1.1.1空间几何体的结构
高中数学1.1空间几何体的结构 优秀课件1

2
①
当 0 9 0 时 , S 1 l2 sin
2
S0
1 2
l2
sin
② 当 90180时 , P
S0
1 l2 sin
2
1 2
l2
sin 90
即 S0
1 2
l2.
l
P
l
综上选 B.
A
O
BA
O
B
C
C
作业
1. 《导学精练》1.1.1 活页+蓝皮〔分层要求〕 2.预习教材“简单组合体的结构特征〞
简单组合体
圆柱、圆锥、圆台的轴截面问题 通常我们称过旋转体旋转轴的截面为轴截面.
圆柱、圆锥、圆台轴截面分别是矩形、等腰三角形、 等腰梯形,这些轴截面集中反映了旋转体的各主要元 素,处理旋转体的有关问题一般要作出轴截面.
练习. 以下命题中错误的选项是〔 〕 A.圆柱的轴截面是过母线的截面中面积最大的一个. B.圆锥的轴截面是所有过顶点的截面中面积最大的一个. C.圆台的所有平行于底面的截面都是圆. D.圆锥的所有轴截面都是全等的等腰三角形.
几何学是研究现实世界中物体的形状、大小与位置关系的数学学科.空 间几何体是几何学的重要组成局部,它在土木建筑、机械设计、航海测绘等 大量实际问题中都有广泛的应用.
观察与思考
空间我几们何周体围的存定在义着:各种各样的物体,它们都占 据着空如间果的只一考局虑部物. 体的形状和大小,而不考虑 其它因素,那么这些由物体抽象出来的空间图 形就叫做空间几何体.
第一章 空间几何体
本节我们从空间几何体的整体观察入手,研 究空间几何体的结构特征.
观察与思考
由假观设察干以平下面物多体边的形形围状成和的大几小何,体试叫给做出多相面体. 应的空间几何体,说说有它们的共同特征。
1.1.1 棱柱、棱锥、棱台的结构特征

【提升总结】
特殊的棱柱:
种类较多,
侧棱不垂直于底面的棱柱叫做斜棱柱; 可要记清.
侧棱垂直于底面的棱柱叫做直棱柱;
底面是正多边形的直棱柱叫做正棱柱;
底面是平行四边形的四棱柱叫做平行六面体;
侧棱垂直于底面的平行六面体叫做直平行六面体;
底面是矩形的直平行六面体叫做长方体;
棱长都相等的长方体叫做正方体.
【即时训练】
顶点
面
棱
多面体
(1),(3),(4),(6), (8),(10),(11),(12) 具有同样的特点; 组成它们的面不全是平 面图形. 旋转体:我们把由一个平 面图形绕它所在平面内的 一条定直线旋转所形成的 封闭几何体叫做旋转体. 这条定直线叫做旋转体的轴.
轴
旋转体
【即时训练】
下列物体不.能.抽象成旋转体的是
多面体 棱柱 棱锥 棱台
几何特征 有两个面互相平行,其余 各面都是四边形,并且夹 在这两个平行平面间的每 相邻两个面的交线都互相 平行
有一个面是多边形,其余 各面都是有一个公共顶点 的三角形
用一个平行于棱锥底面的 平面去截棱锥,底面与截 面之间的部分,叫做棱台
图形
S
顶点
侧棱
侧面
D A
底面
C B
这个多边形面叫做棱锥的底面或底;有公共顶点的各 个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做 棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.
底面是三角形、四边形、五边形……的棱锥分别叫 做三棱锥、四棱锥、五棱锥……棱锥也用表示顶点 和底面各顶点的字母表示,如五棱锥S-ABCDE.
5.下面属于多面体的是 ①② (将正确答案的序号填 在横线上). ①建筑用的方砖;②埃及的金字塔;③茶杯;④球.
高中数学必修2知识点加例题加课后习题

高中数学必修二第一章 空间几何体1.1空间几何体的结构 1、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE -几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2、棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3、棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点4、圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
5、圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
6、圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
空间几何体的结构教案

1.1.1柱、锥、台、球的结构特征(一) 几何体1. 多面体:若干个平面多边形围成的几何体。
(1) 面----围成多面体的各个多边形。
棱----相邻两个面的公共边。
顶点-----棱与棱的公共点。
(2) 棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
底面:棱柱中,两个互相平行的面,叫做棱柱的底面,简称底。
侧面:棱柱中除底面的各个面。
侧棱:相邻侧面的公共边叫做棱柱的侧棱。
顶点:侧面与底面的公共顶点叫做棱柱的顶点。
底面是三角形、四边形、五边形……的棱柱分别叫三棱柱、四棱柱、五棱柱…… 斜棱柱:侧棱与底面不垂直的棱柱 直棱柱:侧棱与底面垂直的棱柱 正棱柱:底面是正多边形的直棱柱 平行六面体:底面是平行四边形的棱柱 直平行六面体:侧棱与底面垂直的平行六面体棱柱斜棱柱直正棱柱;四棱柱平行六面体直平行六面体 长方体正四棱柱正方体。
(3) 棱锥:如果一个多面体一个面是多边形,其他各面的交于一个顶点的三角形. 底面:棱锥中的多边形叫做棱锥的底面或底。
侧面:有公共顶点的各个三角形叫做棱锥的侧面 侧棱:相邻侧面的公共边叫做棱锥的侧棱。
顶点:各个侧面的公共顶点叫做棱锥的顶点。
棱锥的高: 顶点到底面的距离.底面是三角形、四边形、五边形……的棱锥分别叫三棱锥,四棱锥,五棱锥…… 正棱锥:如果棱锥的底面是正多边形,且他的顶点在过底面中心且与底面垂直的直线上. 棱锥的斜高:正棱锥侧面上的高(4) 棱台:棱锥被平行于底面的平面所截,截面和底面间的部分 下底面和上底面:原棱锥的底面和截面侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。
侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。
顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。
棱台的高:两地面之间的距离 正棱台:正棱锥截得棱台 棱台的斜高:正棱台侧面上的高底面是三角形、四边形、五边形……的棱台分别叫三棱台、四棱台、五棱台……棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是正多边形侧棱垂直于底面侧棱不垂直于底面(5)正多面体:②欧拉公式:(为简单多面体的顶点数,为面数,为棱数) (6)正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。
棱柱、棱锥、棱台的结构特征(修改后)

根据构成这些空间几何体的面的特点,可将 空间几何体分为两类: 多面体和旋转体
一、多面体的定义:
一般地,我们把由若干个平面多边形围成的几何体 叫做多面体. 1.围成多面体的各个多边形叫做多面体的面. 2.相邻两个面的公共边叫做多面体的棱, 3.棱与棱的公共点叫做多面体的顶点.
E' D'
C
面
B
A
判断下列几何体是不是棱台,为什么?
(1)
(2)
注意:棱台的侧棱的延长线交于一点,
达标训练
1、下列命题正确的是( C )
A.有两个面平行,其余各面都是四边形的几何体叫棱柱;
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱. C.有两个面平行,其余各面都是四边形,并且每相邻两个四 边形的公共边都互相平行的几何体叫棱柱. D.用一个平面去截棱锥,底面与截面之间的部分组成的几何
C C
E'
ቤተ መጻሕፍቲ ባይዱ
A
B
A
C
B
A
D
B
底面 侧面
D
C
B
C
A
A
B
E
C
1.棱柱的定义
A
B
侧棱 顶点
有两个面互相平行,其余各面都是四边形,并 且每相邻两个四边形的公共边都互相平行,由这些 面所围成的几何体叫做棱柱.
2.棱柱的表示 如:棱柱ABCDE- ABCDE
3.棱柱的分类
(1) 按照底面多边形的边数,我们把棱柱分为 D 三棱柱、四棱柱、五棱柱、……
5.如图所示,几何体的正确说法的序号为________ ①③④⑤.
①这是一个六面体;
②这是一个四棱台;
③这是一个四棱柱;
人教版高中数学必修2第一章1.1空间几何体的结构 1.1.1 柱、锥、台、球的结构特征

归纳小结
空间几何体的定义: 如果只考虑物体的形状和大小,而不考虑
其它因素,那么这些由物体抽象出来的空间图 形就叫做空间几何体。
空间几何体的分类:
1.多面体:由若干平面多边形围成的几何体。 2.旋转体:由一个平面图形绕它所在的平面 内的一条定直线旋转所成的封闭几何体。
2、5、7、9到底有哪些特征?
棱锥的顶点 棱锥的侧棱
棱锥的侧面
棱锥的底面
3. 棱锥的分类 底面是三角形、四边形、五边形
……的棱锥分别叫做三棱锥、四棱锥、 五棱锥……其中三棱锥又叫做四面体.
4. 棱锥的表示
用顶点和底面各顶点的字母来表示
如:棱锥S-ABCD
S
D
C
A
B
问题:有一个面是多边形,其余各面都是 三角形的几何体是棱锥吗?.
2. 棱台的有关概念
上底面 下底面
顶点 侧面 侧棱
3.棱台的分类
由三棱锥、四棱锥、五棱锥……截得的 棱台分别叫做三棱台、四棱台、五棱台……
4.棱台的表示
D1 A1
用表示上、下底面
D
顶点的字母来表示 A
如:棱台ABCD-A1B1C1D1
C1 B1
C
B
练习:下列几何体是不是棱台,为什么?
(1)
(2)
三、棱台 1、棱台的结构特征
用一个平行于棱锥底面的平面去截棱
锥,底面与截面之间的部分叫做棱台
三、棱台 1、棱台的结构特征
用一个平行于棱锥底面的平面去截
棱锥,底面与截面之间的部分叫做棱台
特征1:由棱锥截得(侧面是梯形,侧棱的延长 线相交于一点)
特征2:截面和底面平行 (两底面是对应边互相
平行的相似多边形)
1.1.1 棱柱、棱锥、棱台的结构特征2
③有关概念:
平行 的面. 底面:两个互相_____
侧面:其余各面; 公共边 侧棱:相邻侧面的_______;
侧面 与底面的公共顶点. 顶点:_____
三棱柱 ④分类:依据底面多边形的边数.如:底面是三角形的叫_______.
(2)棱锥:
多边形 其余各面 ①定义:有一个面是_______,
一个公共顶点 的三角形,由这 都是有_____________ 些面所围成的多面体叫做棱锥.
【规律总结】解答空间几何体概念辨析题的关注点 (1)认清概念的本质及棱柱、棱锥、棱台的结构特征 ,采用举反 例法排除错误的选项. (2)从底面多边形的形状,侧面形状以及它们之间的位置关系等 角度紧扣几何体的结构特征进行判断. 提醒:判断说法正误问题,要紧扣几何体的结构特征,理解棱柱、 棱锥、棱台的概念.
【变式训练】
用两个平面将如图所示的三棱柱ABC-A′B′C′分为三个三棱
锥.
【解析】如图,三棱柱ABC-A′B′C′可分为三棱锥C′-ABC、
三棱锥B-A′B′C′和三棱锥C′-ABA′.
类型三
多面体的展开图
1.如图代表未折叠的正方体的展开图,将其折叠起来,变成正方 体后,图形是 ( )
2.(2014·济宁高一检测)如图是一个正方体纸盒,在其中的三个 面上各画一条线段构成△ABC,且A,B,C分别是各棱上的中点,现 将纸盒剪开展成平面图,则不可能的展开图是 ( )
【自主解答】1.选B.由图可知,折叠后三条线段在相邻的三个 平面内,并且互相平行,故排除A,C.又由原平面图知,只有两个 平面是空白的,排除D,故选B. 2.选B.B选项折叠后两个画一条线段的三角形与另一个画一条 线段的三角形不交于一个顶点,与正方体三个画一条线段的三 角形交于一个顶点不符.
高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征
解:所截两部分分别是四棱柱和三棱柱.几何体ABCD-
一二三
知识精要 思考探究 典题例解 迁移应用
三、简单几何体的表面展开与折叠问题 1.绘制展开图
(1)绘制多面体的表面展开图要结合多面体的几何特征,发 挥空间想象能力或者是亲手制作多面体模型.
(2)在解题过程中,常常给多面体的顶点标上字母,先把多面 体的底面画出来,然后依次画出各侧面,便可得到其表面展开
图
示
底面:两个互相平行的面
及
侧面:底面以外的其余各面
相
侧棱:相邻侧面的公共边
关
顶点:侧面与底面的公共顶
概
点
念
记 法
棱柱 ABCDEF-A'B'C'D'E'F'
分 类
按底面多边形的边数分为三棱柱、四棱柱…
目标导航 预习导引
12
(2)棱锥的结构特征:
定 有一个面是多边形,其余各面都是有一个公共顶
义 点的三角形,由这些面所围成的多面体叫做棱锥
紧扣概念解题 在解答关于空间几何体概念的判断题时,要注意紧扣定义 判断,这就要求熟悉各种空间几何体的概念的内涵和外延,切 忌只凭图形主观臆断,如本例若意识不到棱台各侧棱延长后
交于一点则会致错.
多个梯形相连.
一二三
知识精要 思考探究 典题例解 迁移应用
【例3】 (1)请画出如图所示的几何体的表面展开图.
(2)根据下面所给的平面图形,画出立体图形.
一二三
知识精要 思考探究 典题例解 迁移应用
思路分析:由题意首先弄清几何体的侧面各是什么形状,然 后再通过空间想象或动手实践进行展开或折叠. 解:(1)展开图如图所示
A1B1C1平行于平面ABC,
高一数学人教A版必修二 1.1.1空间几何体的结构1 课件
B1
棱
A
D B
面
C
O A
三、棱柱
1.棱柱的定义 ①有两个面互相平行; ②其余各面都是四边形; ③每相邻两个四边形的 公共边都互相平行。
E1 F1 A 1 B1 D1 C1
侧 面 侧棱
E F A
D C B
底面
顶点
2.棱柱的分类
棱柱的底面可以是三角形、四边形、五边形、 …… 我们把这样 的棱柱分别叫做三棱柱、四棱柱、五棱柱、……
检查自学效果
一、空间几何体 如果我们只考虑物体的形状和大小,而 不考虑其它因素,那么由这些物体抽象出来 的空间图形就叫做空间几何体。
二、多面体和旋转体 多面体 旋转体
由若干个平面多边形围 由一个平面图形绕它所在平面 成的几何体. 内的一条定直线旋转所形成的 轴 封闭几何体.
顶点
D1
A1
C1
A' O'
能作为棱柱的底面的有几对?
A1 D1 B以作为底面吗? 哪些能?哪些不能?
棱柱的结构特征
①有两个面互相平行 ②其余各面都是四边形 ③每相邻两个四边形的公共边都互相平行
• 3.过BC的截面截去长方体的一角,截去的几何 体是不是棱柱,余下的几何体是不是棱柱?
棱柱的结构特征
①有两个面互相平行 ②其余各面都是四边形 ③每相邻两个四边形的公共边都互相平行 •4.为什么定义中要说“其余 各面都是四边形,并且相 邻两个四边形的公共边都 互相平行,”而不简单的 只说“其余各面是平行四 边形呢”?
思考: 1).棱柱侧棱之间的关系如何?
2).棱柱的两个底面以及平行于底面的截面关 系如何?
棱锥、正棱锥的结构特征比较
结构特征 棱锥
S
1.1.1空间几何体的结构1
二、新知探究
2.由一个平面图形绕它所在的平 面内的一条定直线旋转所形成 的封闭几何体叫做旋转体,这条 定直线叫做旋转体的轴。
请仔细观察下列几何体,说说它们的共同特点.
定义:有两个面互相平行,其余各面都是 四边形,并且每相邻两个四边形的公共边 都互相平行,由这些面围成的几何体 叫做棱柱。
棱柱的有关概念
请仔细观察下列几何体,说说它们的共同特点.
定义:有一个面是多边形,其余各面都是 有一个公共顶点的三角形,由这些面 所围成的几何体叫做棱锥。
顶点
棱锥的有关概念 棱锥中,这个多边形面叫做 棱锥的底面或底,有公共顶点 的各个三角形面叫做棱锥的 侧棱 侧面,各侧面的公共顶点叫做 棱锥的顶点,相邻侧面的公共 A 边叫做棱锥的侧棱。
D’ C’
A’
B’
D C
A
B
探究3:
长方体按如图截去一角后所得的两部分还是棱柱吗?
D’ G
G’ F’ B’ H
C’
A’ F
D E C
H’
E’
A B
答:都是棱柱.
探究4:
观察右边的棱柱,共有多少 对平行平面?能作为棱柱的 底面的有几对? 答:四对平行平面;只有一 对可以作为棱柱的底面.
棱柱的任何两个平行平面都可以作为棱柱 的底面吗? 答:不是.
柱体
棱柱 圆柱
锥体 棱锥 圆锥
台体 棱台 圆台
球
五、精彩一练
课本P7 练习1、2(1)(2); 课本P8 习题1.1 第2、3、4题。
六、激励评价
崇高的理想就象生长在高山上的鲜花。 如果要搞下它,勤奋才能是攀登的绳索。
七、作业设计
学案P81第22题(14分)
组成它们的面不全是平面图形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[归纳总结] 对多面体概念的理解,注意以下几个方面:
(1) 多面体是由平面多边形围成的,不是由圆面或其它曲面围
成,也不是由空间多边形围成. (2)本章所说的多边形,一般包括它内部的平面部分,故多面体
是一个“封闭”的几何体.
(3)围成一个多面体至少要四个面. (4)规定:在多面体中,不在同一面上的两个顶点的连线叫做多 面体的对角线,不在同一面上的两条侧棱称为多面体的不相邻侧 棱,侧棱和底面多边形的边统称为棱.
[答案] A
)
B.四边形 D.六边形
[解析] 三棱锥的侧面和底面均是三角形,故选A.
4 . 四 棱 柱 有 ________ 条 侧 棱 , ________ 个 顶 点. 导学号 92180003
[答案] 4 8
[解析] 四棱柱有4条侧棱,8个顶点.
棱柱的结构特征
下列关于棱柱的说法: 导学号 92180004 (1)所有的面都是平行四边形; (2)每一个面都不会是三角形; (3)两底面平行,并且各侧棱也平行; (4)被平面截成的两部分可以都是棱柱. 其中正确说法的序号是________.
图形
表示法
字母表示棱柱,如上图中的棱柱 用表示底面各顶点的____
可记为棱柱 ABCDE-A′B′C′D′E′
边数分为三棱柱、 分类 按底面多边形的____ 四棱柱、 五棱柱„„
[归纳总结] 棱柱的简单性质:
(1)侧棱互相平行且相等;侧面都是平行四边形. (2)两个底面与平行于底面的截面是全等的多边形,如图① 所示.
图形
表示 用表示底面各顶点的字母 ____表示棱台, 如上图中的棱台 法 分类
ABCD-A′B′C′D′ 可记为棱台____________
按底面多边形的边数 ____分为三棱台、四棱台、五棱 台„„
[归纳总结] 棱台的性质:
(1)侧棱延长后交于一点;侧面是梯形. (2)两个底面与平行于底面的截面是相似多边形,如图①所 示.
[规律总结] (1)紧扣棱柱的结构特征进行有关概念辨析 ①两个面互相平行; ②其余各面是四边形; ③相邻两个四边形的公共边互相平行.
图形
表示法
用表示顶点和底面各顶点的字母 ____表示, 如上图中的
S-ABCD 棱锥可记为棱锥________ 边数分为三棱锥、四棱锥、五棱 按底面多边形的____ 四面体 锥„„,其中三棱锥又叫________
分类
[ 归纳总结]
棱锥的性质:
(1)侧棱有公共点,即棱锥的顶点;侧面都是三角形. (2)底面与平行于底面的截面是相似多边形,如图①所示.
(1)多面体:由若干个平面多边形 ___________围成的
几何体叫做多面体(如图),围成多面体的各个 面 ;相邻两个面的 多边形叫做多面体的 _____ 公共边 叫 做 多 面 体 的 棱 ; 棱 与 棱 的 ________ 公共点 叫做多面体的顶点. ________
(2)旋转体:我们把由一个平面图形绕它所在平面内的一条 直线 旋转所形成的 ___________ 封闭几何体 叫做旋转体,这条定直 定 ________ 线叫做旋转体的轴.
(3)过不相邻的两条侧棱的截面是梯形,如图②所示.
1. 下 列 物 体 不 .能 .抽 象 成 旋 转 体 的 是 导学号 92180000 ( ) A.篮球 C.电线杆
[答案] D [ 解析 ] 水立方是多面体,不能抽象成旋转体;篮球、日 光灯管、电线杆都可抽象成旋转体.
B.日光灯管 D.国家游泳馆水立方
(5)一个多面体是由几个面围成,那么这个多面体称为几面体.
二、几种常见的多面体
1.棱柱 平行 ,其余各面都是 一般地,有两个面互相______ 相邻 两个四边形的公共边都互 四边形,并且每______ 定义 ______ 多面体叫做棱柱 平行 ,由这些面所围成的______ 相______ 平行 的面叫做棱柱的底面, 棱柱中,两个互相______ 有关 简称底;其余各面叫做棱柱的侧面;相邻侧面的 公共边 叫做棱柱的侧棱;侧面与底面的 概念 ________ 公共顶点 叫做棱柱的顶点 ___________
2 . 关于空间几何体的结构特征,下列说法不正确的是 导学号 92180001 ( )
A.棱柱的侧棱长都相等 B.四棱锥有五个顶点 C.三棱台的上、下底面是相似三角形 D.有的棱台的侧棱长都相等
[ 答案]
[ 解析]
B
根据棱锥顶点的定义可知,四棱锥只有一个顶点,
故选项 B 不正确.
3.棱锥的侧面和底面可以都是 导学号 92180002 ( A.三角形 C.五边形
Байду номын сангаас
(3)过不相邻的两条侧棱的截面是三角形,如图②所示.
3.棱台
用一个平行于 ______棱锥底面的平面去截棱锥, 定义 底面与截面 __________之间的部分叫做棱台
原棱锥的底面和截面分别叫做棱台的下底面 ______和 侧面;相邻侧面的 有关 上底面 ______;其它各面叫做棱台的____ 侧面的公共顶点 概念 公共边 ______叫做棱台的侧棱;底面与____ 叫做棱台的顶点
第一章
1.1 空间几何体的结构
1.1.1 棱柱、棱锥、棱台的结构特征
观察下列空间几何 体: 以上几何体有什么共 同特征?
一、空间几何体 大小 ,而不 形状 1 .概念:如果只考虑物体的 ________ 和 ________ 考虑其他因素,那么由这些物体抽象出来的__________ 空间图形 叫做空 间几何体. 2.多面体与旋转体
(3) 过不相邻的两条侧棱的截面是平行四边形,如图②所 示.
2.棱锥 定义
有关 概念
一般地,有一个面是多边形 ______,其余各面都是 有一个公共顶点 ______________的三角形,由这些面所围成的 多面体叫做棱锥 多边形面叫做棱锥的底面或底;有公共顶点 ________的 各个三角形面叫做棱锥的侧面;各侧面的 公共顶点 公共边 ________叫做棱锥的顶点;相邻侧面的______ 叫做棱锥的侧棱
[ 思路分析] 首先看是否有两个平行的面作为底面,再看
是否满足其他性质.
[解析] (1)错误,棱柱的底面不一定是平行四边形; (2)错误,棱柱的底面可以是三角形; (3)正确,由棱柱的定义易知; (4)正确,棱柱可以被平行于底面的平面截成两个棱柱,
所以说法正确的序号是(3)(4).
[答案] (3)(4)