR∧MS cij aij∧bij MR∪S MR∨MS cij aij∨bij cij aij MR-S MR∧ cij aij∧ bij 331 逆关系在讨论闭包运算时要用到逆关系的概念因此我们先介绍逆关系定义33―1设R是从A到B的二元关系关系R的逆或叫R的逆关系记为是一从B到A的二元关系定义如下例33-11 I上的关系2 集合族上的关系的逆是关系3 空关系的逆是空关系4 B×A即A×B的全域关系的逆等于B×A的全域关系定理33―1设R是从A到B的关系而S是从B到C 的关系则定理33―2 设RR1和R2都是从A到B的二元关系那么下列各式成立 332 关系的闭包运算关系的闭包运算是关系上的一元运算它把给出的关系R扩充成一新关系R′使R′具有一定的性质且所进行的扩充又是最节约的定义33―2设R是A上的二元关系R的自反对称传递闭包是关系R′使i R′是自反的对称的传递的ii R′R iii 对任何自反的对称的传递的关系R〃如果R〃R那么R〃R′ R的自反对称和传递闭包分别记为r R s R和t R 由定义可以看出R的自反对称传递闭包是含有R并且具有自反对称传递性质的最小关系如果R已经是自反的对称的传递的那么具有该性质并含有R的最小关系就是R自身下一定理说明这一点定理33―4设R是集合A上的二元关系那么 a R是自反的当且仅当r R R b R是对称的当且仅当s R R c R是传递的当且仅当t R R 证 a 如果R是自反的那么R具有定义33―2对R′所要求的性质因此r R R反之如果r R R那么根据定义33―2的性质 i R是自反的b 和c 的证明是类似的略构造R的自反对称和传递闭包的方法就是给R补充必要的序偶使它具有所希望的特性下面我们用关系图来说明如何实现这一点定理33―5 设R是集合A上的二元关系那么r R R ∪E 这里E是A上相等关系在本节中均如此证设R′ R∪E显然R′是自反的且R′R余下只需证明最小性现假设R〃是A上的自反关系且R〃R因R〃是自反的所以R〃E又R〃R所以R〃R∪E R′这样定义33―2都满足所以R′ r R 证毕设G是集合A上二元关系R的关系图我们把G的所有弧都画成有来有往即如果有从a到b的弧那么也有从b到a的弧就得到了R的对称闭包的有向图下一定理体现了这一想法定理33―7 设R 是集合A上的二元关系那么例33-2 a 整数集合I 上的关系<的自反闭包是≤对称闭包是关系≠传递闭包是关系<自身b 整数集合I上的关系≤的自反闭包是自身对称闭包是全域关系传递闭包是自身 c E的自反闭包对称闭包和传递闭包都是E d ≠的自反闭包是全域关系对称闭包是≠≠的传递闭包是全域关系e 空关系的自反闭包是相等关系对称闭包和传递闭包是自身 f 设R是I上的关系xRy当且仅当y x1那么t R 是关系<定理33―8设R是集合A上的二元关系这里A有n个元素那么证设〈xy〉∈t R 于是必存在最小的正整数k使〈xy〉∈Rk现证明k≤n若不然存在A的元素序列x a0a1a2ak-1ak y使xRa1a1Ra2ak-1Ry因k >na0a1ak中必有相同者不妨设ai aj0≤i<j≤k于是xRa1a1Ra2ai-1RaiajRaj1ak-1Ry 成立即〈xy〉∈Rs这里s k- j-i但这与k是最小的假设矛盾于是k≤n又〈xy〉是任意的故定理得证例33-3 设A abcd R如图33―1 a 所示则t R R∪R2∪R3∪R4如图33―1 b 所示本例即是32-2 定理33―9 1 如果R是自反的那么s R 和t R 都是自反的 2 如果R是对称的那么r R 和t R 都是对称的 3 如果R 是传递的那么r R 是传递的定理33―10 设R是集合A上的二元关系那么 1 rs R sr R 2 rt R tr R 3 ts R st R 2 注意到ER RE R 和对一切n∈NEn E可得 34 次序关系 341 偏序集合定义34―1 如果集合A上的二元关系R是自反的反对称的和传递的那么称R为A上的偏序称序偶〈AR〉为偏序集合如果R是偏序〈AR〉常记为〈A ≤〉≤是偏序符号由于≤难以书写通常写作≤读做小于或等于因为小于或等于也是一种偏序故不会产生混乱R是偏序时aRb就记成a≤b 如果R是集合A上的偏序则R 也是A上的偏序如果用≤表示R 可用≥表示R〈A≤〉和〈A ≥〉都是偏序集合并互为对偶例34-1 1 〈I≤〉是偏序集合这里≤表示整数中的小于或等于关系2 〈ρ A 〉是偏序集合这里是集合间的包含关系 3 A 2468 D代表整除关系M代表整倍数关系则 D 〈22〉〈44〉〈66〉〈88〉〈24〉〈26〉〈28〉〈48〉M 〈22〉〈44〉〈66〉〈88〉〈42〉〈62〉〈82〉〈84〉〈AD〉〈AM〉都是偏序集合且互为对偶例2 a P 1234 〈P≤〉的哈斯图为图34―2 b A 236122436 〈A整除〉的哈斯图为图34―3 c A 1212 〈A整除〉的哈斯图为图34―4 定义34―2 设〈A≤〉是一偏序集合B是A的子集 a 元素b∈B是B的最大元素如果对每一元素x∈Bx≤b b 元素b∈B是B的最小元素如果对每一元素x∈Bb≤x 例3考虑在偏序整除下整数1到6的集合其哈斯图为图34―5 a 如果B 1236 那么1是B的最小元素6是B的最大元素 b 如果B 23 因为2和3互相不能整除那么B没有最小元素和最大元素c 如果B 4 那么4是B的最大元素也是B的最小元素定理34―1 设〈A≤〉是一偏序集合且B A如果B有最大最小元素那么它是唯一的证假设a和b 都是B的最大元素那么a≤b和b≤a从≤的反对称性得到a b当a和b都是B 的最小元素时证明是类似的定义34―3设〈A≤〉是一偏序集合B是A的子集 a 如果b∈B且B中不存在元素x使b≠x且b≤x那么元素b∈B叫做B的极大元素b 如果b∈B且B中不存在元素x使b≠x且x≤b那么元素b∈B 叫做B的极小元素定义34―4设〈A≤〉是一偏序集合B是A的子集a 如果对每一b∈Bb≤a那么元素a∈A叫做B的上界如果对每一b∈Ba≤b那么元素a∈A叫做B的下界 b 如果a是一上界并且对每一B的上界a′有a≤a′那么元素a∈A叫做B的最小上界记为lub如果a是一下界并且对每一B的下界a′有a′≤a那么元素a∈A叫做B的最大下界记为glb 例34-4 a 考虑偏序集合〈〈11〉〈10〉〈01〉〈00〉≤〉这里≤按〈 ab〉≤〈cd〉a≤c∧b≤d 规定其哈斯图如图34―6 如果B 〈10〉那么〈10〉是B的最小和最大元素也是B的极大和极小元素B的上界是〈10〉和〈11〉〈10〉是最小上界B的下界是〈00〉和〈10〉〈10〉是最大下界 b 考虑偏序集合〈I≤〉设B 2i|i∈N那么B既没有最大元素和极大元素也没有上界和最小上界B的最小元素和极小元素是0B的下界集合是 i|i∈I∧i≤0 0是最大下界 c 考虑在偏序集合〈256101530 整除〉其哈斯图如图34―7设B是全集合256101530 那么2和5都是B的极小元素但B没有最小元素集合B没有下界所以没有最大下界元素30是B的最大元素极大元素上界最小上界定理34―2 如果〈A≤〉是非空有限的偏序集合则A的极小大元素常存在最大下界和最小上界也可能存在或不存在但如果它们存在则是唯一的定理34―3 设〈A≤〉是偏序集合且B A 如果B的最小上界最大下界存在那么是唯一的下述定理描述了存在于诸特异元素之间的某些关系定理34―4 设〈A≤〉是偏序集合B是A的子集 a 如果b是B的最大元素那么b是B的极大元素 b 如果b是B的最大元素那么b是B的lub c 如果b是B的一个上界且b∈B那么b是B的最大元素证明可由最大元素极大元素和lub的定义直接得出故略去另外读者不难给出表达最小元素极小元素和glb间关系的定理 342 拟序集合定义34―5如果集合A上的二元关系R是传递的和反自反的那么R叫做A上的拟序〈AR〉称为拟序集合常借用符号<表示拟序拟序是反对称的虽然定义中没有明确指出但容易证明这一点因为如果xRy和yRx由R的传递性得xRx但这与R的反自反性矛盾所以xRy∧yRx常假于是xRy∧yRx→x y常真即R是反对称的例34-5 a 实数集合中的<是拟序关系 b 集合族中的真包含是拟序关系拟序集合和偏序集合是紧密相关的唯一区别是相等关系E下述定理将说明这一点定理34―5在集合A上 a 如果R是一拟序那么rR R∪E是偏序 b 如果R是一偏序那么R-E是一拟序 343线序集合和良序集合如果≤是一偏序或a≤b或b≤a我们说a和b 是可比较的偏序集合中的元素不一定都可比较所以叫偏序下面介绍的都是可比较的情况定义34―6在偏序集合〈A≤〉中如果每一ab∈A或者a ≤b或者b≤a那么≤叫做A上的线序或全序这时的序偶〈A≤〉叫做线序集合或链例34-6 a P a ab abc 〈P〉是线序集合其哈斯图如图34―8所示 b 〈I≤〉是线序集合其哈斯图不完全如图34―9所示 c 设S是区间套的集合〔0a |a∈R 则〈S〉是线序集合 d 〈 1236 整除〉不是线序集合如果A是多于一个元素的集合那么〈ρ A 〉不是线序集合定义34―7如果A上的二元关系R是一线序且A的每一非空子集都有一最小元素那么R叫做A上的良序序偶〈AR〉叫做良序集合定理34―6〈N≤〉是良序集合证我们必须证明N的每一非空子集S在关系≤之下都有一最小元素因为S非空所以在S中可以取一个数n显然S中所有不大于n的数形成非空集T S如果T有最小数那么这最小数就是S中的最小数但从0到n只有n1个自然数于是T中所含的数最多是n1个所以T有最小数因此定理成立例34-8 a 每一有限线序集合是良序的 b 线序集合〈I≤〉不是良序集合因为I的某些子集诸如I自身不包含最小元素 c 关系≤是实数R的线序但不是良序例如子集A 01〕无最小元素如果A中的a是最小元素那么也在A中而≤a且不相等这与假设a是线序关系≤下A的最小元素矛盾2 应用N上的良序定义出Nn上的良序例如n 2时N2上的次序关系可如下定义〈ab〉〈cd〉a<c∨ a c∧b d 〈N2〉是良序集合关系严格小于可如下定义〈ab〉<〈cd〉〈ab〉≤〈cd〉∧〈ab〉≠〈cd〉类似地应用I上的线序能定义出线序集合〈In≤〉 3 应用字母表∑上的线序可定义出∑上的通常叫词典序的线序定义34―8 设∑是一有限字母表指定了字母表序线序如果xy∈∑ a x是y的词头或 b x zu和y zv这里z∈∑是x和y的最长公共词头且在字母表序中u的第一个字符前于v的第一个字符那么x≤y≤叫做词典序4 由于〈N〉和有限线序集合都是良序集合可应用它们定义出∑上的一个良序通常叫标准序定义34―9设∑是一有限字母表指定了字母表序‖x‖表示x∈∑的长度如果xy∈∑ a ‖x‖<‖y‖或b ‖x‖‖y‖且在∑的词典序中x前于y那么x≤y ≤叫做标准序不论在词典序和标准序下∑的每一元素都有直接后继者设∑ abc 且a≤b≤cx∈∑在标准序下xa和xb的直接后继者分别是xb和xc xc的直接后继者是ya这里y是x的直接后继者在词典序下x的直接后继者是xa 在标准序下 xb和xc的直接前趋分别是xa和xb xa的直接前趋是yc这里y是x的直接前趋在词典序下 xa的直接前趋是x非a结尾的串都无直接前趋例如babaab但有无限个前趋345 数学归纳法的推广前章我们把数学归纳法第一第二原理看作是自然数域上的一个推理规则本小节我们把它推广到一般的良序集合对任一个自然数n我们先取0如果n≠0取0的后继者1如果n≠1再取1的后继者2如此进行下去最终会得出n 给定一个良序集合如果对它的任一元素x我们先取该集合的最小元素m0如果x≠m0取m0的后继者m1如果x≠m1再取m1的后继者m2如此以往最终会得出x那么就称这样的良序集合是像自然数的例 8 1 设∑ ab 良序集合〈∑标准序〉是像自然数的因为定长的串的个数有限给定任一个串x在x之前的串的个数有限所以从∧开始反复取后继者终可得出x 2 良序集合〈N×N≤〉不像自然数这里≤按上一小节规定因为有许多元素没有直接前趋例如〈50〉就是这样因而有无限个元素前于〈50〉所以从〈00〉开始反复地取后继者不可能取得〈50〉像自然数的良序集合可以应用数学归纳法第一原理因为第一原理是建立在后继运算上而这种良序集合的每一元素都可通过重复地取后继者得到设m0是该良序集合〈S≤〉的最小元素S x 是元素x的后继者则推理规则如下对不像自然数的良序集合不能应用数学归纳法第一原理因为这种良序集合的有些元素不能由后继运算得到但对它可应用数学归纳法第二原理第二原理是建立在良序集合上的适用于一切良序集合设〈S≤〉是良序集合<表示≤-E 即x<y表示x≤y且x≠y 则推理规则如下下面证明良序集合上这个推理规则是有效的假设我们能证明前提例34-10〈Q≤〉是线序集合现说明在此线序集合中第二原理不是有效推理规则设谓词P x 表示x小于或等于5 i 当x≤5时 y〔y<x→P y 〕是真P x 也真所以是真综合 i 和 ii 得在论述域Q上 x 〔 y y<x→P y →P x 〕是真但结论x P x 是假这说明第二原理不能应用于线序集合〈Q≤〉 35 等价关系和划分 351 等价关系二元关系的另一重要类型是等价关系其定义如下定义35―1 如果集合A上的二元关系R是自反的对称的和传递的那么称R是等价关系设R是A上的等价关系abc是A的任意元素如果aRb 即〈ab〉∈R 通常我们记作a~b读做a等价于b 定义35―2 设k是一正整数而ab∈I如果对某整数ma-b m·k那么a 和b是模k等价写成a≡b modk 整数k叫做等价的模数定理35―1模k等价是任何集合A I上的等价关系证如果A 例35-1 c 已指出它是等价关系如果A≠则 i 自反的因为对任一aa-a 0·k得出a≡a modk ii 对称的因为a≡b mod k 时存在某m∈I使a-b m·k于是b-a-m·k 因此b≡a mod k iii 传递的设a≡b mod k 和b≡c mod k 那么存在m1m2∈I 使a-b m1k和b-c m2·k 将两等式两边相加得a-c m1m2 ·k所以a≡c mod k 例1 a 同学集合A abcdefgA中的关系R是住在同一房间这是等价关系因为 i 任一个人和自己同住一间具有自反性ii 若甲和乙同住一间则乙和甲也同住一间具有对称性iii 若甲和乙同住一间乙和丙同住一间则甲和丙也同住一间具有传递性现假设a 和b同住一间def同住一间c住一间则 R 〈aa〉〈ab〉〈ba〉〈bb〉〈cc〉〈dd〉〈ee〉〈ff〉〈de〉〈ed〉〈ef〉〈fe〉〈df〉〈fd〉其有向图如图35―1所示 b 数中的相等关系集合中的相等关系命题演算中的关系等都是等价关系 c 空集合中的二元关系R是等价关系因为i x x∈→xRx ii x y〔x∈∧y∈∧xRy→yRx〕iii x y z〔x∈∧y∈∧z∈∧xRy∧yRz→xRz〕都无义地真所以R是等价关系集合A上的全域关系R A×A是等价关系模数等价是整数域或其子集上的等价关系并且是等价关系中极为重要的一类定理 35-1 模k 等价是任何集合A I上的等价关系证如果A 例35-1 3 已指出它是等价关系如果A≠则 i 自反的因为对任一aa-a 0·k得出a≡a mod k ii 对称的因为a≡b modk 时存在某m∈I使a-b m·k于是b-a -m·k因此b≡a modk iii 传递的设a≡b modk 和b≡c modk 那么存在m1m2∈I 使a-b m1k和b-c m2·k将两等式两边相加得a-c m1m2 ·k所以a≡c modk 例35-2 a 若R是I上模4等价关系则〔0〕4 -8-4048 〔1〕4 -7-3159 〔2〕4 -6-22610 〔3〕4 -5-13711 b 若R是I上模2等价关系则〔0〕2 -4-2024 〔1〕2 -3-1135 每一集合中的数相互等价 c 时钟是按模12方式记数的设备13点钟和1点钟有相同的记数定义35―3 设R是集合A上等价关系对每一a∈Aa关于R 的等价类是集合x|xRa 记为〔a〕R简记为〔a〕称a为等价类〔a〕的表示元素如果等价类个数有限则R的不同等价类的个数叫做R的秩否则秩是无限的对每一a∈A等价类〔a〕R非空因为a∈〔a〕R 例35-3 1 如图35―2设A abcdef R 〈aa〉〈bb〉〈cc〉〈ab〉〈ba〉〈ac〉〈ca〉〈bc〉〈cb〉〈dd〉〈ee〉〈de〉〈ed〉〈ff〉则等价关系R的等价类如下〔a〕〔b〕〔c〕 abc 〔d〕〔e〕 de 〔f〕 f等价关系R的秩是3 2 I上模4等价的等价类是〔0〕4〔1〕4〔2〕4〔3〕4 参看例2 a I上模2等价的等价类是〔0〕2 〔1〕2 参看例2 b3 集合A上相等关系的秩等于A的元素个数定理35―2 设R是非空集合A上的等价关系aRb 当且仅当〔a〕〔b〕证充分性因为a∈〔a〕〔b〕即a∈〔b〕所以aRb 定理35―3设R是集合A上的等价关系则对所有ab∈A或者〔a〕〔b〕或者〔a〕∩〔b〕。
离散数学期末复习要点与重点

离散数学期末复习要点与重点离散数学是中央广播电视大学开放教育本科电气信息类计算机科学与技术专业的一门统设必修学位课程,共72学时,开设一学期.该课程的主要内容包括:集合论、图论、数理逻辑等.下面按章给出复习要点与重点.第1章 集合及其运算复习要点1.理解集合、元素、集合的包含、子集、相等,以及全集、空集和幂集等概念,熟练掌握集合的表示方法.具有确定的,可以区分的若干事物的全体称为集合,其中的事物叫元素..集合的表示方法:列举法和描述法.注意:集合的表示中元素不能重复出现,集合中的元素无顺序之分.掌握集合包含(子集)、真子集、集合相等等概念.注意:元素与集合,集合与子集,子集与幂集,∈与⊂(⊆),空集∅与所有集合等的关系. 空集∅,是惟一的,它是任何集合的子集.集合A 的幂集P (A )=}{A x x ⊆, A 的所有子集构成的集合.若∣A ∣=n ,则∣P (A )∣=2n .2.熟练掌握集合A 和B 的并A ⋃B ,交A ⋂B ,补集~A (~A 补集总相对于一个全集).差集A -B ,对称差⊕,A ⊕B =(A -B )⋃(B -A ),或A ⊕B =(A ⋃B )-(A ⋂B )等运算,并会用文氏图表示.掌握集合运算律(见教材第9~11页)(运算的性质).3.掌握用集合运算基本规律证明集合恒等式的方法.集合的运算问题:其一是进行集合运算;其二是运算式的化简;其三是恒等式证明. 证明方法有二:(1)要证明A =B ,只需证明A ⊆B ,又A ⊇B ;(2)通过运算律进行等式推导.重点:集合概念,集合的运算,集合恒等式的证明.第2章 关系与函数复习要点1.了解有序对和笛卡儿积的概念,掌握笛卡儿积的运算.有序对就是有顺序二元组,如<x , y >,x , y 的位置是确定的,不能随意放置.注意:有序对<a ,b >≠<b , a >,以a , b 为元素的集合{a , b }={b , a };有序对(a , a )有意义,而集合{a , a }是单元素集合,应记作{a }.集合A ,B 的笛卡儿积A ×B 是一个集合,规定A ×B ={<x ,y >∣x ∈A ,y ∈B },是有序对的集合.笛卡儿积也可以多个集合合成,A 1×A 2×…×A n .2.理解关系的概念:二元关系、空关系、全关系、恒等关系.掌握关系的集合表示、关系矩阵和关系图,掌握关系的集合运算和求复合关系、逆关系的方法.二元关系是一个有序对集合,},{B y A x y x R ∈∧∈><=,记作xRy .关系的表示方法有三种:集合表示法,关系矩阵:R ⊆A ×B ,R 的矩阵⎪⎪⎭⎫ ⎝⎛==⎪⎩⎪⎨⎧/==⨯n j m i b R a Rb a r r M j i j i ij n m ij R ,...,2,1,...,2,101,)(. 关系图:R 是集合上的二元关系,若<a i , b j >∈R ,由结点a i 画有向弧到b j 构成的图形.空关系∅是唯一、是任何关系的子集的关系; 全关系},,{A b a b a E A ∈><=A A ⨯≡; 恒等关系},{A a a a I A ∈><=,恒等关系的矩阵M I 是单位矩阵.关系的集合运算有并、交、补、差和对称差. 复合关系}),,(,{2121R c b R b a b c a R R R >∈<∧>∈<∃><=∙=;复合关系矩阵:21R R R M M M ⨯=(按布尔运算);有结合律:(R ∙S )∙T =R ∙(S ∙T ),一般不可交换. 逆关系},,{1R y x x y R >∈<><=-;逆关系矩阵满足:T R R M M =-1;复合关系与逆关系存在:(R ∙S )-1=S -1∙R -1.3.理解关系的性质(自反性和反自反性、对称性和反对称性、传递性的定义以及矩阵表示或关系图表示),掌握其判别方法(利用定义、矩阵或图,充分条件),知道关系闭包的定义和求法.注:(1)关系性质的充分必要条件:① R 是自反的⇔I A ⊆R ;②R 是反自反的⇔I A ⋂R =∅;③R 是对称的 ⇔R =R -1;④R 是反对称的⇔R ⋂R -1⊆I A ;⑤R 是传递的⇔R ∙R ⊆R .(2)I A 具有自反性,对称性、反对称性和传递性.E A 具有自反性,对称性和传递性.故I A ,E A 是等价关系.∅具有反自反性、对称性、反对称性和传递性.I A 也是偏序关系.4.理解等价关系和偏序关系概念,掌握等价类的求法和作偏序集哈斯图的方法.知道极大(小)元,最大(小)元的概念,会求极大(小)元、最大(小)元、最小上界和最大下界. 等价关系和偏序关系是具有不同性质的两个关系. ⎩⎨⎧==+⎭⎬⎫⎩⎨⎧+偏序关系等价关系传递性反对称性对称性自反性 知道等价关系图的特点和等价类定义,会求等价类.一个子集的极大(小)元可以有多个,而最大(小)元若有,则惟一.且极元、最元只在该子集内;而上界与下界可以在子集之外.由哈斯图便于确定任一子集的最大(小)元,极大(小)元.5.理解函数概念:函数(映射),函数相等,复合函数和反函数.理解单射、满射和双射等概念,掌握其判别方法.设f 是集合A 到B 的二元关系,∀a ∈A ,存在惟一b ∈B ,使得<a , b >∈f ,且Dom(f )=A ,f 是一个函数(映射).函数是一种特殊的关系.集合A ×B 的任何子集都是关系,但不一定是函数.函数要求对于定义域A 中每一个元素a ,B 中有且仅有一个元素与a 对应,而关系没有这个限制.二函数相等是指:定义域相同,对应关系相同,而且定义域内的每个元素的对应值都相同.函数有:单射——若)()(2121a f a f a a ≠⇒≠;满射——f (A )=B 或,,A x B y ∈∃∈∀使得y =f (x );双射——单射且满射.复合函数,:,:,:C A f g C B g B A f →→→ 则 即))(()(x f g x f g = .复合成立的条件是:)(Dom )(Ran g f ⊆.一般g f f g ≠,但f g h f g h )()(=.反函数——若f :A →B 是双射,则有反函数f -1:B →A ,},)(,,{1A a b a f B b a b f ∈=∈><=-,f f g f f g ==-----11111)(,)( 重点:关系概念与其性质,等价关系和偏序关系,函数.第3章 图的基本概念复习要点1.理解图的概念:结点、边、有向图,无向图、简单图、完全图、结点的度数、边的重数和平行边等.理解握手定理.图是一个有序对<V ,E >,V 是结点集,E 是联结结点的边的集合.掌握无向边与无向图,有向边与有向图,混合图,零图,平凡图、自回路(环),无向平行边,有向平行边等概念.简单图,不含平行边和环(自回路)的图、在无向图中,与结点v (∈V )关联的边数为结点度数deg (v );在有向图中,以v (∈V )为终点的边的条数为入度deg -(v ),以v (∈V )为起点的边的条数为出度deg +(v ),deg(v )=deg +(v )+deg -(v ).无向完全图K n 以其边数)1(21-=n n E ;有向完全图以其边数)1(-=n n E . 了解子图、真子图、补图和生成子图的概念. 生成子图——设图G =<V , E >,若E '⊆E ,则图<V , E '>是<V , E >的生成子图. 知道图的同构概念,更应知道图同构的必要条件,用其判断图不同构.重要定理:(1) 握手定理 设G =<V ,E >,有∑∈=V v E v 2)deg(; (2) 在有向图D =<V , E >中,∑∑∈+∈-=V v V v v v )(deg )(deg;(3) 奇数度结点的个数为偶数个.2.了解通路与回路概念:通路(简单通路、基本通路和复杂通路),回路(简单回路、基本回路和复杂回路).会求通路和回路的长度.基本通路(回路)必是简单通路(回路).了解无向图的连通性,会求无向图的连通分支.了解点割集、边割集、割点、割边等概念.了解有向图的强连通强性;会判别其类型.设图G =<V ,E >,结点与边的交替序列为通路.通路中边的数目就是通路的长度.起点和终点重合的通路为回路.边不重复的通路(回路)是简单通路(回路);结点不重复的通路(回路)是基本通路(回路).无向图G 中,结点u , v 存在通路,u , v 是连通的,G 中任意结点u , v 连通,G 是连通图.P (G )表示图G 连通分支的个数.在无向图中,结点集V '⊂V ,使得P (G -V ')>P (G ),而任意V "⊂V ',有P (G -V ")=P (G ),V '为点割集. 若V '是单元集,该结点v 叫割点;边集E '⊂E ,使得P (G -V ')>P (G ),而任意E "⊂E ',有P (G -E ")=P (G ),E '为边割集.若E '是单元集,该边e 叫割边(桥).要知道:强连通−−→−必是单侧连通−−→−必是弱连通,反之不成立. 3.了解邻接矩阵和可达矩阵的概念,掌握其构造方法及其应用.重点:图的概念,握手定理,通路、回路以及图的矩阵表示.第4章 几种特殊图复习要点1.理解欧拉通路(回路)、欧拉图的概念,掌握欧拉图的判别方法.通过连通图G 的每条边一次且仅一次的通路(回路)是欧拉通路(回路).存在欧拉回路的图是欧拉图.欧拉回路要求边不能重复,结点可以重复.笔不离开纸,不重复地走完所有的边,走过所有结点,就是所谓的一笔画.欧拉图或通路的判定定理(1) 无向连通图G 是欧拉图⇔G 不含奇数度结点(即G 的所有结点为偶数度);(2) 非平凡连通图G 含有欧拉通路⇔G 最多有两个奇数度的结点;(3) 连通有向图D 含有有向欧拉回路⇔D 中每个结点的入度=出度.连通有向图D 含有有向欧拉通路⇔D 中除两个结点外,其余每个结点的入度=出度,且此两点满足deg -(u )-deg +(v )=±1.2.理解汉密尔顿通路(回路)、汉密尔顿图的概念,会做简单判断.通过连通图G 的每个结点一次,且仅一次的通路(回路),是汉密尔顿通路(回路).存在汉密尔顿回路的图是汉密尔顿图.汉密尔顿图的充分条件和必要条件(1) 在无向简单图G =<V ,E >中,∣V ∣≥3,任意不同结点V v u G v u ≥+∈)deg()deg(,,,则G 是汉密尔顿图.(充分条件)(2) 有向完全图D =<V ,E >, 若3≥V ,则图D 是汉密尔顿图. (充分条件)(3) 设无向图G =<V ,E >,任意V 1⊂V ,则W (G -V 1)≤∣V 1∣(必要条件)若此条件不满足,即存在V 1⊂V ,使得P (G -V !)>∣V 1∣,则G 一定不是汉密尔顿图(非汉密尔顿图的充分条件).3.了解平面图概念,平面图、面、边界、面的次数和非平面图.掌握欧拉公式的应用. 平面图是指一个图能画在平面上,除结点之外,再没有边与边相交.面、边界和面的次数)deg(r 等概念.重要结论:(1)平面图e r e E v V E V G ri i2)deg(,,,,1===>=<∑=则. (2)欧拉公式:平面图,,,,e E v V E V G ==>=< 面数为r ,则2=+-r e v (结点数与面数之和=边数+2)(3)平面图633,,,,-≤≥==>=<v e v e E v V E V G ,则若.会用定义判定一个图是不是平面图.4.理解平面图与对偶图的关系、对偶图在图着色中的作用,掌握求对偶图的方法. 给定平面图G =〈V ,E 〉,它有面F 1,F 2,…,F n ,若有图G*=〈V*,E*〉满足下述条件:⑴对于图G 的任一个面F i ,内部有且仅有一个结点v i *∈V *;⑵对于图G 的面F i ,F j 的公共边e k ,存在且仅存在一条边e k *∈E *,使e k *=(v i *,v j *),且e k *和e k 相交;⑶当且仅当e k 只是一个面F i 的边界时,v i *存在一个环e k *和e k 相交;则图G *是图G 的对偶图.若G *是G 的对偶图,则G 也是G *的对偶图.一个连通平面图的对偶图也必是平面图.5.掌握图论中常用的证明方法.重点:欧拉图和哈密顿图、平面图的基本概念及判别.第5章树及其应用复习要点1.了解树、树叶、分支点、平凡树、生成树和最小生成树等概念,掌握求最小生成树的方法.连通无回路的无向图是树.树的判别可以用图T是树的充要条件(等价定义).注意:(1) 树T是连通图;(2)树T满足m=n-1(即边数=顶点数-1).图G的生成子图是树,该树就是生成树.每边指定一正数,称为权,每边带权的图称为带权图.G的生成树T的所有边的权之和是生成树T的权,记作W(T).最小生成树是带权最小的生成树.2.了解有向树、根树、有序树、二叉树、二叉完全树、正则二叉树和最优二叉树等概念.了解带权二叉树、最优二叉树的概念,掌握用哈夫曼算法求最优二叉树的方法.有向图删去边的方向为树,该图为有向树.对非平凡有向树,恰有一个结点的入度为0(该结点为树根),其余结点的入度为1,该树为根树.每个结点的出度小于或等于2的根树为二叉树;每个结点的出度等于0或2的根树为二叉完全树;每个结点的出度等于2的根树称为正则二叉树.有关树的求法:(1)生成树的破圈法和避圈法求法;(2)最小生成树的克鲁斯克尔求法;(3) 最优二叉树的哈夫曼求法重点:树与根树的基本概念,最小生成树与最优二叉树的求法.第6章命题逻辑复习要点1.理解命题概念,会判别语句是不是命题.理解五个联结词:否定⌝P、析取∨、合取∧、条件→、和双条件↔及其真值表,会将简单命题符号化.具有确定真假意义的陈述句称为命题.命题必须具备:其一,语句是陈述句;其二,语句有唯一确定的真假意义.2.了解公式的概念(公式、赋值、成真指派和成假指派)和公式真值表的构造方法.能熟练地作公式真值表.理解永真式和永假式概念,掌握其判别方法.判定命题公式类型的方法:其一是真值表法,其二是等价演算法.3.了解公式等价概念,掌握公式的重要等价式和判断两个公式是否等价的有效方法:等价演算法、列真值表法和主范式方法.4.理解析取范式和合取范式、极大项和极小项、主析取范式和主合取范式的概念,熟练掌握它们的求法.命题公式的范式不惟一,但主范式是惟一的.命题公式A有n个命题变元,A的主析取范式有k个极小项,有m个极大项,则n+=k2m于是有(1) A是永真式⇔k=2n(m=0);(2) A是永假式⇔m=2n(k=0);求命题公式A的析取(合取)范式的步骤:见教材第174页.求命题公式A的主析取(合取)范式的步骤:见教材第177和178页.5.了解C是前提集合{A1,A2,…,A m}的有效结论或由A1, A2, …, A m逻辑地推出C的概念.要理解并掌握推理理论的规则、重言蕴含式和等价式,掌握命题公式的证明方法:真值表法、直接证法、间接证法.重点:命题与联结词,公式与解释,真值表,公式的类型及判定,主析取(合取)范式,命题演算的推理理论.第7章 谓词逻辑复习要点1.理解谓词、量词、个体词、个体域,会将简单命题符号化.原子命题分成个体词和谓词,个体词可以是具体事物或抽象的概念,分个体常项和个体变项.谓词用来刻划个体词的性质或之间的关系.量词分全称量词∀,存在量词∃.命题符号化注意:使用全称量词∀,特性谓词后用→;使用存在量词∃,特性谓词后用∧.2.了解原子公式、谓词公式、变元(约束变元和自由变元)与辖域等概念.掌握在有限个体域下消去公式的量词和求公式在给定解释下真值的方法.由原子公式、联结词和量词构成谓词公式.谓词公式具有真值时,才是命题.在谓词公式∀xA 或∃xA 中,x 是指导变元,A 是量词的辖域.会区分约束变元和自由变元.在非空集合D (个体域)上谓词公式A 的一个解释或赋值有3个条件.在任何解释下,谓词公式A 取真值1,A 为逻辑有效式(永真式);公式A 取真值0,A 为永假式;至少有一个解释使公式A 取真值1,A 称为可满足式.在有限个体域下,消除量词的规则为:设D ={a 1, a 2, …, a n },则)(...)()()(21n a A a A a A x xA ∧∧∧⇔∀)(...)()()(21n a A a A a A x xA ∨∨∨⇔∃会求谓词公式的真值,量词的辖域,自由变元、约束变元,以及换名规则、代入规则等. 掌握谓词演算的等价式和重言蕴含式.并进行谓词公式的等价演算.3.了解前束范式的概念,会求公式的前束范式的方法.若一个谓词公式F 等价地转化成 B x Q x Q x Q k k ...2211,那么B x Q x Q x Q k k ...2211就是F 的前束范式,其中Q 1,Q 2,…,Q k 只能是∀或∃,而x 1, x 2, …, x k 是个体变元,B 是不含量词的谓词公式.前束范式仍然是谓词公式.4.了解谓词逻辑推理的四个规则.会给出推理证明.谓词演算的推理是命题演算推理的推广和扩充,命题演算中基本等价式,重言蕴含式以及P ,T ,CP 规则在谓词演算中仍然使用.谓词逻辑的推理演算引入了US 规则(全称量词指定规则),UG 规则(全称量词推广规则),ES 规则(存在量词指定规则),EG 规则(存在量词推广规则)等.重点:谓词与量词,公式与解释,谓词演算.。
离散数学知识点总结

注意/技巧:析取符号为V,大写字母Vx + y = 3不是命题前件为假时,命题恒为真运用吸收律命题符号化过程中要注意命题间的逻辑关系,认真分析命题联结词所对应的自然语言中的联结词,不能只凭字面翻译。
也就是说,在不改变原意的基础上,按照最简单的方式翻译通用的方法:真值表法VxP(x)蕴含存在xP(x)利用维恩图解题证明两个集合相等:证明这两个集合互为子集常用的证明方法:任取待证集合中的元素<,>构造相应的图论模型第一章命题逻辑命题和联结词命题的条件:表达判断的陈述句、具有确定的真假值。
选择题中的送分题原子命题也叫简单命题,与复合命题相对简单联结词的真值表要记住非(简单)合取(当且仅当P,Q都为真时,命题为真)析取(当且仅当P,Q都为假时,命题为假),P,Q可以同时成立,是可兼的或条件(→)(当且仅当P为真,Q为假时,命题为假)P是前件,Q是后件只要P,就Q等价于P→Q只有P,才Q等价于非P→非Q,也就是Q→PP→Q特殊的表达形式:P仅当Q、Q每当P双条件(↔)(当且仅当P与Q具有相同的真假值时,命题为真,与异或相反)命题公式优先级由高到低:非、合取和析取、条件和双条件括号省略条件:①不改变先后次序的括号可省去②最外层的括号可省去重言式(永真式)、矛盾式(永假式)、偶然式可满足式:包括重言式和偶然式逻辑等价和蕴含(逻辑)等价:这是两个命题公式之间的关系,写作“⇔”,要与作为联结词的↔区分开来。
如果命题公式A为重言式,那么A⇔T常见的命题等价公式:需要背过被标出的,尽量去理解。
关键是掌握公式是将哪个符号转换为了哪个符号,这对于解证明题有很大的帮助!验证两个命题公式是否等价:当命题变元较少时,用真值表法。
当命题变元较多时,用等价变换的方法,如代入规则、替换规则和传递规则定理:设A、B是命题公式,当且仅当A↔B是一个重言式时,有A和B逻辑等价。
蕴含:若A→B是一个重言式,就称作A蕴含B,记作A⇒B常见的蕴含公式的运用方法同上面的命题等价公式证明A⇒B:①肯定前件,推出后件为真②否定后件,推出前件为假当且仅当A⇒B且B⇒A时,A⇔B,也就是说,要证明两个命题公式等价,可以证明它们相互蕴含联结词的完备集新的联结词:条件否定、异或(不可兼或)、或非(析取的否定)、与非(合取的否定)任意命题公式都可由仅含{非,析取}或{非,合取}的命题公式来等价地表示全功能联结词集合极小全功能联结词集合对偶式对偶式:将仅含有联结词非、析取、合取(若不满足,需先做转换)的命题公式A中的析取变合取,合取变析取,T变F,F变T得到的命题公式A*称为A的对偶式范式析取式:否定+析取合取式:否定+合取析取范式:(合取式)析取(合取式)……析取(合取式)。
离散数学期末复习总要

离散数学期末复习总要离散数学期末复习各个章节要点纲要(及定理)离散数学定义定理1.3.1命题演算的合式公式规定为:(1)单个命题变元本身是一个合式公式。
(2)如果A是合式公式,那么┐A是合式公式。
(3)如果A和B是合式公式,那么(A∨B)、(A∧B)、(A→B)、(A?B)、都是合式公式。
(4)当且仅当有限次地应用(1)(2)(3)所得到的包含命题变元,连接词和圆括号的符号串是合式公式。
1.3.2 设Ai是公式A的一部分,且Ai是一个合式公式,称Ai是A的子公式。
1.3.3 设P为一命题公式,P1,P2,……,Pn为出现在P中的所有命题变元,对P1,P2,……,Pn指定一组真值称为对P的一种指派。
若指定的一种指派,使P的值为真,则称这组指派为成真指派。
若指定的一种指派,使P的值为假,则称这种指派为成假指派。
含n个命题变元的命题公式,共有2n个指派。
1.3.4 给定两个命题公式A和B,设P1,P2,……,Pn为所有出现于A和B中的原子变元,若给P1,P2,……,Pn任一组真值指派,A和B的真值都相同,称A和B是等价的,记做A <=>B。
1.3.5 设A为一命题公式,若A在它的各种指派情况下,其取值均为真,则称A为重言式或永真式。
1.3.6 设A为一命题公式,若A在它的各种指派情况下,其取值均为假,则称A为矛盾式或永假式。
1.3.7设A为一命题公式,若A在它的各种指派情况下至少存在一组成真指派,则称A为可满足式。
1.4.1 设X式合式公式A的子公式,若有Y也是一个合式公式,且X<=>Y,如果将A中的X用Y置换,得到公式B,则A<=>B。
1.4.2 设A,B为两个命题公式,A<=>B,当且仅当A ←→B为一个重言式。
P=>Q称做P蕴含Q或蕴含式,又称永真条件式。
蕴含式有下列性质:(1)对任意公式A,又A=>A;(2)对任意公式A,B和C,若A=>B,B=>C,则A=>C;(3)对任意公式A,B和C,若A=>B,A=>C,则A=>(B∧C); (4)对任意公式A,B和C,若A=>C,B=>C,则A∨B=>C.1.4.3设P,Q为任意两个命题公式,P<=>Q的充分必要条件式P=>Q,,Q=>P。
《离散数学(第三版)》方世昌 的期末复习知识点总结资料

《离散数学》期末复习提要《离散数学》是中央电大“数学与数学应用专业”(本科)的一门选修课。
该课程使用新的教学大纲,在原有离散数学课程的基础上削减了教学内容(主要是群与环、格与布尔代数这两章及图论的后三节内容),使用的教材为中央电大出版的《离散数学》(刘叙华等编)和《离散数学学习指导书》(虞恩蔚等编)。
离散数学主要研究离散量结构及相互关系,使学生得到良好的数学训练,提高学生抽象思维和逻辑推理能力,为从事计算机的应用提供必要的描述工具和理论基础。
其先修课程为:高等数学、线性代数;后续课程为:数据结构、数据库、操作系统、计算机网络等。
课程的主要内容1、集合论部分(集合的基本概念和运算、关系及其性质);2、数理逻辑部分(命题逻辑、谓词逻辑);3、图论部分(图的基本概念、树及其性质)。
学习建议离散数学是理论性较强的学科,学习离散数学的关键是对离散数学(集合论、数理逻辑和图论)有关基本概念的准确掌握,对基本原理及基本运算的运用,并要多做练习。
教学要求的层次各章教学要求的层次为了解、理解和掌握。
了解即能正确判别有关概念和方法;理解是能正确表达有关概念和方法的含义;掌握是在理解的基础上加以灵活应用。
一、各章复习要求与重点第一章集合[复习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、De Morgan 律等),文氏(Venn)图3、序偶与迪卡尔积本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明[复习要求]1、理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。
2、掌握集合的表示法和集合的交、并、差、补等基本运算。
3、掌握集合运算基本规律,证明集合等式的方法。
4、了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。
[本章重点习题]P5~6,4、6; P14~15,3、6、7; P20,5、7。
离散数学知识点总结

离散数学知识点总结离散数学知识点总结同时要善于总结,在学习《离散数学》的过程,对概念的理解是学习的重中之重。
本文就来分享一篇离散数学知识点总结,希望对大家能有所帮助!一、认知离散数学离散数学是计算机科学基础理论的核心课程之一,是计算机及应用、通信等专业的一门重要的基础课。
它以研究量的结构和相互关系为主要目标,其研究对象一般是有限个或可数个元素,充分体现了计算机科学离散性的特点。
学习离散数学的目的是为学习计算机、通信等专业各后续课程做好必要的知识准备,进一步提高抽象思维和逻辑推理的能力,为计算机的应用提供必要的描述工具和理论基础。
1.定义和定理多离散数学是建立在大量定义、定理之上的逻辑推理学科,因此对概念的理解是学习这门课程的核心。
在学习这些概念的基础上,要特别注意概念之间的联系,而描述这些联系的实体则是大量的定理和性质。
在考试中有一部分内容是考查学生对定义和定理的识记、理解和运用,因此要真正理解离散数学中所给出的每个基本概念的真正的含义。
比如,命题的定义、五个基本联结词、公式的主析取范式和主合取范式、三个推理规则以及反证法;集合的五种运算的定义;关系的定义和关系的四个性质;函数(映射)和几种特殊函数(映射)的定义;图、完全图、简单图、子图、补图的定义;图中简单路、基本路的定义以及两个图同构的定义;树与最小生成树的定义。
掌握和理解这些概念对于学好离散数学是至关重要的。
2. 方法性强在离散数学的学习过程中,一定要注重和掌握离散数学处理问题的方法,在做题时,找到一个合适的解题思路和方法是极为重要的`。
如果知道了一道题用怎样的方法去做或证明,就能很容易地做或证出来。
反之,则事倍功半。
在离散数学中,虽然各种各样的题种类繁多,但每类题的解法均有规律可循。
所以在听课和平时的复习中,要善于总结和归纳具有规律性的内容。
在平时的讲课和复习中,老师会总结各类解题思路和方法。
作为学生,首先应该熟悉并且会用这些方法,同时,还要勤于思考,对于一道题,进可能地多探讨几种解法。
《离散数学》方世昌的期末复习知识点总结

《离散数学》方世昌的期末复习知识点总结1.集合论-集合的定义和运算:交、并、差、补、反转。
子集与真子集的概念。
-集合的基数:有限集、无限集、可数集、不可数集的定义与特性。
-集合的运算律:交换律、结合律、分配律、幂等律、吸收律。
-集合的等价关系:等价关系的定义和性质,等价关系的划分和等价类。
2.逻辑与命题关系-命题与命题符号:命题的定义、真值表和含有逻辑连接词的复合命题。
-命题逻辑:命题的蕴涵、等价、否定、充分条件和必要条件。
-谓词逻辑:命题的全称量词、存在量词及其关系。
-命题逻辑推理:假言推理、析取推理、拒取推理、类比推理等。
3.图论-图的基本概念与术语:顶点、边、邻接、路径、回路、连通、子图、生成树等。
-图的分类:无向图、有向图、简单图、多重图、完全图。
-图的矩阵表示:邻接矩阵、关联矩阵、度矩阵等。
-图的遍历算法:深度优先、广度优先。
-图的最短路径算法:迪杰斯特拉算法、弗洛伊德算法。
4.代数系统与半群-代数结构:代数系统的定义、代数公理、代数性质。
-半群:半群的定义与性质,封闭性、结合律和单位元。
-半群的子半群与同态:子半群的概念,同态映射的定义与性质。
-有限半群与无限半群:有限半群的定义和性质,无限半群的特点与例子。
5.数论与代数-整数与整数集合的性质:整数的除法原理、整除、公约数、最大公约数和最小公倍数。
-同余关系与同余类:同余关系的定义、同余类的性质、同余关系的基本定理。
-质数与素数:质数的定义、素数的性质、素数的判定方法。
-线性同余方程:线性同余方程的解法、同余方程的应用。
以上仅是《离散数学》中的部分重要知识点总结,该教材还包括很多其他内容,如排列组合、概率论、布尔代数等等。
期末复习时,建议从教材中选取一些重点章节进行深入学习和复习,同时要进行大量的习题训练,加深对知识点的理解和掌握。
祝你在期末考试中取得好成绩!。
离散数学知识点总结

离散数学知识点总结离散数学是数学的一个分支,主要研究离散的数学结构和离散的数学对象。
它包括了许多重要的概念和技术,是计算机科学、通信工程、数学和逻辑学等领域的基础。
本文将对离散数学的一些核心知识点进行总结,包括命题逻辑、一阶逻辑、图论、集合论和组合数学等内容。
1. 命题逻辑命题逻辑是离散数学的一个重要分支,研究命题之间的逻辑关系。
命题是一个陈述语句,要么为真,要么为假,而且不能同时为真和为假。
命题逻辑包括逻辑运算和逻辑推理等内容,是离散数学的基础之一。
1.1 逻辑运算逻辑运算包括与(∧)、或(∨)、非(¬)、蕴含(→)和双条件(↔)等运算。
与、或和非是三种基本的逻辑运算,蕴含和双条件则是基于这三种基本运算得到的复合运算。
1.2 逻辑等值式逻辑等值式是指在命题逻辑中具有相同真值的两个复合命题。
常见的逻辑等值式包括德摩根定律、双重否定定律、分配率等。
1.3 形式化证明形式化证明是命题逻辑的一个重要内容,研究如何利用逻辑规则和等值式来推导出给定命题的真值。
形式化证明包括直接证明、间接证明和反证法等方法,是离散数学中的常见技巧。
2. 一阶逻辑一阶逻辑是命题逻辑的延伸,研究命题中的量词和谓词等概念。
一阶逻辑包括量词、谓词逻辑和形式化证明等内容,是离散数学中的重要部分。
2.1 量词量词包括全称量词(∀)和存在量词(∃),用来对命题中的变量进行量化。
全称量词表示对所有元素都成立的命题,而存在量词表示至少存在一个元素使命题成立。
2.2 谓词逻辑谓词逻辑是一阶逻辑的核心内容,研究带有量词的语句和谓词的逻辑关系。
谓词是含有变量的函数,它可以表示一类对象的性质或关系。
2.3 形式化证明形式化证明在一阶逻辑中同样起着重要作用,通过逻辑规则和等值式来推导出给定命题的真值。
一阶逻辑的形式化证明和命题逻辑类似,但更复杂和抽象。
3. 图论图论是离散数学中的一个重要分支,研究图和图的性质。
图是由节点和边组成的数学对象,图论包括图的表示、图的遍历、最短路径、最小生成树等内容,是离散数学中的一大亮点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
映射的种类主要指单射、满射、双射与非单非满射。判定的方法除定义外,可借助于关系图,而实数集的子集上的映射也可以利用直角坐标系表示进行,尤其是对各种初等函数。
[例题分析]
例1设集合 ,判定下列关系,哪些是自反的,对称的,反对称的和传递的:
解:均不是自反的;R4是对称的;R1,R2,R3,R4,R5是反对称的;R1,R2,R3,R4,R5是传递的。
。4
。1
。3
。2
。5
上界与下界,更无最小上界与最大下界。
第三章 命题逻辑
[复习知识点]
1、命题与联结词(否定、析取、合取、蕴涵、等价),复合命题
2、命题公式与解释,真值表,公式分类(恒真、恒假、可满足),公式的等价
3、析取范式、合取范式,极小(大)项,主析取范式、主合取范式
例2设集合 ,A上的二元关系R为
(1)写出R的关系矩阵,画出R的关系图;
(2)证明R是A上的半序关系,画出其哈斯图;
(3)若 ,且 ,求B的最大元,最小元,极大元,极小元,最小上界和最大下界。
解(1)R的关系矩阵为
R的关系图略
(2)因为R是自反的,反对称的和传递的,所以R是A上的半序关系。(A,R)为半序集,(A,R)的哈斯图如下
第四章谓词逻辑
[复习知识点]
1、谓词、量词、个体词、个体域、变元(约束变元与自由变元)
2、谓词公式与解释,谓词公式的类型(恒真、恒假、可满足)
3、谓词公式的等价和蕴涵
4、前束范式
本章重点内容:谓词与量词、公式与解释、前束范式
[复习要求]
1、理解谓词、量词、个体词、个体域、变元的概念;理解用谓词、量词、逻辑联结词描述一个简单命题;了解命题符号化。
解:n个顶点的完全图Kn中共有n(n-1)/2条边,
n个顶点的树应有n-1条边,
于是,删去的边有:n(n-1)/2-(n-1)=(n-1)(n-2)/2
例2求下面有限图中点u到各点间的最短路。(图上数字见教材P231,第3题。)
解uu1,d(u, u1)=1,路(u, u1)
uu2, d(u, u2)=9,路(u, u4,u3,u7,u2)
2、公式与解释
能将一阶逻辑公式表达式中的量词消除,写成与之等价的公式,然后将解释I中的数值代入公式,求出真值。
3、前束范式
在充分理解掌握前束范式概念的基础上,利用改名规则、基本等价式与蕴涵式(一阶逻辑中),将给定公式中量词提到母式之前称为首标。
[典型例题]
例1设I是如下一个解释:
F(2) F(3) P(2) P(3) Q(2,2) Q(2,3) Q(3,2) Q(3,3)
解(1)求主析取范式,
方法1:利用真值表求解
G
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0
0
0
0
0
0
1
1
1
0
1
0
1
0
1
1
0
1
0
1
1
1
1
1
因此
方法2:推导法
(2)求主合取范式
方法1:利用上面的真值表
为0的有两行,它们对应的极大项分别为
因此,
方法2:利用已求出的主析取范式求主合取范式
[例题分析]
例1设A,B是两个集合,A={1,2,3},B={1,2},则 。
解
于是
例2设 ,试求:
(1) ;(2) ;(3) ;
(4) ;(5) ;(6) 。
解(1) (2) (3)
(4) (5) (6)
例3试证明
证明
第二章二元关系
[复习知识点]
1、关系、关系矩阵与关系图
2、复合关系与逆关系
3、关系的性质(自反性、对称性、反对称性、传递性)
6、理解函数概念:函数、函数相等、复合函数和反函数。
7、理解单射、满射、双射等概念,掌握其判别方法。
[本章重点习题]
P25,1;P32~33,4,8,10;P43,2,3,5;P51~52,5,6;P59,1,2;P64,3;P74~75,2,4,6,7;P81,5,7;P86,1,2。
[疑难解析]
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等价式或真值表将公式化为主析取(合取)范式的方法。
4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价的方法。
5、理解公式蕴涵与逻辑结果的概念,掌握基本蕴涵式。
6、掌握形式演绎的证明方法。
2、权图中的最短路
严格执行迪克斯特拉(Dijkstra)算法步骤,从起点起,到每一点求出最短路,然后进行仔细比较,最后到达终点,算出最小权和。
3、权图中的最优支撑树
权图中的最优支撑树是图中所带权和最小的支撑树,使用克鲁斯卡尔(Kruskal)算法。
[典型例题]
例1在具有n个顶点的完全图Kn中删去多少条边才能得到树?
6、有向图、有向树
本章重点内容:权图的最短路、二叉树的遍历、权图中的最优支撑树
[复习要求]
1、理解图的有关概念:图、完全图、子图、母图、支撑子图、图的同构。
2、掌握图的矩阵表示(关联矩阵、相邻矩阵)。
3、理解权图、路的概念,掌握用Dijkstra算法求权图中最短路的方法。
4、理解树、二叉树与支撑树的有关概念;掌握二叉树的三种遍历方法,用Kruskal算法求权图中最小树的方法。
1、理解关系的概念:二元关系、空关系、全关系、恒等关系;掌握关系的集合表示、关系矩阵和关系图、关系的运算。
2、掌握求复合关系与逆关系的方法。
3、理解关系的性质(自反性、对称性、反对称性、传递性),掌握其判别方法(定义、矩阵、图)。
4、掌握求关系的闭包(自反闭包、对称闭包、传递闭包)的方法。
5、理解等价关系和偏序关系的概念,掌握等价类的求法和偏序关系做哈斯图的方法,极大/小元、最大/小元、上/下界、最小上界、最大下界的求法。
3 2 0 1 1 1 0 1
求 的真值。
解
例2试将一阶逻辑公式化成前束范式。
解
第五章图论
[复习知识点]
1、图、完全图、子图、母图、支撑子图、图的同构
2、关联矩阵、相邻矩阵
3、权图、路、最短路径,迪克斯特拉算法(Dijkstra)
4、树、支撑树、二叉树
5、权图中的最小树,克鲁斯卡尔算法(Kruskal)
3、关系的闭包
在理解掌握关系闭包概念的基础上,主要掌握闭包的求法。关键是熟记三个定理的结论:定理2, ;定理3, ;定理4,推论 。
4、半序关系及半序集中特殊元素的确定
理解与掌握半序关系与半序集概念的关键是哈斯图。哈斯图画法掌握了,对于确定任一子集的最大(小)元,极大(小)元也就容易了。这里要注意,最大(小)元与极大(小)元只能在子集内确定,而上界与下界可在子集之外的全集中确定,最小上界为所有上界中最小者,最小上界再小也不小于子集中的任一元素,可以与某一元素相等,最大下界也同样。
[本章重点习题]
P93,1;P98,2,3;P104,2,3;P107,1,3;P112,5;P115,1,2,3。
[疑难解析]
1、公式恒真性的判定
判定公式的恒真性,包括判定公式是恒真的或是恒假的。具体方法有两种,一是真值表法,对于任给一个公式,主要列出该公式的真值表,观察真值表的最后一列是否全为1(或全为0),就可以判定该公式是否恒真(或恒假),若不全为0,则为可满足的。二是推导法,即利用基本等价式推导出结果为1,或者利用恒真(恒假)判定定理:公式G是恒真的(恒假的)当且仅当等价于它的合取范式(析取范式)中,每个子句(短语)均至少包含一个原子及其否定。
2、理解公式与解释的概念;掌握在有限个体域下消去公式量词,求公式在给定解释下真值的方法;了解谓词公式的类型。
3、理解用解释的方法证明等价式和蕴涵式。
4、掌握求公式前束范式的方法。
[本章重点习题]
P120,1,2;P125~126,1,3;P137,1。
[疑难解析]
1、谓词与量词
反复理解谓词与量词引入的意义,概念的含义及在谓词与量词作用下变量的自由性、约束性与改名规则。
4、关系的闭包(自反闭包、对称闭包、传递闭包)
5、等价关系与等价类
6、偏序关系与哈斯图(Hasse)、极大/小元、最大/小元、上/下界、最小上界、最大下界
7、函数及其性质(单射、满射、双射)
8、复合函数与反函数
本章重点内容:二元关系的概念、关系的性质、关系的闭包、等价关系、半序关系、映射的概念
[复习要求]
1、集合的概念
因为集合的概念学生在中学阶段已经学过,这里只多了一个幂集概念,重点对幂集加以掌握,一是掌握幂集的构成,一是掌握幂集元数为2n。
2、集合恒等式的证明
通过对集合恒等式证明的练习,既可以加深对集合性质的理解与掌握;又可以为第三章命题逻辑中公式的基本等价式的应用打下良好的基础。实际上,本章做题是一种基本功训练,尤其要求学生重视吸收律和重要等价式在 证明中的特殊作用。
本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明
[复习要求]
1、理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。
2、掌握集合的表示法和集合的交、并、差、补等基本运算。
3、掌握集合运算基本规律,证明集合等式的方法。
4、了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。
[疑难解析]
已用去6个极小项,尚有2个极小项,即
与 于是
例2试证明公式 为恒真公式。
证法一:见〈离散数学学习指导书〉P60例6(4)的解答。(真值表法)
证法二:
G=((PQ)(QR))(PR)