中间套管下深计算
石油大学钻井工程试题

第一章4.岩石的硬度也确实是岩石的抗压强度(f )。
1.一样岩石的弹性常数随围压的增加而增大。
(f )2.在动载作用下岩石呈现出的强度比静载作用下要大的多。
( f )1.什么是井底压差?答:井内液柱压力与地层孔隙压力之差。
3.d c指数法预报异样地层压力的原理答:d c指数法预报异样地层压力的原理是依照机械钻速在正常、异样地层压力的不同,通过计算取得。
表达要紧公式及公式中d c指数与机械钻速之间的关系。
5.岩石的硬度与抗压强度有何区别?答:硬度与抗压强度有联系,但又有专门大区别。
硬度只是固体表面的局部对另一物体压人或侵入时的阻力,而抗压强度那么是固体抗击固体整体破坏时的阻力。
6.什么是各向紧缩效应?答:在三轴应力实验中,若是岩石是干的或不渗透的,或孔隙度小且孔隙中不存在液体或气体时,增大围压那么一方面增大岩石的强度,另一方面也增大岩石的塑性,这两方面的作用统称为“各向紧缩效应”。
第二章73.牙轮钻头是以( a )作用为主破岩的钻头。
a.冲击b.切削c.研磨4.已知钻具在泥浆中的总重量为100吨,钻进时需给钻头加压20吨,钻进时大钩负荷应该是80 吨。
4.某井井深2000米,地层压力27.5Mpa,井内钻井液密度为1.18 g/cm3,井底压差为-4.35 Mpa 。
1.论述牙轮钻头的工作原理。
1)牙轮钻头依托牙齿破碎演示,固定在牙轮上的牙齿随钻头一路绕钻头轴线作顺时针方向的旋转运动,成为公转。
(3分)2)同时,牙齿绕牙轮轴线作逆时针方向的旋转成为自转。
钻头在井底的纵向振动,与静载压入力一路形成了钻头对地层演示的冲击、压碎作用。
(2分)3)剪切作用由牙轮钻头的超顶、复锥和移轴三种结构特点引发。
(2分)1.某直井钻至井深L=1600m ,井底地层压力16.4MPa ,泥浆密度ρm =1.1g/cm 3,钻进钻压为W=65kN ,钻柱组成为5”钻杆(外径为d op =127mm 、内径为d ip =110mm 、长L p =1500m ) +7”钻铤(外径为d oc =177.8mm 、内径为d ic =75mm 、长L c =100m )组成,已知钻柱的密度为ρ=7.85g/cm 3。
钻井工程-19-井身结构讲解

Sf
D31 D2
Sk
2.15 0.036 0.03 D31 0.06 3200
试取 D31 =3900m,得 pper 2.01g / cm3
由ρp曲线,p3900 1.94 pper 2.01g / cm3
故确定初选点 D31 = 3900 m.
21
(4)校核是否会卡尾管 计算压差:
钻井工程
井身结构
中国石油大学(北京)
1
oil zone
一开 表层套管
二开 中间套管
(技术套管)
三开 生产套管
(油层套管)
2
井身结构—油井基础,全井骨架 固井工程—套管柱设计和注水泥 不仅关系全井能否顺利钻进完井, 而且关系能否顺利生产和寿命。
3
井身结构设计 内容:套管层次; 每层套管下深; 套管和井眼尺寸配合。
Dpmin ——最小地层孔隙压力所处的井深,m
f min ——裸眼段最小地层破裂压力的当量泥浆密度, g / cm3
fc1 ——套管鞋处地层破裂压力的当量泥浆密度, g / cm3
Dc1 ——套管下入深度,m
11
五、井身结构设计方法
1、求中间套管下入深度初选点 D21 (1)不考虑发生井涌
一、套管的分类及作用 二、井身结构设计原则 三、井身结构设计基础数据 四、裸眼井段应满足力学平衡 五、井身结构设计方法(举例) 六、套管尺寸和井眼尺寸选择
4
一、套管的分类及作用
1、表层套管—Surface casing 封隔地表浅水层及浅部疏松和复杂层 安装井口、悬挂及支撑后续各层套管
2、中间套管—Intermediate casing 表层和生产套管间因技术要求下套管 可以是一层、两层或更多层 主要用来分隔井下复杂地层
石油钻井常用计算公式

常 用 公 式一、配泥浆粘土用量二、加重剂用量W 加=)()(加重后加重剂原浆加重后泥浆量加重剂ρρρρρV三、稀释加水量Q 水=)()(水稀释后稀释后原浆原浆量水ρρρρρV四、泥浆上返速度V 返=)d (7.1222钻具井径 D Q五、卡点深度(1) L=9.8ke/P (㎝、KN) (2)L=eEF/105P=Ke/P(㎝,t ,K=21F=EF/105 ,E=2.1×106 ㎏/㎝2) 5”壁厚9.19 K=715 3 1/2壁厚9.35 K=491)()(水土水泥浆泥浆量土土ρρρρρ V W六、钻铤用量计算 L t. =m.q.kp 式中p ---钻压,公斤,q --钻铤在空气中重,量公斤/米,K ---泥浆浮力系数, L t ---钻铤用量, 米, m---钻铤附加系数(1.2至1.3) 七、 泵功率 N=7.5Q p (马力)式中p -实际工作泵压(k g /cm 2), Q –排量(l /s ) 八、钻头压力降 p咀=4e 22 d c Q .827.0ρ (kg /cm 2)式中ρ-泥浆密度(g /cm 3), Q –排量(l /s ), C ---流量系数(取0.95-0.985) d e ---喷咀当量直径(cm ),d e =232221 d d d九、喷咀水功率 N咀=7.5 Q p 咀=4e 23d c Q .11.0十、喷射速度过 v 射=2e dQ 12.74c 十一、冲击力 F 冲 =2e 2d Q .12.74ρ十二、环空返速V=22 d DQ 12.74-式中ρ-泥浆密度(g /cm 3), Q –排量(l /s ), C ---流量系数(取0.95-0.985) d e ---喷咀当量直径(cm ),d e =232221 d d d ++十三、全角变化率—“井眼曲率”公式 COS ⊿E=COSa 1 COSa 2+Sina 1 Sina 2COSB 或⊿E=(a 12+ a 22-2 a 1 a 2 COSB )1/2式中:⊿E —上下两测点为任意长度时计算出的“井眼曲率”a 1—上测点的井斜角,度。
钻井工程课程设计

表A-1 钻井工程课程设计任务书一、地质概况29:井别:探井井号:设计井深:3265m 目的层:当量密度为:g/cm3表A-2设计系数石工专业石工(卓越班)1201班学生姓名:木合来提.木哈西图A-1 地层压力和破裂压力一.井身结构设计1.由于该井位为探井,故中间套管下深按可能发生溢流条件确定必封点深度。
由图A-1得,钻遇最大地层压力当量密度ρpmax=1.23g/cm³,则设计地层破裂压力当量密度为:ρfD=1.23+0.024+3245/H1×0.023+0.026.试取H1=1500m,则ρfD=1.23+0.024+2.16×0.023+0.026=1.33 g/cm³,ρf1400=1.36 g/cm³> ρfD 且相近,所以确定中间套管下入深度初选点为H1=1500m。
验证中间套管下入深度初选点1500m是否有卡钻危险。
从图A-1知在井深1400m处地层压力梯度为1.12 g/cm³以及320m属正常地层压力,该井段内最小地层压力梯度当量密度为1.0 g/cm³。
ΔP N=0.00981×(1.10+0.024-1.0)×320=0.389<11MPa所以中间套管下入井深1500m无卡套管危险。
水泥返至井深500m。
2.油层套管下入J层13-30m,即H2=3265m。
校核油层套管下至井深3265m是否卡套管。
从图A-1知井深3265m处地层压力梯度为1.23 g/cm³,该井段内的最小地层压力梯度为1.12g/cm³,故该井段的最小地层压力的最大深度为2170m。
Δp a=0.00981×(1.23+0.024-1.12)×2170=2.85Mpa<20 Mpa所以油层套管下至井深3265m无卡套管危险。
水泥返至井深2265m。
3.表层套管下入深度。
第2讲_井身结构设计

测技术得到发展,特别是近平衡钻井的推广和井控技术的掌
握,使井身结构中套管层次和下入深度的设计,逐步总结出 一套较为科学的设计方法。
在“六五”期间,我国开始应用这套方法.首先在中原
油田取得很大效益。如在3500到4700m深井中,使平均事故 时间大幅度下降、建井周期缩短、钻井成本下降。
长江大学石油工程学院钻井工程研究所
5.1、中间套管设计
2.2、发生溢流(井涌)时
f 2
剖面图中最大地层压力梯度点对应的深度(m)
p m ax
Sb S
f
D p m ax D 21
Sk
井涌条件允许值
地层设计破裂压当量密度
激动压力系数
剖面图中最大地层压力对应的当量密度值 破裂压力安全增值 中间套管下入深度的初始假定点深度(m)
长江大学石油工程学院钻井工程研究所
3、井身结构设计中所需要的基础数据
地层破裂安全增值Sf由地区统计资料得到,一般取 0.031 g/cm3; 井涌条件允许值Sk由地区统计资料得到,一般取 0.051-0.10 g/cm3; 最大回压pwh由工艺条件决定,一般取2.0-4.0MPa;
. 钻压差允许值 卡
7、水泥返深设计
对于油层,生产套管的管外水泥返深至少应该在油 层顶部200m以上。对于气层,生产套管的管外水泥 返深至少应该在油层顶部300m以上;
中间套管的管外水泥返深至少应该在复杂或大断层
100m以上; 尾管的管外水泥返深至少在尾管的悬挂器以上;
表层套管的管外水泥返到地面。
长江大学石油工程学院钻井工程研究所
长江大学石油工程学院钻井工程研究所
5.1、中间套管设计
(2)中间套管下入深度 的初始假定点D21 在压力剖面图的横坐标 上,找出前面已经确定的
井身结构设计例题

设计举例:某井设计井深为4400m,地层孔隙压力梯度和地层破裂压力梯度剖面如图。
给定设计系数: S = 0.036g/cm3;S = 0.04g/cm3;S = 0.06g/cm3;S = 0.03g/cm3;Ap = 12MPa;Ap = 18MPa,试进亍该井的井身结构设计。
' 村解由图上查得最大地层孔隙压力梯度为2.04g/cm3,位于4250m处。
1.确定中间套管下入深度初选点D F21P = p + S + S + —k Sfnk p max w f D K4250P f = 2.04 + 0.036 + 0.030 + ------- x 0.06215000 ------- ------------- L-i—— --------- ------1,2 L4 1.6 1.$ X0 2.2 2.4 当量帖―度WW饵51。
试拭取D = 3400m ,将3400m 代入上式得:21P = 2.04 + 0.036 + 0.030 +4250x 0.06 = 2.181g/cm3f3400由上图查得3400m 处当P f3400 = 2.19g /cm3,因为P f <P f340°且相近,所以确定中间套管下入深度初选点为 D 21 = 3400m 。
2. 校核中间套管下入到初选点3400m 过程中是否会发生压差卡套管由上图查得,3400m 处 P 3400 = 1.57g / cm3, P = 1.07g / cm3,D . = 3050m ,p max w Q p min max p min△p = 0.00981 x 3050 x (1.57 + 0.036 -1.07) = 16.037( MPa )因为A p>%,所以中间套管下深应浅于初选点。
在A p = 12MPa 下所允许的最大地层压力梯度可由公式:A p = 0.00981P = ---------- —N ------ F p — Spper0.00981D p min bminp =12+1.07 - 0.036 = 1.435( g / cm3)pper 0.00981 x 3050由图中地层压力梯度上查出与 p pp ^ = 1.435g Cm 对应的井深为3200m ,则中间套管下入深度D 2 =3200m 。
井身结构设计

井身结构设计摘要:井深结构设计是钻井工程的基础设计。
它的主要任务是确定导管的下入层次,下入深度,水泥浆返深,水泥环厚度及钻头尺寸。
基础设计的质量是关系到油气井能否安全、优质、高速和经济钻达目的层及保护储层防止损害的重要措施。
由于地区及钻井目的层的不同,钻井工艺技术水平的高低,不同地区井身结构设计变化较大。
选择井身结构的客观依据是底层岩性特征、底层压力、地层破裂压力。
正确的井身结构设计决定整个油田的开采。
本文基于课本所学的基本内容,对井身结构做一个大致的程序设计。
井身结构设计的内容:1、确定套管的下入层次2、下入深度3、水泥浆返深4、水泥环厚度5、钻头尺寸井身结构设计的基础参数包括地质方面的数据和工程等数据1.地质方面数据(1)岩性剖面及故障提示;(2)地层压力梯度剖面;(3)地层破裂压力梯度剖面。
2.工程数据,以当量钻井液密度表示;单位g/cm3:如美国墨西(1)抽汲压力系数Sw=0.06。
我国中原油田Sw=0.015~0.049。
湾地区采用Sw,以当量钻井液密度表示,单位g/cm3。
(2)激动压力系数Sg由计算的激动压力用(2-58)进行计算,美国墨西湾地区取Sg=0.06, Sg我国中原油田Sg=0.015~0.049。
(3)地层压裂安全增值S,以当量钻井液密度表示,单位g/cm3。
fSf是考虑地层破裂压力检测误差而附加的,此值与地层破裂压力检测精度有关,可由地区统计资料确定。
美国油田Sf取值0.024,我国中原油田取值为0.02~0.03。
4)溢流条件Sk以当量钻井液密度表示,单位g/cm3。
由于地层压力检测误差,溢流压井时,限定地层压力增加值Sk。
此值由地区压力检测精度和统计数据确定。
美国油田一般取Sk=0.06。
我国中原油田取值为0.05~0.10。
(5)压差允值PN (Pa)裸眼中,钻井液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差卡钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行固井和完井工作。
【钻井工程】井身结构设计

井
深 ,
表 套
m
破裂压力
技 套
设计 井深
地层压力
1.0 1.3 1.6
油套
1.8 当量密度,g/cm3
1. 自下而上的设计法
2)设计特点
(1)每层套管下入的深度最浅,套管费用最低。适合已探明 地区开发井的井身结构设计;
(2)上部套管下入深度的合理性取决于对下部地层特性了解 的准确程度和充分程度;
(3)应用于已探明地区的开发井的井身结构设计比较合理; (4)在保证钻井施工顺利的前提下,自下而上的设计方法可 使井身结构的套管层次最少,每层套管下入的深度最浅,从而达 到成本最优的目的。
(3) 0.00981 (dmax pmin ) Dpmin P
(4)
d max S f
Sk
Dpmax Dc1
fc1
防井涌 防井漏 防压差卡钻 防关井井漏
第三节 井身结构设计依据与原理
五、地层必封点
(1)钻进过程中钻遇易坍塌页岩层、塑性泥岩层、盐岩层、岩膏 层、煤层等,易造成井壁坍塌和缩径。 (2)裂缝溶洞型、破裂带地层、不整合交界面地层。 (3)含H2S等有毒气体的油气层。 (4)低压油气层的防污染问题。 (5)井眼轨迹控制等施工方面的特殊要求。SY/T 6396-2009 中第4.6条的规定:“井身结构除按SY/T5431的规定执行外,丛 式井组各井的表层下深宜交替错开10m以上。” (6)在采用欠平衡压力钻井时,为了维持上部井眼的稳定性,通 常将技术套管下至产层顶部。 (7)表层套管的下入深度应满足环境保护的要求。
油气井工程设计与应用
第一部分 井身结构设计
第一部分 井身结构设计
第一节 地层—井眼压力系统 第二节 井身结构设计的内容及套管层次 第三节 井身结构设计依据与原理 第四节 井身结构设计方法 第五节 套管与井眼尺寸的选择 第六节 设计举例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20
2 技术套管下深公式推导 PmE≥Ppmax 1)防喷
Pf≥PmE
地层破裂压力 井内有效液柱压力
在下钻时,井内有效液柱压力最大,易发生井漏。
mE =max +S g =p max +S b +S g
考虑地层压力及地层破裂压力检测误差,加入压裂安全增值Sf 则
f mE S f
设计地层破裂压力当量密度
p max +S b +S g S f
井内有效液柱压力 设计井段最大地层压力
在起钻时,井内有效液柱压力最小,易发生井喷。
mE max S b
井内有效液柱压力当量密度 考虑到防喷,则 该井段所用最大钻井液密度
所以
mE = p max
该井段最大地层压力当量密度
max =p max +S b
2 技术套管假定下深公式推导
2)防漏
这便是正常作业时,技术套管假定下深的计算公式
3 按图查找下深点
在压力剖面图的横坐标上, 找出前面已经确定的 地层设计破裂压力当量密 度ρf , 从该点向上引垂线与破裂 压力线相交,交点所在的 深度及为中间套管下入深 度的初始假定点D21。
4、实例
某井设计井深为 4400 m;
地层孔隙压力梯度和破裂 压力梯度剖面如图 。 试确定该井不发生溢流时, 技术套管下入深度。 给定设计系数: Sb = 0.036g/cm3 ; Sg = 0.04g/cm3 ; 由图上查得 Sf = 0.03g/cm3 ;
高职石油天然气工程类专业 微课展示作品
正常作业技术套管假定下深的确定
辽河石油职业技术学院 王军波开 表层套管二开技术套管
(中间套管)
下入深 度如何 确定?
三开
油
层
生产套管
2 (油层套管 )
1、所需基础数据 1)地质方面的数据
两大剖面:
孔隙压力剖面 破裂压力剖面
19
1、所需基础数据 2)工程类数据
2、从该点向上引垂线与破裂压力 线相交,交点所在的深度3200m即 为该井正常钻井时,技术套管下入 深度的假定点。
欢迎同学们继续学习《钻井工程》
p max= 2.04g/cm3
43
解:
(1)技术套管假定下深 由
f p max S b S g S f
将已知参数代入上式得:
f 2.04 0.036 0.04 0.03
=2.146(g/cm3)
1、在压力剖面图的横坐标上,找出 当量钻井液密度为2.146g/cm3的点 f 2 。