高考数学(人教A版,理)一轮复习配套讲义:第2篇 第5讲 指数与指数函数

合集下载

高考数学第一轮复习 第二篇 第5讲 指数与指数函数课件 理 新人教A版

高考数学第一轮复习 第二篇 第5讲 指数与指数函数课件 理 新人教A版
知识与方法 (fāngfǎ)回顾
技能与规律探究
知识梳理
辨析(biànxī)感悟
探究 一 指数幂的运算
探究二 指数函数的图象
及应用
探究三 指数函数的性质
及应用
例1 训练1
例2 训练2
例3 训练3
经典题目再现
第一页,共15页。
1.根式
(gēnshì)
(1)根式(gēnshì) 的概念
根式的概念
符号表示
③(ab)r=a r br (a>0,b>0,r∈Q).
第三页,共15页。
3.指数函数(zhǐ shù hán shù)的图象及性 质
y=ax
a>1
0<a<1
图象
定义域 值域
性质
R
(0,+∞)
.
过定点 (0,1) .
当x>0时, y>1 ; 当x>0时, 0<y<1 ; x<0时, 0<y<1 . x<0时, y>1 .
第六页,共15页。
指数(zhǐshù)幂的
运算
【例
1】(1)计算:8116-
1
4+8
2
3+
-22;
3
3
(2)若 x 12+x- 12=3,求xx22+ +xx- -22+ +32的值.

(1)原式=324-
1
4+(23)
2
3+|-2|
=23-1+22+2=32+4+2=125.
(2)由
x
21+x-
则 h(x)为奇函数,
g(-x)+g(x)=2-x1-1+12+2x-1 1+12 =1-2x2x+2x-1 1+1=0. ∴g(x)为奇函数,故 f(x)为偶函数.
(3)证明:当 x>0 时,2x-1>0,

新高考数学一轮复习教师用书:第2章 5 第5讲 指数与指数函数

新高考数学一轮复习教师用书:第2章 5 第5讲 指数与指数函数

第5讲 指数与指数函数1.根式 (1)根式的概念①若x n =a,则x 叫做a 的n 次方根,其中n>1且n∈N *.n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n∈N *,n>1时,x =±n a ,当n 为偶数且n∈N *时.(2)根式的性质①(n a)n =a(n∈N *,且n>1). ②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a|=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a<0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mn n a m (a>0,m,n ∈N *,且n>1); ②负分数指数幂:a -m n =1a m n =1na m (a>0,m,n∈N *,且n>1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a>0,r,s ∈Q);②(a r )s =a rs(a>0,r,s ∈Q); ③(ab)r=a r b r(a>0,b>0,r ∈Q). 3.指数函数的图象及性质函数 y =a x(a>0,且a≠1)图象0<a<1a>1图象特征在x 轴上方,过定点(0,1)当x 逐渐增大时,图象逐渐下降当x 逐渐增大时,图象逐渐上升性质定义域 R 值域(0,+∞)单调性 减增函数值 变化 规律当x =0时,y =1当x<0时,y>1; 当x>0时,0<y<1当x<0时,0<y<1; 当x>0时,y>14.指数函数的变化特征在同一平面直角坐标系中,分别作出指数函数y =a x,y =b x,y =c x,y =d x(a >1,b >1,0<c <1,0<d <1)的图象,如图所示.作出直线x =1,分别与四个图象自上而下交于点A(1,a),B(1,b),C(1,c),D(1,d),得到底数的大小关系是:a >b >1>c >d >0.根据y 轴右侧的图象,也可以利用口诀:“底大图高”来记忆.[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)n a n =(n a)n=a.( ) (2)(-1)24=(-1)12=-1.( ) (3)函数y =a -x是R 上的增函数.( )(4)函数y =ax2+1(a>1)的值域是(0,+∞).( ) (5)函数y =2x -1是指数函数.( )(6)若a m<a n(a>0,且a≠1),则m<n.( )答案:(1)× (2)× (3)× (4)× (5)× (6)× [教材衍化]1.(必修1P59A 组T4改编)化简416x 8y 4(x<0,y<0)=________. 解析:因为x<0,y<0,所以416x 8y 4=(16x 8·y 4)14=(16)14·(x 8)14·(y 4)14=2x 2|y|=-2x 2y.答案:-2x 2y2.(必修1P55“思考”改编)函数y =2x与y =2-x的图象关于________对称.解析:作出y =2x与y =2-x=⎝ ⎛⎭⎪⎫12x的图象(图略),观察可知其关于y 轴对称. 答案:y 轴3.(必修1P56例6改编)已知函数f(x)=a x -2+2(a>0且a≠1)的图象恒过定点A,则A 的坐标为________.解析:令x -2=0,则x =2,f(2)=3,即A 的坐标为(2,3). 答案:(2,3) [易错纠偏](1)忽略n 的范围导致式子n a n(a∈R)化简出错; (2)不能正确理解指数函数的概念致错; (3)指数函数问题时刻注意底数的两种情况; (4)复合函数问题容易忽略指数函数的值域致错. 1.计算3(1+2)3+4(1-2)4=________.解析:3(1+2)3+4(1-2)4=(1+2)+(2-1)=2 2. 答案:2 22.若函数f(x)=(a 2-3)·a x为指数函数,则a =________. 解析:由题意知⎩⎪⎨⎪⎧0<a ,a ≠1,a 2-3=1,即a =2.答案:23.若函数f(x)=a x 在[-1,1]上的最大值为2,则a =________. 解析:当a>1时,a =2;当0<a<1时a -1=2, 即a =12.答案:2或124.函数y =21x -1的值域为________. 解析:因为1x -1≠0,所以21x -1>0且21x -1≠1. 答案:(0,1)∪(1,+∞)指数幂的运算化简下列各式:(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214-12-(0.01)0.5; (2)56a 13·b -2·⎝⎛⎭⎪⎫-3a -12b -1÷⎝ ⎛⎭⎪⎫4a 23·b -312(a,b>0).【解】 (1)原式=1+14×⎝ ⎛⎭⎪⎫4912-⎝ ⎛⎭⎪⎫110012=1+14×23-110=1+16-110=1615.(2)原式=-52a -16b -3÷⎝ ⎛⎭⎪⎫4a 23·b -312 =-54a -16b -3÷⎝ ⎛⎭⎪⎫a 13b -32=-54a -12·b -32=-54·1ab3=-5ab 4ab 2.指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.[提醒] 运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12. 解:(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100.(2)原式=2(4ab -1)3210a 32b -32=16a 32b -3210a 32b -32=85.指数函数的图象及应用(1)函数f(x)=21-x的大致图象为( )(2)函数f(x)=|a x+b|(a>0,a ≠1,b ∈R)的图象如图所示,则a +b 的取值范围是________.(3)若方程|3x-1|=k 有一解,则k 的取值范围为________.【解析】 (1)函数f(x)=21-x=2×⎝ ⎛⎭⎪⎫12x,单调递减且过点(0,2),选项A 中的图象符合要求.(2)因为根据图象得a>1,f(12)=0,b<0.所以a +b =0,所以a +b =a -a>1-1=0.(3)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解.【答案】 (1)A (2)(0,+∞) (3){0}∪[1,+∞)应用指数函数图象的4个技巧(1)画指数函数y =a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),⎝ ⎛⎭⎪⎫-1,1a .(2)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除. (3)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(4)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.1.函数y =xax|x|(a>1)的图象大致是( )解析:选B.y =⎩⎪⎨⎪⎧a x,x>0,-a x ,x<0,因为a>1,依据指数函数的图象特征可知选B.2.若函数y =21-x+m 的图象不经过第一象限,则m 的取值范围为________.解析:y =⎝ ⎛⎭⎪⎫12x -1+m,函数y =⎝ ⎛⎭⎪⎫12x -1的图象如图所示,则要使其图象不经过第一象限,则m≤-2.答案:(-∞,-2]指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.主要命题角度有:(1)比较指数式的大小; (2)解简单的指数方程或不等式; (3)复合函数的单调性; (4)函数的值域(最值). 角度一 比较指数式的大小设a =0.60.6,b =0.61.5,c =1.50.6,则a,b,c 的大小关系是( ) A .a<b<c B .a<c<b C .b<a<cD .b<c<a【解析】 因为函数y =0.6x是减函数,0<0.6<1.5,所以1>0.60.6>0.61.5,即b<a<1.因为函数y =1.5x在(0,+∞)上是增函数,0.6>0,所以1.50.6>1.50=1,即c>1.综上,b<a<c. 【答案】 C角度二 解简单的指数方程或不等式设函数f(x)=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -7,x<0,x ,x ≥0 ,若f(a)<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)【解析】 当a<0时,不等式f(a)<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a>-3,此时-3<a<0;当a≥0时,不等式f(a)<1可化为a<1,所以0≤a<1.故a 的取值范围是(-3,1).故选C.【答案】 C角度三 复合函数的单调性(1)函数f(x)=⎝ ⎛⎭⎪⎫12-x 2+2x +1的单调减区间为________. (2)(2020·金华十校联考)若函数f(x)=2|x -a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m 的最小值等于________.【解析】 (1)设u =-x 2+2x +1,因为y =⎝ ⎛⎭⎪⎫12u在R 上为减函数, 所以函数f(x)=⎝ ⎛⎭⎪⎫12-x 2+2x +1的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1], 所以f(x)的减区间为(-∞,1]. (2)因为f(x)=2|x -a|,所以f(x)的图象关于x =a 对称.又由f(1+x)=f(1-x),知f(x)的图象关于直线x =1对称,故a =1,且f(x)的增区间是[1,+∞),由函数f(x)在[m,+∞)上单调递增,知[m,+∞)⊆[1,+∞),所以m ≥1,故m 的最小值为1. 【答案】 (1)(-∞,1] (2)1 角度四 函数的值域(最值)如果函数y =a 2x+2a x-1(a>0,a ≠1)在区间[-1,1]上的最大值是14,则a 的值为( ) A.13 B .1 C .3D.13或3 【解析】 令a x=t,则y =a 2x+2a x-1=t 2+2t -1=(t +1)2-2.当a>1时,因为x∈[-1,1],所以t∈⎣⎢⎡⎦⎥⎤1a ,a , 又函数y =(t +1)2-2在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去). 当0<a<1时,因为x∈[-1,1],所以t∈⎣⎢⎡⎦⎥⎤a ,1a , 又函数y =(t +1)2-2在⎣⎢⎡⎦⎥⎤a ,1a 上单调递增,则y max =⎝ ⎛⎭⎪⎫1a +12-2=14,解得a =13(负值舍去). 综上知a =3或a =13.【答案】 D有关指数函数性质的问题类型及解题思路(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.[提醒] 在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.1.已知函数f(x)=a x+b(a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.解析:当a >1时,函数f(x)=a x+b 在[-1,0]上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0无解.当0<a <1时,函数f(x)=a x+b 在[-1,0]上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.答案:-322.已知函数f(x)=⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎫12x,a ≤x<0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是________.解析:当0≤x≤4时,f (x)∈[-8,1],当a≤x<0时,f(x)∈⎣⎢⎡⎭⎪⎫-⎝ ⎛⎭⎪⎫12a ,-1,所以⎣⎢⎡⎭⎪⎫-12a ,-1[-8,1],即-8≤-12a <-1,即-3≤a<0,所以实数a 的取值范围是[-3,0). 答案:[-3,0)[基础题组练]1.函数f(x)=1-e |x|的图象大致是( )解析:选A.将函数解析式与图象对比分析,因为函数f(x)=1-e |x|是偶函数,且值域是(-∞,0],只有A 满足上述两个性质.2.化简4a 23·b -13÷⎝ ⎛⎭⎪⎫-23a -13b 23的结果为( )A .-2a3bB .-8a bC .-6a bD .-6ab解析:选C.原式=⎣⎢⎡⎦⎥⎤4÷⎝ ⎛⎭⎪⎫-23a 23-⎝ ⎛⎭⎪⎫-13b -13-23=-6ab -1=-6a b ,故选C.3.下列各式比较大小正确的是( ) A .1.72.5>1.73B .0.6-1>0.62C .0.8-0.1>1.250.2D .1.70.3<0.93.1解析:选B.A 中,因为函数y =1.7x在R 上是增函数,2.5<3,所以1.72.5<1.73.B 中,因为y =0.6x在R 上是减函数,-1<2,所以0.6-1>0.62.C 中,因为0.8-1=1.25,所以问题转化为比较1.250.1与1.250.2的大小.因为y =1.25x在R 上是增函数,0.1<0.2,所以1.250.1<1.250.2,即0.8-0.1<1.250.2.D 中,因为1.70.3>1,0<0.93.1<1,所以1.70.3>0.93.1.4.(2020·宁波效实中学高三质检)若函数f(x)=a |2x -4|(a>0,a ≠1)满足f(1)=19,则f(x)的单调递减区间是 ( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]解析:选B.由f(1)=19得a 2=19.又a>0,所以a =13,因此f(x)=⎝ ⎛⎭⎪⎫13|2x -4|. 因为g(x)=|2x -4|在[2,+∞)上单调递增,所以f(x)的单调递减区间是[2,+∞).5.已知函数y =f(x)与y =F(x)的图象关于y 轴对称,当函数y =f(x)和y =F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫作函数y =f(x)的“不动区间”,若区间[1,2]为函数y =|2x-t|的“不动区间”,则实数t 的取值范围是( )A .(0,2]B.⎣⎢⎡⎭⎪⎫12,+∞C.⎣⎢⎡⎦⎥⎤12,2 D.⎣⎢⎡⎦⎥⎤12,2∪[)4,+∞ 解析:选C.因为函数y =f(x)与y =F(x)的图象关于y 轴对称,所以F(x)=f(-x)=|2-x-t|,因为区间[1,2]为函数f(x)=|2x-t|的“不动区间”,所以函数f(x)=|2x-t|和函数F(x)=|2-x-t|在[1,2]上单调性相同, 因为y =2x-t 和函数y =2-x-t 的单调性相反, 所以(2x-t)(2-x-t)≤0在[1,2]上恒成立, 即1-t(2x+2-x)+t 2≤0在[1,2]上恒成立, 即2-x≤t ≤2x 在[1,2]上恒成立, 即12≤t ≤2,故答案为C. 6.指数函数y =f(x)的图象经过点(m,3),则f(0)+f(-m)=________. 解析:设f(x)=a x(a >0且a≠1),所以f(0)=a 0=1. 且f(m)=a m=3.所以f(0)+f(-m)=1+a -m=1+1a m =43.答案:437.(2020·杭州中学高三月考)已知e x+x 3+x +1=0,1e3y -27y 3-3y +1=0,则ex +3y的值为________. 解析:因为e x+x 3+x +1=0,1e3y -27y 3-3y +1=0等价于e-3y +(-3y)3+(-3y)+1=0,所以x =-3y,即x +3y =0,所以ex +3y =e 0=1.答案:18.若函数f(x)=⎩⎪⎨⎪⎧a x,x>1,(2-3a )x +1,x ≤1是R 上的减函数,则实数a 的取值范围是________.解析:依题意,a 应满足⎩⎪⎨⎪⎧ 0<a<1,2-3a<0,(2-3a )×1+1≥a 1,解得23<a ≤34.答案:⎝ ⎛⎦⎥⎤23,349.当x∈(-∞,-1]时,不等式(m 2-m)·4x-2x<0恒成立,则实数m 的取值范围是________.解析:原不等式变形为m 2-m<⎝ ⎛⎭⎪⎫12x, 因为函数y =⎝ ⎛⎭⎪⎫12x 在(-∞,-1]上是减函数, 所以⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2,当x∈(-∞,-1]时,m 2-m<⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m<2,解得-1<m<2. 答案:(-1,2)10.已知函数f(x)=⎝ ⎛⎭⎪⎫13ax 2-4x +3. (1)若a =-1,求f(x)的单调区间;(2)若f(x)有最大值3,求a 的值.解:(1)当a =-1时,f(x)=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g(x)=-x 2-4x +3, 由于g(x)在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减, 所以f(x)在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f(x)的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). (2)令g(x)=ax 2-4x +3,f(x)=⎝ ⎛⎭⎪⎫13g (x ),由于f(x)有最大值3,所以g(x)应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1, 即当f(x)有最大值3时,a 的值为1.11.已知函数f(x)=a |x +b|(a>0,a ≠1,b ∈R).(1)若f(x)为偶函数,求b 的值;(2)若f(x)在区间[2,+∞)上是增函数,试求a,b 应满足的条件.解:(1)因为f(x)为偶函数,所以对任意的x∈R ,都有f(-x)=f(x),即a |x +b|=a |-x +b|,|x +b|=|-x +b|,解得b =0.(2)记h(x)=|x +b|=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x<-b. ①当a>1时,f(x)在区间[2,+∞)上是增函数,即h(x)在区间[2,+∞)上是增函数,所以-b≤2,b ≥-2.②当0<a<1时,f(x)在区间[2,+∞)上是增函数,即h(x)在区间[2,+∞)上是减函数,但h(x)在区间[-b,+∞)上是增函数,故不存在a,b 的值,使f(x)在区间[2,+∞)上是增函数.所以f(x)在区间[2,+∞)上是增函数时,a,b 应满足的条件为a>1且b≥-2.[综合题组练]1.已知函数f(x)=|2x-1|,a<b<c 且f(a)>f(c)>f(b),则下列结论中,一定成立的是( )A .a<0,b<0,c<0B .a<0,b ≥0,c>0C .2-a <2cD .2a +2c <2解析:选D.作出函数f(x)=|2x -1|的图象,如图,因为a<b<c 且f(a)>f(c)>f(b),结合图象知,0<f(a)<1,a<0,c>0,所以0<2a <1.所以f(a)=|2a -1|=1-2a <1,所以f(c)<1,所以0<c<1.所以1<2c <2,所以f(c)=|2c -1|=2c -1,又因为f(a)>f(c),所以1-2a >2c -1,所以2a +2c <2,故选D.2.(2020·衢州市高考模拟)已知函数f(x)=⎩⎪⎨⎪⎧(12)x ,x >0-x 2-4x ,x ≤0,则此函数图象上关于原点对称的点有( )A .0对B .1对C .2对D .3对 解析:选B.作出函数y =f(x)图象如图所示:再作出-y =f(-x),即y =x 2-4x,恰好与函数图象位于y 轴左侧部分(对数函数的图象)关于原点对称,记为曲线C,发现y =⎝ ⎛⎭⎪⎫12x与曲线C 有且仅有一个交点, 因此满足条件的对称点只有一对,图中的A 、B 就是符合题意的点.故选B.3.(2020·杭州模拟)已知函数y =a x +b(a>0,且a≠1,b>0)的图象经过点P(1,3),如图所示,则4a -1+1b的最小值为________,此时a,b 的值分别为________. 解析:由函数y =a x +b(a>0且a≠1,b>0)的图象经过点P(1,3),得a +b =3,所以a -12+b 2=1,又a>1,则4a -1+1b =⎝ ⎛⎭⎪⎫4a -1+1b ⎝ ⎛⎭⎪⎫a -12+b 2=2+12+2b a -1+a -12b ≥52+2 2b a -1·a -12b =92,当且仅当2b a -1=a -12b ,即a =73,b =23时取等号,所以4a -1+1b 的最小值为92. 答案:92 73,23 4.(2020·绍兴一中高三期中)已知函数f(x)=e |x|,将函数f(x)的图象向右平移3个单位后,再向上平移2个单位,得到函数g(x)的图象,函数h(x)=⎩⎪⎨⎪⎧e (x -1)+2,x ≤5,4e 6-x +2,x>5,若对于任意的x∈[3,λ](λ>3),都有h(x)≥g(x),则实数λ的最大值为________.解析:依题意,g(x)=f(x -3)+2=e |x -3|+2,在同一坐标系中分别作出g(x),h(x)的图象如图所示,观察可得,要使得h(x)≥g(x),则有4e 6-x +2≥e (x -3)+2,故4≥e 2x -9,解得2x -9≤ln 4,故x≤ln 2+92,实数λ的最大值为ln 2+92. 答案:ln 2+925.已知函数f(x)=2a·4x -2x-1.(1)当a =1时,求函数f(x)在x ∈[-3,0]上的值域;(2)若关于x 的方程f(x)=0有解,求a 的取值范围.解:(1)当a =1时,f(x)=2·4x -2x -1=2(2x )2-2x -1, 令t =2x ,x ∈[-3,0],则t∈⎣⎢⎡⎦⎥⎤18,1. 故y =2t 2-t -1=2⎝ ⎛⎭⎪⎫t -142-98,t ∈⎣⎢⎡⎦⎥⎤18,1, 故值域为⎣⎢⎡⎦⎥⎤-98,0. (2)关于x 的方程2a(2x )2-2x-1=0有解,设2x =m>0,等价于方程2am 2-m -1=0在(0,+∞)上有解,记g(m)=2am 2-m -1,当a =0时,解为m =-1<0,不成立.当a<0时,开口向下,对称轴m =14a<0, 过点(0,-1),不成立.当a>0时,开口向上,对称轴m =14a>0,过点(0,-1),必有一个根为正,综上得a>0.6.(2020·宁波效实中学模拟)已知函数f(x)=⎝ ⎛⎭⎪⎫13x,x ∈[-1,1],函数g(x)=[f(x)]2-2af(x)+3的最小值为h(a).(1)求h(a);(2)是否存在实数m,n 同时满足下列条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n 2,m 2]?若存在,求出m,n 的值;若不存在,说明理由. 解:(1)因为x∈[-1,1], 所以f(x)=⎝ ⎛⎭⎪⎫13x ∈⎝ ⎛⎭⎪⎫13,3, 设t =⎝ ⎛⎭⎪⎫13x∈⎝ ⎛⎭⎪⎫13,3. 则y =φ(t)=t 2-2at +3=(t -a)2+3-a 2.当a<13时,y min =h(a)=φ⎝ ⎛⎭⎪⎫13=289-2a 3; 当13≤a ≤3时,y min =h(a)=φ(a)=3-a 2; 当a>3时,y min =h(a)=φ(3)=12-6a. 所以h(a)=⎩⎪⎨⎪⎧289-2a 3,a<13,3-a 2,13≤a ≤3,12-6a ,a>3. (2)假设存在m,n 满足题意.因为m>n>3,h(a)=12-6a 在(3,+∞)上是减函数,又因为h(a)的定义域为[n,m],值域为[n 2,m 2],所以⎩⎪⎨⎪⎧12-6m =n 2,12-6n =m 2,两式相减得6(m -n)=(m -n)(m +n),即m +n =6,与m>n>3矛盾, 所以满足题意的m,n 不存在.。

高考数学一轮复习 第二章 第5讲 指数与指数函数配套课件 理 新人教A版

高考数学一轮复习 第二章 第5讲 指数与指数函数配套课件 理 新人教A版
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成
立,求k的取值范围.

(1)因为 f(x)是 R 上的奇函数, - 1+ b 所以 f(0)=0,即 =0,解得 b=1, 2+a -2x+1 从而有 f(x)= x+1 . 2 +a 1 -2+1 -2+1 又由 f(1)=-f(-1)知 = ,解得 a=2. 4+a 1+a
法二
-2x+1 由(1)知 f(x)= x+1 , 2 +2
-2t2-2t+1 -22t2-k+1 又由题设条件得 2 + <0, 2t -2t+1+2 22t2-k+1+2 即(22t2-k+1+2)(-2t2-2t+1)+(2t2-2t+1+2)(-22t2 -k+1)<0. 整理得 23t2-2t-k>1,因底数 2>1,故 3t2-2t-k>0. 上式对一切 t∈R 均成立,从而判别式 Δ=4+12k<0, 1 解得 k<- . 3
2a 4a 又∵点 O、A、B 共线,∴ a = , 2a ∴2a=2,即 a=1,∴A 的坐标为(1,2).
考向三
指数函数的性质及应用
【例3】 (1)设a>0且a≠1,函数y=a2x+2ax-1在[-1,1]上
的最大值是14,则a的值为________.
1 (2)(2012· 南京一模)已知 f(x)=a- x 是定义在(-∞, 2 -1 -1]∪[1,+∞)上的奇函数,则 f(x)的值域为________. 解析 (1)令 t=ax(a>0 且 a≠1), 则原函数化为 y=(t+1)2-2(t>0). 1 x ①当 0<a<1 时,x∈[-1,1],t=a ∈a,a, 1 此时 f(t)在a,a上为增函数. 1 1 2 所以 f(t)max=fa=a+1 -2=14.

高三数学人教版A版数学(理)高考一轮复习课件第二章 第五节 指数与指数函数ppt版本

高三数学人教版A版数学(理)高考一轮复习课件第二章  第五节  指数与指数函数ppt版本


1 6
b-3÷(4a
2 3
·b-3)
1 2
1
1
2
5 (2)6a
3
·b-2·(-3a

2
b-1)÷(4a
3
·b-3)
(3)
1
a3b2
1
3 ab2
1
1
(a>0,b>0).
a 4 b 2 4a 3 b 3
1 2
; =-54a

1 6
b-3÷(a
1 3
b

3 2
)=-54a
=-54· a1b3=-54aba2b.
过定点(_0_,_1_)
当x>0时,_y_>_1_;x<0时, 当x>0时,_0_<_y_<_1_;x<0时,
_0_<__y_<_1_
____ y>1
在(-∞,+∞)上是增__函__数__ 在(-∞,+∞)上是_减__函__数_
知识点二
知识点一 知识点二
易误提醒 指数函数 y=ax(a>0,a≠1)的图象和性质跟 a 的取值有
思想方法系列
试题
解析
[跟踪练习] 已知 0≤x≤2,

y=4
x
-
1 2
-3·2x+5
的最大值
5
为_____2___.
令 t=2x,∵0≤x≤2,∴1≤t≤4, 又 y=22x-1-3·2x+5,∴y=12t2-3t+5=12(t- 3)2+12, ∵1≤t≤4,∴t=1 时,ymax=52.
课时 跟踪检测
知识点二
[自测练习]
试题
解析
知识点一 知识点二

高考数学人教A版理科一轮复习教学案:第二章函数2.5指数与指数函数

高考数学人教A版理科一轮复习教学案:第二章函数2.5指数与指数函数
方法提炼
1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、
对称变换得到其图象. 2. 如图是指数函数 (1)y= ax, (2) y= bx, (3)y= cx,(4) y=dx 的图象,底数 a, b, c, d 与
1 之间的大小关系及规律如下:图中直线
x= 1 与它们图象交点的纵坐标即为它们各自底数
② (ar)s= ____( a>0, r, s∈ Q); ③ (ab)r= ____(a> 0, b>0, r∈ Q).
(3)无理指数幂 一般地,无理指数幂 aα( a> 0, α是无理数 ) 是一个 ____的实数,有理指数幂的运算法则
________ 于无理指数幂. 3. 指数函数的图象和性质 函数
(2)结果要求:①若题目以根式形式给出,则结果用根式表示;②若题目以分数指数幂 的形式给出,则结果用分数指数幂的形式表示;③结果不能同时含有根式和分数指 也不能既有分母又有负分数指数幂.
数幂,
请做演练巩固提升 4 二、指数函数的图象与性质的 应用
【例 2- 1】 在同一坐标系中,函数 y= 2x 与 y= 1 x 的图象之间的关系是 (
a 3b2 3 ab2
(3) 1 1
1 1 (a> 0, b> 0).
( a4 b2 ) 4a 3b3
方法提炼 指数幂的化简与求值
(1)化简原则:①化根式为分数指数幂;②化负指数幂为正指数幂;③化小数为分数; ④注意运算的先后顺序.
提醒: 有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算.
当 x> 0 时, __________
4
1.化简 16x8y4(x< 0, y< 0)得 (
).
A. 2x2y

2021届高三新高考数学人教A版一轮复习教学案:第二章第5节指数与指数函数

2021届高三新高考数学人教A版一轮复习教学案:第二章第5节指数与指数函数

第5节 指数与指数函数考试要求 1.了解指数函数模型的实际背景;2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图象;4.体会指数函数是一类重要的函数模型.知 识 梳 理1.根式的概念及性质(1)概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数.(2)性质:(n a )n =a (a 使n a 有意义);当n 为奇数时,n a n =a ,当n 为偶数时,na n =|a |=⎩⎨⎧a ,a ≥0,-a ,a <0.2.分数指数幂规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1na m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义. 3.指数幂的运算性质实数指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈R. 4.指数函数及其性质(1)概念:函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数. (2)指数函数的图象与性质a >10<a <1图象定义域R值域(0,+∞)性质过定点(0,1),即x=0时,y=1当x>0时,y>1;当x<0时,0<y<1当x<0时,y>1;当x>0时,0<y<1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数[常用结论与微点提醒]1.画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),⎝⎛⎭⎪⎫-1,1a.2.指数函数y=a x(a>0,且a≠1)的图象和性质跟a的取值有关,要特别注意应分a>1与0<a<1来研究.3.在第一象限内,指数函数y=a x(a>0,且a≠1)的图象越高,底数越大.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)4(-4)4=-4.()(2)分数指数幂amn可以理解为mn个a相乘.()(3)函数y=2x-1是指数函数.()(4)函数y=a x2+1(a>1)的值域是(0,+∞).()解析(1)由于4(-4)4=444=4,故(1)错.(2)当mn<1时,不可以,故(2)错.(3)由于指数函数解析式为y=a x(a>0,且a≠1),故y=2x-1不是指数函数,故(3)错.(4)由于x2+1≥1,又a>1,∴ax2+1≥a.故y=ax2+1(a>1)的值域是[a,+∞),(4)错.答案(1)×(2)×(3)×(4)×2.(老教材必修1P56例6改编)若函数f (x )=a x (a >0,且a ≠1)的图象经过⎝ ⎛⎭⎪⎫2,13,则f (-1)=( ) A.1B.2C. 3D.3解析 依题意可知a 2=13,解得a =33, 所以f (x )=⎝ ⎛⎭⎪⎫33x,所以f (-1)=⎝ ⎛⎭⎪⎫33-1= 3.答案 C3.(新教材必修第一册P119习题4.2T6改编)设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A.a <b <c B.a <c <b C.b <a <cD.b <c <a解析 根据指数函数y =0.6x 在R 上单调递减可得0.61.5<0.60.6<0.60=1,而c =1.50.6>1,∴b <a <c . 答案 C4.(2017·北京卷)已知函数f (x )=3x -⎝ ⎛⎭⎪⎫13x,则f (x )( )A.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数 解析 函数f (x )的定义域为R , f (-x )=3-x-⎝ ⎛⎭⎪⎫13-x=⎝ ⎛⎭⎪⎫13x-3x =-f (x ),∴函数f (x )是奇函数.又y =3x 在R 上是增函数,函数y =-⎝ ⎛⎭⎪⎫13x在R 上是增函数,∴函数f (x )=3x -⎝ ⎛⎭⎪⎫13x在R 上是增函数.答案 B5.(2020·河南名校联盟调研)函数f (x )=a x -2 020+2 020(a >0且a ≠1)的图象过定点A ,则点A 的坐标为______.解析 令x -2 020=0,得x =2 020,则y =2 021, 故点A 的坐标为(2 020,2 021). 答案 (2 020,2 021)6.(2020·菏泽一中月考)计算:⎝ ⎛⎭⎪⎫32-13×⎝ ⎛⎭⎪⎫-760+814×42-⎝ ⎛⎭⎪⎫-2323=________. 解析 原式=⎝ ⎛⎭⎪⎫2313×1+234×214-⎝ ⎛⎭⎪⎫2313=2.答案 2考点一 指数幂的运算 【例1】 化简下列各式:(1)⎝ ⎛⎭⎪⎫-278-23+0.002-12-10(5-2)-1+π0=______. (2)a 3b 23ab 2(a 14b 12)4a -13b 13(a >0,b >0)=________.解析 (1)原式=⎝ ⎛⎭⎪⎫-32-2+50012-10(5+2)(5-2)(5+2)+1=49+105-105-20+1=-1679.(2)原式=(a 3b 2a 13b 23)12ab 2a -13b 13=a 32+16-1+13b 1+13-2-13=ab .答案 (1)-1679 (2)a b规律方法 1.指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:(1)必须同底数幂相乘,指数才能相加;(2)运算的先后顺序. 2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 【训练1】 化简下列各式:(1)[(0.06415)-2.5]23-3338-π0;(2)56a 13·b -2·⎝ ⎛⎭⎪⎫-3a -12b -1÷⎝ ⎛⎭⎪⎫4a 23·b -312. 解 (1)原式=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫641 00015-5223-⎝ ⎛⎭⎪⎫27813-1 =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫410315×⎝⎛⎭⎪⎪⎫-52×23-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32313-1=52-32-1=0.(2)原式=-52a -16b -3÷⎝ ⎛⎭⎪⎫4a 23·b -312=-54a -16b -3÷(a 13b -32)=-54a -12·b -32 =-54·1ab3=-5ab 4ab 2.考点二 指数函数的图象及应用【例2】 (1)已知实数a ,b 满足等式2 020a =2 021b ,下列五个关系式: ①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b . 其中不可能成立的关系式有( ) A.1个B.2个C.3个D.4个(2)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________. 解析 (1)如图,观察易知a ,b 的关系为a <b <0或0<b <a 或a =b =0.(2)在同一平面直角坐标系中画出y=|2x-2|与y=b的图象,如图所示.∴当0<b<2时,两函数图象有两个交点,从而函数f(x)=|2x-2|-b有两个零点. ∴b的取值范围是(0,2).答案(1)B(2)(0,2)规律方法 1.对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.2.有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.【训练2】(1)函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0(2)如果函数y=|3x-1|+m的图象不经过第二象限,则实数m的取值范围是________.解析(1)由f(x)=a x-b的图象可以观察出,函数f(x)=a x-b在定义域上单调递减,所以0<a<1.函数f(x)=a x-b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.(2)在同一平面直角坐标系中画出y=|3x-1|与y=-m的图象,如图所示.由函数y=|3x -1|+m 的图象不经过第二象限,则y =|3x -1|与y =-m 在第二象限没有交点,由图象知m ≤-1.答案 (1)D (2)(-∞,-1]考点三 解决与指数函数性质有关的问题多维探究角度1 比较指数式的大小【例3-1】 下列各式比较大小正确的是( ) A.1.72.5>1.73B.0.6-1>0.62C.0.8-0.1>1.250.2D.1.70.3<0.93.1解析 A 中,∵函数y =1.7x 在R 上是增函数,2.5<3, ∴1.72.5<1.73,错误;B 中,∵y =0.6x 在R 上是减函数,-1<2, ∴0.6-1>0.62,正确;C 中,∵(0.8)-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小. ∵y =1.25x 在R 上是增函数,0.1<0.2, ∴1.250.1<1.250.2,即0.8-0.1<1.250.2,错误; D 中,∵1.70.3>1, 0<0.93.1<1, ∴1.70.3>0.93.1,错误. 答案 B规律方法 比较指数式的大小的方法是:(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小. 角度2 解简单的指数方程或不等式【例3-2】 (1)(2020·包头模拟)已知实数a ≠1,函数f (x )=⎩⎨⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为______.(2)设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x-7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是________.解析 (1)当a <1时,41-a=21,解得a =12;当a >1时,代入不成立.故a 的值为12.(2)当a <0时,原不等式化为⎝ ⎛⎭⎪⎫12a-7<1,则2-a <8,解得a >-3,所以-3<a <0. 当a ≥0时,则a <1,0≤a <1. 综上,实数a 的取值范围是(-3,1). 答案 (1)12 (2)(-3,1)规律方法 (1)a f (x )=a g (x )(a >0且a ≠1)⇔f (x )=g (x ).(2)a f (x )>a g (x ),当a >1时,等价于f (x )>g (x );当0<a <1时,等价于f (x )<g (x ).(3)有些含参数的指数不等式,需要分离变量,转化为求有关函数的最值问题. 角度3 指数函数性质的综合应用【例3-3】 (1)若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( ) A.(-∞,+∞) B.(-2,+∞) C.(0,+∞)D.(-1,+∞)(2)如果函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.解析 (1)不等式2x (x -a )<1可变形为x -a <⎝ ⎛⎭⎪⎫12x,如图在同一平面直角坐标系中作出直线y =x -a 与y =⎝ ⎛⎭⎪⎫12x的图象,由题意知,在(0,+∞)内,直线有一部分在y=⎝ ⎛⎭⎪⎫12x图象的下方,由图可知,-a <1,所以a >-1.(2)令a x =t ,则y =a 2x +2a x -1=t 2+2t -1=(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈⎣⎢⎡⎦⎥⎤1a ,a ,又函数y =(t +1)2-2在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去).当0<a <1时,因为x ∈[-1,1],所以t ∈⎣⎢⎡⎦⎥⎤a ,1a ,又函数y =(t +1)2-2在⎣⎢⎡⎦⎥⎤a ,1a 上单调递增,则y max =⎝ ⎛⎭⎪⎫1a +12-2=14,解得a =13(负值舍去).综上,a =3或a =13. 答案 (1)D (2)3或13规律方法 求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.易错警示 在研究指数型函数的单调性时,当底数a 与“1”的大小关系不确定时,要分类讨论.【训练3】 (1)(角度1)已知a =20.2,b =0.40.2,c =0.40.6,则( ) A.a >b >c B.a >c >b C.c >a >bD.b >c >a(2)(角度2)(2020·安徽江南名校联考)若e a +πb ≥e -b +π-a ,则有( ) A.a +b ≤0 B.a -b ≥0 C.a -b ≤0D.a +b ≥0(3)(角度3)当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是________.(4)(角度3)已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).若不等式⎝ ⎛⎭⎪⎫1a x+⎝ ⎛⎭⎪⎫1b x-m ≥0在x ∈(-∞,1]上恒成立,则实数m 的最大值为________.解析 (1)因为a =20.2>1,b =0.40.2<1,c =0.40.6<1,所以a >b ,a >c .又y =0.4x 是以0.4为底的指数函数,且在R 上单调递减,所以0.40.2>0.40.6,即b >c ,所以a >b >c . (2)令f (x )=e x -π-x ,则f (x )在R 上是增函数, 由e a +πb ≥e -b +π-a ,得e a -π-a ≥e -b -πb , 则f (a )≥f (-b ),所以a ≥-b ,则a +b ≥0. (3)原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x,因为函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数,所以⎝ ⎛⎭⎪⎫12x≥⎝ ⎛⎭⎪⎫12-1=2.当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x恒成立等价于m 2-m <2,解得-1<m <2.(4)把A (1,6),B (3,24)代入f (x )=b ·a x ,得⎩⎨⎧6=ab ,24=b ·a 3,结合a >0,且a ≠1,解得⎩⎨⎧a =2,b =3,所以f (x )=3·2x .要使⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x≥m 在区间(-∞,1]上恒成立,只需保证函数y =⎝ ⎛⎭⎪⎫12x+⎝ ⎛⎭⎪⎫13x在区间(-∞,1]上的最小值不小于m 即可.因为函数y=⎝ ⎛⎭⎪⎫12x+⎝ ⎛⎭⎪⎫13x在区间(-∞,1]上为减函数,所以当x =1时,y =⎝ ⎛⎭⎪⎫12x+⎝ ⎛⎭⎪⎫13x有最小值56.所以只需m ≤56即可.所以m 的最大值为56. 答案 (1)A (2)D (3)(-1,2) (4)56A 级 基础巩固一、选择题1.(2019·永州模拟)下列函数中,与函数y =2x -2-x 的定义域、单调性与奇偶性均一致的是( ) A.y =sin x B.y =x 3 C.y =⎝ ⎛⎭⎪⎫12xD.y =log 2x解析 y =2x -2-x 是定义域为R 的单调递增函数,且是奇函数.y =sin x 不是单调递增函数,不符合题意;y =⎝ ⎛⎭⎪⎫12x是非奇非偶函数,不符合题意; y =log 2x 的定义域是(0,+∞),不符合题意;y =x 3是定义域为R 的单调递增函数,且是奇函数,符合题意. 答案 B2.函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( ) A.y =1-x B.y =|x -2| C.y =2x -1D.y =log 2(2x )解析 f (x )过定点A (1,1),将点A (1,1)代入四个选项,y =1-x 的图象不过点A (1,1). 答案 A3.(2020·西安调研)已知0<b <a <1,则a b ,b a ,a a ,b b 中最大的是( ) A.b aB.a aC.a bD.b b解析 ∵0<b <a <1,∴y =a x 与y =b x 均为减函数, ∴a b >a a ,b a <b b .又y =x b 在(0,+∞)上递增,∴a b >b b . 综上,a b 最大. 答案 C4.在我国大西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,专家预测经过x 年可能增长到原来的y 倍,则函数y =f (x )的图象大致为( )解析 设原有荒漠化土地面积为b ,经过x 年后荒漠化面积为z ,则z =b (1+10.4%)x ,故y =zb =(1+10.4%)x ,其是底数大于1的指数函数.其图象应为选项D. 答案 D5.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( ) A.(-∞,2] B.[2,+∞) C.[-2,+∞)D.(-∞,-2]解析 由f (1)=19,得a 2=19,所以a =13或a =-13(舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f (x )在(-∞,2]上单调递增,在[2,+∞)上单调递减. 答案 B 二、填空题6.化简(a 23·b -1)-12·a -12·b 136a ·b 5=________.解析 原式=a -13b 12·a -12b 13a 16b 56=a-13-12-16·b 12+13-56=1a .答案 1a 7.若函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3有最大值3,则a =________.解析 令h (x )=ax 2-4x +3,y =⎝ ⎛⎭⎪⎫13h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,12a -164a =-1,解得a =1,即当f (x )有最大值3时,a 的值为1. 答案 18.设偶函数g (x )=a |x +b |在(0,+∞)上单调递增,则g (a )与g (b -1)的大小关系是________.解析 由于g (x )=a |x +b |是偶函数,知b =0, 又g (x )=a |x |在(0,+∞)上单调递增,得a >1. 则g (b -1)=g (-1)=g (1),故g (a )>g (1)=g (b -1). 答案 g (a )>g (b -1) 三、解答题9.已知函数f (x )=3x +a3x +1为奇函数.(1)求a 的值;(2)判断函数f (x )的单调性,并加以证明.解 (1)因为函数f (x )是奇函数,且f (x )的定义域为R ;所以f (0)=1+a1+1=0,所以a =-1(经检验,a =-1时f (x )为奇函数,满足题意).(2)由(1)知f (x )=3x -13x +1=1-23x +1,函数f (x )在定义域R 上单调递增.证明如下:设x 1<x 2∈R ,则f (x 1)-f (x 2)=2(3x 1-3x 2)(3x 1+1)(3x 2+1).因为x 1<x 2,所以3x 1<3x 2,所以3x 1-3x 2<0,所以f (x 1)<f (x 2),所以函数f (x )在定义域R 上单调递增. 10.已知函数f (x )=a x +b (a >0,a ≠1),其中a ,b 均为实数. (1)若函数f (x )的图象经过点A (0,2),B (1,3),求函数y =1f (x )的值域; (2)如果函数f (x )的定义域和值域都是[-1,0],求a +b 的值. 解 (1)因为函数f (x )的图象经过点A (0,2),B (1,3), ∴⎩⎨⎧1+b =2,a +b =3,∴⎩⎨⎧a =2,b =1, ∴函数f (x )=2x +1>1,函数y =1f (x )=12x +1<1. 又1f (x )=12x +1>0,故函数y =1f (x )的值域为(0,1). (2)如果函数f (x )的定义域和值域都是[-1,0],若a >1,则函数f (x )=a x +b 为增函数, ∴⎩⎪⎨⎪⎧1a +b =-1,1+b =0,无解. 若0<a <1,则函数f (x )=a x +b 为减函数, ∴⎩⎪⎨⎪⎧1a +b =0,1+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2, ∴a +b =-32.B 级 能力提升11.设函数f (x )=x 2-a 与g (x )=a x (a >1且a ≠2)在区间(0,+∞)上具有不同的单调性,则M =(a -1)0.2与N =⎝ ⎛⎭⎪⎫1a 0.1的大小关系是( )A.M =NB.M ≤NC.M <ND.M >N解析 因为f (x )=x 2-a 与g (x )=a x (a >1且a ≠2)在区间(0,+∞)上具有不同的单调性,所以a >2,所以M =(a -1)0.2>1,N =⎝ ⎛⎭⎪⎫1a 0.1<1,所以M >N .答案 D12.(2020·衡水中学检测)已知函数f (x )=⎝ ⎛⎭⎪⎫23|x |-x 23且满足f (2a -1)>f (3),则a 的取值范围为( ) A.a >2 B.a <2C.-1<a <2D.a <-1或a >2解析 易知f (x )=⎝ ⎛⎭⎪⎫23|x |-x 23是R 上的偶函数,又当x >0时,f (x )=⎝ ⎛⎭⎪⎫23x-x 23单调递减.由f (2a -1)>f (3)⇔f (|2a -1|)>f (3), ∴|2a -1|<3,解得-1<a <2.答案 C13.(2018·上海卷)已知常数a >0,函数f (x )=2x 2x +ax 的图象经过点P ⎝ ⎛⎭⎪⎫p ,65,Q ⎝ ⎛⎭⎪⎫q ,-15.若2p +q =36pq ,则a =________.解析 因为f (x )=2x 2x +ax=11+ax 2x ,且其图象经过点P ,Q , 则f (p )=11+ap 2p=65,即ap 2p =-16,①f (q )=11+aq 2q=-15,即aq2q =-6,② ①×②得a 2pq2p +q =1,则2p +q =a 2pq =36pq ,所以a 2=36,解得a =±6,因为a >0,所以a =6. 答案 614.已知定义在R 上的函数f (x )=2x -12|x |. (1)若f (x )=32,求x 的值;(2)若2t f (2t )+mf (t )≥0对任意t ∈[1,2]恒成立,求实数m 的取值范围. 解 (1)当x <0时,f (x )=0,故f (x )=32无解;当x ≥0时,f (x )=2x -12x ,由2x -12x =32,得2·22x -3·2x -2=0, 将上式看成关于2x 的一元二次方程, 解得2x =2或2x =-12,因为2x >0,所以2x =2,所以x =1.(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t -122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t -1)≥-(24t -1),因为22t -1>0, 所以m ≥-(22t +1),又y =-22t -1,t ∈[1,2]为减函数, ∴y max =-22-1=-5,故m ≥-5.C级创新猜想15.(多填题)已知函数f(x)=2x1+a·2x的图象关于点⎝⎛⎭⎪⎫0,12对称,则a=________,f(x)的值域为________.解析依题设f(x)+f(-x)=1,则2x1+a·2x+2-x1+a·2-x=1,整理得(a-1)[4x+(a-1)·2x+1]=0. 所以a-1=0,则a=1.因此f(x)=2x1+2x=1-11+2x.由于1+2x>1,∴0<11+2x<1,∴0<f(x)<1.故f(x)的值域为(0,1).答案1(0,1)莘莘学子,最重要的就是不要去看远方模糊的,而要做手边清楚的事。

人教A版高考总复习一轮理科数学精品课件 第2章 函数的概念与性质 第5节 指数与指数函数

人教A版高考总复习一轮理科数学精品课件 第2章 函数的概念与性质 第5节 指数与指数函数

2 -2
>
1
对一切实数
3
x 恒成立,则实
.
答案:[0,1)
2 -2 >3-1,因为指数函数y=3x为增函数,
解析:原不等式可变形为3
则有ax2-2ax>-1,即ax2-2ax+1>0对一切实数x恒成立.
①当a=0时,1>0,满足题意;
②当a≠0时,若二次函数大于0恒成立,
则需a>0且Δ=(-2a)2-4a<0,即a>0且a2-a<0,解得0<a<1.
2.一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数
形结合求解.
对点训练3若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围

.
答案:[-1,1]
解析:曲线|y|=2x+1与直线y=b的图象如图所示.
由图象可得,若|y|=2x+1与直线y=b没有公共点,
则-1≤b≤1.
故b的取值范围是[-1,1].
与0<a<1来研究.
2.当a>1时,指数函数的图象呈上升趋势,当0<a<1时,指数函数的图象呈下
降趋势;简记:撇增捺减.
微思考函数 y=a (a>0,且 a≠1)与 y=
x
提示:关于y轴对称.
1
的图象有什么关系?

常用结论
1.画指数函数y=ax(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),
(3)过定点 (0,1)
性质
(4)当 x>0 时, y>1 ;
(5)当 x>0 时,
当 x<0 时, 0<y<1

高考数学人教版理科一轮复习课件:2-5指数与指数函数

高考数学人教版理科一轮复习课件:2-5指数与指数函数

考向三 指数函数的性质及应用
方向 1 指数函数的单调性
【例 3】
(1)已知
a=35-
1 3
,b=35-
1 4
,c=32-
3 4
,则
a,b,c
的大小关系是( D )
A.c<a<b
B.a<b<c
C.b<a<c
D.c<b<a
(2)已知函数 f(x)=(13)ax2-4x+3 .
函数图象的识辨方法 (1)由函数的定义域判断图象的左右位置,由函数的值域判断图象 的上下位置; (2)由函数的单调性判断图象的变化趋势; (3)由函数的奇偶性判断图象的对称性; (4)由函数的周期性识辨图象; (5)由函数图象上的特征点排除不符合要求的图象.
(1)函数 f(x)=ax-b 的图象如图,其中 a,b 为常数,则下列结论正
递减区间是(-∞,-2).
②令 h(x)=ax2-4x+3,则 f(x)=(13)h(x),由于 f(x)有最大值 3, a>0,
所以 h(x)应有最小值-1,因此必有12a4-a 16=-1, 解得 a=1, 即当 f(x)有最大值 3 时,a 的值等于 1.
方向 2 指数函数性质的综合应用
点 A2,13,则 f(-1)= 3 .
解析:依题意可知 a2=13,解得 a= 33, 所以 f(x)= 33x,所以 f(-1)= 33-1= 3.
6.(必修 1P58 第 2 题改编)函数
(0,+∞).
解析:要使该函数有意义,
的定义域是
解得 x>0,所以定义域为(0,+∞).
(4)结果不能同时含有根式和分数指数幂,也不能既有分母又有负 分数指数幂.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲指数与指数函数
[考纲]
1.了解指数函数模型的实际背景.
2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算.
3.理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底
数为2,3,10,1
2,
1
3的指数函数的图象.
4.体会指数函数是一类重要的函数模型.
知识梳理1.根式
(1)根式的概念
①n
a n=
⎩⎪

⎪⎧a,n为奇数,
|a|=


⎧a,a≥0,
-a,a<0,
n为偶数.
②(n
a)n=a.
2.有理数指数幂
(1)幂的有关概念
①零指数幂:a0=1(a≠0).
②负整数指数幂:a-p=1
a p(a≠0,p∈N
*);
③正分数指数幂:a n m=n a m(a>0,m,n∈N*,且n>1);
④负分数指数幂:a
n
m -=
a
n
m 1

1n
a m
(a >0,m ,n ∈N *,且n >1);
⑤0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质
辨 析 感 悟
1.指数幂的应用辨析 (1)(4
-2)4=-2.( )
(2)(教材探究改编)(n
a n )=a .( ) 2.对指数函数的理解
(3)函数y =3·2x 是指数函数.( ) (4)y =⎝ ⎛⎭
⎪⎫
1a x 是R 上的减函数.( )
(5)指数函数在同一直角坐标系中的图象的相对位置与底数的大小关系如图,
无论在y 轴的左侧还是右侧图象从上到下相应的底数由大变小.( )
(6)(2013·金华调研改编)已知函数f (x )=4+a x -1(a >0且a ≠1)的图象恒过定点P ,则点P 的坐标是(1,5).( )
[感悟·提升]
1.“n a n ”与“⎝⎛⎭⎫n a n ”的区别 当n 为奇数时,或当n 为偶数且a ≥0时,n a n =a ,当n 为偶数,且a <0时,n a n =-a ,而(n
a )n =a 恒成立.如(1)中4-2不成立,(2)中
6
(-2)2
=3
2≠
3
-2.
2.两点注意 一是指数函数的单调性是底数a 的大小决定的,因此解题时通常对底数a 按0<a <1和a >1进行分类讨论,如(4);
二是指数函数在同一直角坐标系中的图象与底数的大小关系,在y 轴右侧,图象从上到下相应的底数由大变小,在y 轴左侧,图象从上到下相应的底数由小变大.如(5).
考点一 指数幂的运算
【例1】 (1)计算:
()()()
2
0.53
2
11322
34350.0080.020.3289--⎡⎤⎢⎥
-+÷⨯⎢⎥⎢⎥⎢⎥⎣

⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭÷0.062 50.25;
(2)若12
x +12
x -=3,求332
2
2
2
2
3
x x x x
-
-++++的值.
规律方法 进行指数幂运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.需注意下列问题:
(1)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示;(2)应用平方差、完全平方公式及a p a -p =1(a ≠0)简化运算.
考点二 指数函数的图象及其应用
【例2】 (1)(2014·郑州模拟)已知函数f (x )=2x -2,则函数y =|f (x )|的图象可能是( ).
(2)下列各式比较大小正确的是( ). A .1.72.5>1.73 B .0.6-1>0.62 C .0.8-0.1>1.250.2 D .1.70.3<0.93.1
规律方法 (1)对指数型函数的图象与性质(单调性、最值、大小比较、零点等)的求解往往利用相应指数函数的图象,通过平移、对称变换得到其图象,然后数形结合使问题得解.
(2)一些指数方程、不等式问题的求解,往往利用相应指数型函数图象数形结合求解.
【训练2】 已知实数a ,b 满足等式2 011a =2 012b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( ).
A .1个
B .2个
C .3个
D .4个
考点三 指数函数的性质及其应用
【例3】 已知函数f (x )=⎝ ⎛⎭⎪⎫12x -1+12x 3. (1)求函数f (x )的定义域; (2)讨论f (x )的奇偶性; (3)求证:f (x )>0.
规律方法 (1)应用指数函数的单调性可以比较同底数幂值的大小.
(2)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性的求解方法,与前面所讲一般函数的求解方法一致,只需根据条件灵活选择即可.
【训练3】 已知定义域为R 的函数f (x )=-2x +b
2x +1+a 是奇函数.
(1)求a ,b 的值;
(2)解关于t 的不等式f (t 2-2t )+f (2t 2-1)<0.
1.判断指数函数图象的底数大小的问题,可以先通过令x =1得到底数的值再进行比较.
2.对和复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成. 3.画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝ ⎛

⎪⎫-1,1a . 4.熟记指数函数y =10x ,y =2x ,y =⎝ ⎛⎭⎪⎫110x ,y =⎝ ⎛⎭⎪⎫
12x 在同一坐标系中图象的相对
位置,由此掌握指数函数图象的位置与底数大小的关系.
营养餐
忽略讨论及验证致误
【典例】 (2012·山东卷)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.
【自主体验】
当x ∈[-2,2]时,a x <2(a >0,且a ≠1),则实数a 的范围是( ). A .(1,2) B.⎝ ⎛⎭
⎪⎫22,1
C.⎝ ⎛⎭⎪⎫
22,1∪(1,2) D .(0,1)∪(1,2)
自助餐
基础巩固题组
一、选择题
1.函数y =a x
-1
a (a >0,a ≠1)的图象可能是( ).
2.(2014·陕西质检三)函数y =2x -2-x 是( ). A .奇函数,在区间(0,+∞)上单调递增 B .奇函数,在区间(0,+∞)上单调递减 C .偶函数,在区间(-∞,0)上单调递增 D .偶函数,在区间(-∞,0)上单调递减
3.(2014·济南一模)若a =30.6,b =log 30.2,c =0.63,则( ). A .a >c >b B .a >b >c C .c >b >a D .b >c >a
4.设2a =5b =m ,且1a +1
b =2,则m 等于( ). A.10 B .10 C .20 D .100
5.函数y =a x -b (a >0且a ≠1)的图象经过第二、三、四象限,则a b 的取值范围为( ).
A .(1,+∞)
B .(0,+∞)
C .(0,1)
D .无法确定 二、填空题 6.
a 3a ·5a 4
(a >0)的值是________.
7.(2013·盐城模拟)已知函数f (x )=a -x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.
8.函数f (x )=a x (a >0,a ≠1)在[1,2]中的最大值比最小值大a
2,则a 的值为________. 三、解答题
9.设f (x )=e -x a +a
e -x 是定义在R 上的函数.
(1)f (x )可能是奇函数吗? (2)若f (x )是偶函数,求a 的值.
10.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值.
能力提升题组
一、选择题
1.(2014·惠州质检)设f (x )=|3x -1|,c <b <a 且f (c )>f (a )>f (b ),则下列关系式中一定成立的是( ). A .3c >3b B .3b >3a C .3c +3a >2 D .3c +3a <2
2.(2014·杭州质检)已知函数f (x )=⎩⎨⎧
(1-3a )x +10a ,x ≤7,a x -7,x >7是定义域上的递减
函数,则实数a 的取值范围是( ). A.⎝ ⎛⎭⎪⎫13,12 B.⎝ ⎛⎦⎥⎤1
3, 611 C.⎣⎢⎡⎭⎪⎫12,23 D.⎝ ⎛⎦⎥⎤12,611 二、填空题
3.已知实数a ≠1,函数f (x )=⎩⎨⎧
e 2x
(x >0),
e a -x (x <0),
若f (1-a )=f (a -1),则a 的值为
________. 三、解答题
4.已知函数f (x )=.
(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.。

相关文档
最新文档