8.1空间几何体的结构及其画法

合集下载

§8.1 空间几何体的结构及其三视图和直观图

§8.1 空间几何体的结构及其三视图和直观图

探究提高
解决该类题目需准确理解几何体的定义,要真正把握几何 体的结构特征,并且学会通过反例对概念进行辨析,即要说明 一个命题是错误的,设法举出一个反例即可. 主页
变式训练 1
下面是关于四棱柱的四个命题: ①若有两个侧面垂直于底面,则该四棱柱为直四棱柱; ②若过两个相对侧棱的截面都垂直于底面,则该四棱 柱为直四棱柱; ③若四个侧面两两全等,则该四棱柱为直四棱柱; ④若四棱柱的四条对角线两两相等,则该四棱柱为 直四棱柱. 其中,真命题的编号是②④ ________.(写出所有真命题 的编号)
主页
变式训练 3
一个平面图形的水平放置的斜二测直观图是一个 等腰梯形,它的底角为45°,两腰和上底边长均为1,则这 2 2 个平面图形的面积是 ______.
y
D
C
D
1
C
2
o
A
E
B x
A
2 1
B
S 1 [1 2 1] 2 2 2. 2
主页
题 型四
几何体的截面问题
对于①,平行六面体的两个相对侧面也可能与 底面垂直且互相平行,故①假; 对于②,两截面的交线平行于侧棱,且垂直于底 面,故②真;
主页
变式训练 1 下面是关于四棱柱的四个命题: ③若四个侧面两两全等,则该四棱柱为直四棱柱; ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱. ②④ .(写出所有真命题的编号) 其中,真命题的编号是________
对于③,作正四棱柱的两个平行菱形截面,可得满足条件 的斜四棱柱(如图(1)),故③假; 对于④,四棱柱一个对角面的两条对角线,恰为四棱柱 的对角线,故对角面为矩形,于是侧棱垂直于底面的一对角 线,同样侧棱也垂直于底面的另一对角线,故侧棱垂直于底 面,故④真(如图(2)).

课件6:8.1 第1课时 棱柱、棱锥、棱台

课件6:8.1 第1课时 棱柱、棱锥、棱台

解析:A 选项不符合棱柱的特点;B 选项中,如图①所示,构造四 棱柱 ABCD-A1B1C1D1,令四边形 ABCD 是梯形,可知平面 ABB1A1 ∥平面 DCC1D1,但这两个面不能作为棱柱的底面;C 选项中,如 图②所示,底面 ABCD 可以是平行四边形;D 选项是棱柱的特点.


答案:D
方法规律
用一个 平行 于棱锥 棱台 底底部面面分的叫与平做截面棱面去台之截间棱的锥,上可台面记AB的作CD棱:-台棱
A'B'C'D'
续表
相关概念 上底面:截面. 下底面:原棱锥的底 面. 侧面:其余各面. 侧棱:相邻侧面的公 共边. 顶点:侧面与上(下) 底面的公共顶点
[基础测试] 2.判断.(正确的画“√”,错误的画“×”) (1)棱柱的侧面都是平行四边形. ( ) (2)有一个面是多边形,其余各面都是三角形的几何体叫 棱锥. ( ) (3)用一个平面去截棱锥,底面和截面之间的部分叫做 棱台.( )
棱柱结构特征问题的解题策略
(1)有关棱柱概念辨析问题应紧扣棱柱的定义:
①两个面互相平行;
②其余各面都是四边形;
③相邻两个四边形的公共边互相平行.
求解时,首先看是否有两个面平行,再看是否满足其他特征.
(2)多注意观察一些实物模型和图片,便于举反例.
【跟踪训练】 1.下列说法错误的是 ( ) A.多面体至少有四个面 B.棱柱的两个底面是全等的多边形 C.长方体、正方体都是棱柱 D.三棱柱的侧面为三角形 解析:三棱柱的底面是三角形,其侧面一定是平行四边形,故 D 错误. 答案:D
【跟踪训练】 3.下列四个平面图形中,每个小四边形都是正方形,其中可以沿 相邻正方形的公共边折叠围成一个正方体的是( )

8-1 空间几何体的结构特征及三视图和直观图

8-1 空间几何体的结构特征及三视图和直观图

课时作业
与名师对话
高考总复习 · 课标版 · A
数学(文)
【解析】
命题①符合平行六面体的定义,故命题①是
正确的,底面是矩形的平行六面体的侧棱可能与底面不垂 直,故命题②是错误的,因直四棱柱的底面不一定是平行四 边形,故命题③是错误的,命题④由棱台的定义知是正确 的.
【答案】 ①④
课前自主回顾
课堂互动探究
课前自主回顾 课堂互动探究 课时作业
与名师对话
高考总复习 · 课标版 · A
数学(文)
解析:A错误.如图所示,由两个结构相同的三棱锥叠 放在一起构成的几何体,各面都是三角形,但它不一定是棱 锥.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 · 课标版 · A
数学(文)
B错误.如下图,若△ABC不是直角三角形或是直角三角 形,但旋转轴不是直角边,所得的几何体都不是圆锥.
时,其侧视图为D. (2)A图是两个圆柱的组合体的俯视图;B图是一个四棱柱 与一个圆柱的组合体的俯视图;C图是一个底面为等腰直角三 角形的三棱柱与一个四棱柱的组合体的俯视图,采用排除 法,故选D.
【答案】 (1)D (2)D
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 · 课标版 · A
数学(文)
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 · 课标版 · A
数学(文)
C错误.若六棱锥的所有棱长都相等,则底面多边形是正 六边形.由几何图形知,若以正六边形为底面,侧棱长必然 要大于底面边长. D正确.
答案:D
课前自主回顾
课堂互动探究
课时作业

人教a版高考数学(理)一轮课件:8.1空间几何体的结构、三视图和直观图

人教a版高考数学(理)一轮课件:8.1空间几何体的结构、三视图和直观图

3.简单组合体 简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一 种是由简单几何体截去或挖去一部分而成,有多面体与多面体、 多面体与旋 转体、旋转体与旋转体的组合体.
4. 三视图 几何体的三视图包括正视图、侧视图、俯视图 , 分别是从几何体的 正前方、正左方、正上方观察几何体画出的轮廓线.
考纲解读
空间几何体的结构 和三视图部分 重点考 查柱、锥、台、球 的定义和以三 视图为 载体考查柱、锥、 台、球的表面 积和体 积, 难度 不大. 空间几 何体的 性质是 基础, 以它们为载体考查 线线、线面、 面面间 的 关 系 是 重点 . 三 视图 的 还 原在 各 地 高 考 试 题 中 频繁 出 现 , 已 经 成 为高 考 的 热 点 问 题, 题型 多以 选择 题和 填空 题为 主 , 有时也会作为解答题的背景出现.
三视图的长度特征: “ 长对正, 宽相等, 高平齐” , 即正视图和侧 视图一样高, 正视图和俯视图一样长, 侧视图和俯视图一样宽. 若相邻两物 体的表面相交, 表面的交线是它们的分界线, 在三视图中, 要注意实、 虚线的 画法 .
5. 空间几何体的直观图 空间几何体的直观图常用斜二测画法来画, 其规则是: (1) 原图形中 x轴、 y轴、 z轴两两垂直, 直观图中, x' 轴、 y' 轴的夹角为 45° , z' 轴与 x' 轴和 y' 轴所在平面垂直. (2) 原图形中平行于坐标轴的线段, 在直观图中仍分别平行于坐标轴. 平 行于 x轴和 z轴的线段在直观图中保持原长度不变, 平行于 y轴的线段长度 在直观图中变为原来的一半. 6. 中心投影与平行投影 (1) 平行投影的投影线互相平行, 而中心投影的投影线相交于一点. (2) 从投影的角度看, 三视图和用斜二测画法画出的直观图都是在平行 投影下画出来的图形.

8.1 基本几何图形 第1课时 棱柱、棱锥、棱台(课件)2022-2023学年高一下学期数学(人教A

8.1 基本几何图形 第1课时 棱柱、棱锥、棱台(课件)2022-2023学年高一下学期数学(人教A
教学重难点
重点:掌握棱柱、棱锥、棱台的结构特征; 难点:棱柱、棱锥和棱台的侧面展开图问题.
学科素养
1.数学抽象:多面体与旋转体等概念的理解; 2.逻辑推理:棱柱、棱锥、棱台的结构特点; 3.直观想象:判断空间几何体; 4.数学建模:通过平面展开图将空间问题转化为平面问题解决,体现了转 化的思想方法.
相比较可得蚂蚁爬行的最短路线长为.
练习: 1.下列四个平面图形中,每个小四边形都是正方形,其中可以沿相邻正方形的 公共边折叠围成一个正方体的是( )
2.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面” 表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图 中“0”上方的“2”在正方体的上面,则这个正方体的下面是( )
(2)棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形. 底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、四棱锥、五棱锥 ……其中三棱锥又叫四面体。
棱锥也用顶点和底面各顶点字母表示,如棱锥S-ABCD。 (3)棱台:用一个平行于棱锥底面的平面区截棱锥,底面于截面之间的部分 叫做棱台。 原棱锥的底面和截面分别叫做棱台的下底面和上底面,棱台也有侧面、侧棱、 顶点。
由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、四棱台、 五棱台……
用各顶点字母表示棱柱,如棱台ABCDEF-A’B’C’D’E’F’。
思考:
1.面数最少的多面体是什么? 提示:围成一个多面体至少要四个面,所以面数最少 的多面体是四面体,如三棱锥就是四面体. 2.棱柱的侧面一定是平行四边形吗? 提示:根据棱柱的概念可知,棱柱的侧面一定是平行 四边形.

题型一 棱柱、棱锥、棱台的结构特点 例1 (1)下列命题中正确的是________.(填序号) ①有两个面平行,其余各面都是四边形的几何体叫棱柱; ②棱柱的一对互相平行的平面均可看作底面; ③三棱锥的任何一个面都可看作底面; ④棱台各侧棱的延长线交于一点. (2)关于如图所示几何体的正确说法的序号为________.

立体几何-8.1__空间几何体的结构及其三视图和直观图(教案)

立体几何-8.1__空间几何体的结构及其三视图和直观图(教案)

214 §8.1 空间几何体的结构及其三视图和直观图基础自测1.下列不正确的命题的序号是 . ①有两个面平行,其余各面都是四边形的几何体叫棱柱 ②有两个面平行,其余各面都是平行四边形的几何体叫棱柱 ③有一个面是多边形,其余各面都是三角形的几何体叫棱锥 ④有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥答案 ①②③2.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是 . 答案 60°3.如果一个几何体的三视图如图所示(单位长度:cm ),则此几何体的表面积是 cm 2.答案 (20+42) 4.(2008·宁夏文,14)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为3,底面周长为3,那么这个球的体积为 .答案 34 5.已知正三角形ABC 的边长为a,那么△ABC 的直观图△A ′B ′C ′的面积为 .答案 166a 2 例题精讲例1 下列结论不正确的是 (填序号).①各个面都是三角形的几何体是三棱锥②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥 ③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥④圆锥的顶点与底面圆周上的任意一点的连线都是母线答案 ①②③解析 ①错误.如图所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不一定是棱锥.②错误.如下图,若△ABC 不是直角三角形或是直角三角形,但旋转轴不是直角边,所得的几何体都不是圆锥.215③错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.④正确.例2 已知△ABC 的直观图A ′B ′C ′是边长为a 的正三角形,求原三角形ABC 的面积.解 建立如图所示的xOy 坐标系,△ABC 的顶点C 在y 轴上,AB 边在x 轴上,OC 为△ABC 的高,把y 轴绕原点顺时针旋转45°得y ′轴,则点C 变为点C ′,且OC=2OC ′,A 、B 点即为A ′、 B ′点,AB=A ′B ,已知A ′B ′=A ′C ′=a ,在△OA ′C ′中, 由正弦定理得''sin C OA OC ∠=ο45sin ''C A ,所以OC ′=a οο45sin 120sin =a 26, 所以原三角形ABC 的高OC=6a ,所以S △ABC =21×a ×6a=a 262. 例3 一个正三棱柱的三视图如图所示,求这个三棱柱的表面积和体积.解 由三视图易知,该正三棱柱的形状如图所示:且AA ′=BB ′=CC ′=4cm,正三角形ABC 和正三角形A ′B ′C ′的高为23cm.∴正三角形ABC 的边长为|AB|=ο60sin 32=4.∴该三棱柱的表面积为S=3×4×4+2×21×42sin60°=48+83(cm 2). 体积为V=S 底·|AA ′|=21×42sin60°×4=163(cm 3). 故这个三棱柱的表面积为(48+83)cm 2,体积为163cm 3.例4 棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图所示, 求图中三角形(正四面体的截面)的面积.解 如图所示,△ABE 为题中的三角形,由已知得AB=2,BE=2×23=3, BF=32BE=332,AF=22BF AB -=344-=38,∴△ABE 的面积为216 S=21×BE ×AF=21×3×38=2.∴所求的三角形的面积为2. 巩固练习1.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中为真命题的是 (填序号).①等腰四棱锥的腰与底面所成的角都相等②等腰四棱锥的侧面与底面所成的二面角都相等或互补③等腰四棱锥的底面四边形必存在外接圆④等腰四棱锥的各顶点必在同一球面上答案 ①③④2.一个平面四边形的斜二测画法的直观图是一个边长为a 的正方形,则原平面四边形的面积等于 . 答案 22a 23.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等 腰三角形,左视图(或称侧视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S.解 (1)由该几何体的俯视图、正视图、左视图可知,该几何体是四棱锥,且四棱锥的底面ABCD 是边长为6和8的矩形,高VO=4,O 点是AC 与BD 的交点. ∴该几何体的体积V=31×8×6×4=64. (2)如图所示,侧面VAB 中,VE ⊥AB ,则VE=22OE VO +=2234+=5∴S △VAB =21×AB ×VE=21×8×5=20 侧面VBC 中,VF ⊥BC ,则VF=22OF VO +=2244+=42.∴S △VBC =21×BC ×VF=21×6×42=122∴该几何体的侧面积 S=2(S △VAB +S △VBC )=40+242.4.(2007·全国Ⅱ文,15)一个正四棱柱的各个顶点在一个直径为2 cm 的球面上.如果正四棱柱的底面边长为1 cm ,那么该棱柱的表面积为 cm 2.答案 2+42 回顾总结知识方法思想课后作业一、填空题1.利用斜二测画法可以得到:①三角形的直观图是三角形,②平行四边形的直观图是平行四边形,③正方形的直观图是正方形,④菱形的直观图是菱形,以上正确结论的序号是 .217答案 ①②2.如图所示,甲、乙、丙是三个几何体图形的三视图,甲、乙、丙对应的标号是 . ①长方体;②圆锥;③三棱锥;④圆柱. 答案④③②3.下列几何体各自的三视图中,有且仅有两个视图相同的是 .答案 ②④4.用若干个大小相同,棱长为1的正方体摆成一个立体模型,其三视图如下:根据三视图回答此立体模型的体积为 .答案 55.棱长为1的正方体ABCD —A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 、F 分别是棱AA 1、DD 1的中点,则直线EF 被球O 截得的线段长为 .答案 26.(2008·湖北理)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为 . 答案 328π 7.用小立方块搭一个几何体,使得它的正视图和俯视图如图所示,这样的几何体至少要 个小立方块.最多只能用 个小立方块.答案 9 148.如图所示,E 、F 分别是正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的正投影可能是 .(把可能的图的序号都填上)218答案 ②③二、解答题9.正四棱台AC 1的高是17 cm ,两底面的边长分别是4 cm 和16 cm ,求这个棱台的侧棱长和斜高. 解 如图所示,设棱台的两底面的中心分别是O 1、O ,B 1C 1和BC 的中点分别是E 1和E ,连接O 1O 、E 1E 、O 1B 1、OB 、O 1E 1、OE ,则四边形OBB 1O 1和OEE 1O 1都是直角梯形.∵A 1B 1=4 cm ,AB=16 cm , ∴O 1E 1=2 cm ,OE=8 cm ,O 1B 1=22 cm ,OB=82 cm ,∴B 1B 2=O 1O 2+(OB-O 1B 1)2=361 cm 2,E 1E 2=O 1O 2+(OE-O 1E 1)2=325 cm 2,∴B 1B=19 cm ,E 1E=513cm.答 这个棱台的侧棱长为19 cm ,斜高为513cm.10.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和两底面半径.解 圆台的轴截面如图所示,设圆台上下底面半径分别为x cm,3x cm.延长AA 1交OO 1的延长线于S , 在Rt △SOA 中,∠ASO=45°, 则∠SAO=45°,∴SO=AO=3x ,∴OO 1=2x ,又S 轴截面=21(6x+2x )·2x=392,∴x=7. 故圆台的高OO 1=14 (cm),母线长l=2O 1O=142 (cm),两底面半径分别为7 cm,21 cm.11.正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?解 如图所示,正棱锥S-ABCD 中高OS=3,侧棱SA=SB=SC=SD=7,在Rt △SOA 中, OA=22OS SA =2,∴AC=4.∴AB=BC=CD=DA=22.作OE ⊥AB 于E ,则E 为AB 中点.连接SE ,则SE 即为斜高,则SO ⊥OE.在Rt △SOE 中,∵OE=21BC=2,SO=3,∴SE=5,即侧面上的斜高为5.12. 如图所示的几何体中,四边形AA 1B 1B 是边长为3的正方形,CC 1=2,CC 1∥AA 1,这个几何体是棱柱吗?若是,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个棱长为2的三棱柱,并指出截去的几何体的特征,在立体图中画出截面.解 这个几何体不是棱柱;在四边形ABB 1A 1中,在AA 1上取点E ,使AE=2;在BB 1上取F 使BF=2;连接C 1E ,EF ,C 1F ,则过C 1EF 的截面将几何体分成两部分,其中一部分是棱柱ABC —EFC 1,其棱长为2;截去的部分是一个四棱锥C1—EA1B1F.219。

8.1.1《基本立体图形》课件(共37张PPT)

8.1.1《基本立体图形》课件(共37张PPT)
明矾晶体
问题7:观察棱台,构成它的面有什么特点? 与棱锥有何关系?
1.定义:用一个平行于棱锥底面的平面去截棱锥,底 面与截面之间的部分是棱台.
2. 分类:由三棱锥,四棱锥,五棱锥,……截得的棱 台,分别叫做三棱台,四棱台,五棱台,……
3.表示: 棱台ABCD-A1B1C1D1
DD’ AD A’
A
➢围成多面体的各个多边形 叫多面体的面;
➢相邻两个面的公共边 叫多面体的棱;
➢棱和棱的公共点 叫多面体的顶点;
问题4:一般地,怎样定义旋转体?

由一个平面图形绕它所在平面内的 一条定直线旋转所形成的封闭几何体 叫做旋转体
问题5:观察下列棱柱,它们共同的特点是什么? 你能给出棱柱的定义吗?
D1
C1
两个互相平行的平面叫做棱柱的底面,其
余各叫做棱柱的侧面。
相邻侧面的公共边叫做棱柱的侧棱。 侧面与底的公共顶点叫做棱柱的顶点。
2、棱柱的结构特征
如何描述下图的几何结构特征?
棱柱
有两个面互相平行,其余各面 都是四边形,并且每相邻两个面的 公共边都平行,由这些面所围成的 几何体叫棱柱.
E′ F′ A′
D′ C′
棱柱的底面可以是三角形、四边形、五边形……我们 把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱……
课堂练习:
1. 下面的几何体中,哪些是棱柱?
P 106第8题
2.如图,长方体
ABCD ABCD
中被截去一部分,其中 EH//BC//FG 截去的几何体是什么? 剩下的几何体是什么?
HC
A
E
G
B
F
A
D
HC
C C’
上底面
B
侧棱

§8.1 空间几何体的结构及其三视图和直观图

§8.1 空间几何体的结构及其三视图和直观图

(1)在已知图形中,取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,
把它们画成对应的x'轴和y'轴,两轴相交于点O',且使∠x'O'y'=45°(或 135°),用它们确定的平面表示水平面.
栏目索引
(2)已知图形中平行于x轴、y轴的线段,在直观图中,分别画成平行于x' 轴、y'轴的线段. (3)已知图形中平行于x轴的线段,在直观图中保持长度不变,平行于y轴 的线段,在直观图中长度变为原来的④ 一半 . 5.水平放置的平面图形的直观图的面积S直与原平面图形的面积S原的关 系为S直= S原.
ห้องสมุดไป่ตู้
栏目索引
解题导引
解析 过点A,E,C1的截面为AEC1F,如图, 则剩余几何体的左视图为选项C中的图形.故选C.
2 4
栏目索引
方法技巧
方法 掌握三视图的基本特征
正确认识三视图和直观图是本节的重点和难点.掌握三视图的基本特征 和“长对正、高平齐、宽相等”的原则,注意虚实线的区别,充分发挥 空间想象能力是解题的关键. 例 (2017河北衡水中学七调,5)正方体ABCD-A1B1C1D1 中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该 正方体的上半部分,则剩余几何体的左视图为 ( C )
栏目索引
考点二
三视图和直观图
1.三视图是从一个几何体的正前方、正左方、③ 正上方 三个 不同的方向看这个几何体,描绘出的图形,分别称为正视图、侧视图、 俯视图. 2.三视图的排列顺序:先画正视图,俯视图放在正视图的下方,侧视图放 在正视图的右方. 3.三视图的三个原则:长对正、高平齐、宽相等. 4.水平放置的平面图形的直观图的斜二测画法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优秀课件
6
变式训练
1.如图是由哪个平面图形旋转得到的
(A )
优秀课件
7
2.下列命题中,成立的是
(B )
A.各个面都是三角形的多面体一定是棱锥
B.四面体一定是三棱锥
C.棱锥的侧面是全等的等腰三角形,该棱锥一
定是正棱锥
D.底面多边形既有外接圆又有内切圆,且侧棱
相等的棱锥一定是正棱锥
优秀课件
8
二、空间几何体的三视图和直观图 1.空间几何体的三视图是_正_视__图____、侧__视__图__、 _俯_视__图__. 2.三视图的正视图、俯视图、侧视图分别是从 _正__前_方__、_正_上__方___ 、 _正__左_方___观察同一个几何体,画 出的空间几何体的图形.
3. 会画出某些建筑物的三视图与直观图。
优秀课件
2
一、空间几何体的结构特征
1.棱柱有两个面__互__相__平_行__,其余各面都是四 边形,并且每相邻两个四边形的公共边都 __互__相_平__行__ ,由这些面所围成的几何体叫做棱 柱. 2.棱锥:有一个面是__多_边__形__,其余各面都是 有一个公共顶点的__三_角__形__ ,由这些面所围成 的几何体叫做棱锥. 3.棱台:用一个_平__行_于___棱锥底面的平面去截 棱锥,底面与截面之间的部分,叫做棱台.
优秀课件
21
(学案 164.3 (2010·北京)一个长方体去掉
一个小长方体,所得几何体的主视图与
左视图分别如图所示,则该几何体的俯
视图为
( C)
优秀课件
22
1.(2012 湖南)某几何体的正视图和侧视图 均如图所示,则该几何体的俯视图不可能是( D)
图 1
A
B
C
D
A
B
C
D
优秀课件
23
2.(2009·天津)如图是一个几何体的三 视图.若它的体积是3 3 ,则a= 3 .
3.三视图的排列规则是_俯__视__图__放在正视图的下方, 长度与正视图一样, _____侧_视_放图在正视图的右面, 高度与正视图一样,宽度与俯视图的宽度一样.
优秀课件
9
从左面看
正视图
三视图
从上面看
正面
正视图
侧视图 高


宽 俯视图
从正面看
优秀课件
10
正视图
三视图
正面
正视图
侧视图 高


宽 俯视图
2.三视图如下图的几何体是
(B )
A.三棱锥
B.四棱锥
C.四棱台
D.三棱台ຫໍສະໝຸດ 解析 由三视图知该几何体为一四棱锥,其中
有一侧棱垂直于底面,底面为一直角梯形.故选B.
优秀课件
14
4.空间几何体的直观图
画空间几何体的直观图常用 斜二测 画法,
画图时应在已知图形中建立直角坐标系xoy,画直观图 时, 它们分别对应x′轴和y′轴,两轴交于点O′,且使 ∠x′O′y′ = 45°(或135°.)
优秀课件
11
典型例题 题型二 空间几何体的三视图
例题 学案P162例1 【方法点睛】 1.注意摆放的位置保证 高平齐,长对正,宽相等。
2.实虚线结合
优秀课件
12
变式训练
1、三棱柱 ABC A1B1C1 ,如图所示,以
BCC1B1 的前面为正前方画出的三视 图正确的是( A )
正视
优秀课件
13
(C )
优秀课件
19
3.已知△ABC的直观图是边长为a的等边
△A1B1C1 (如图),那么原三角形的面积为 C
()
3 a2 2
3 a2 4
A.
B.
6 a2
6a2
C. 2
优D.秀课件
20
拓展提高 (走进高考) (学案164页1)在一个几何体的三视图中,正视图和俯 视图如图所示,则相应的侧视图可以为( D )
已知图形中平行于x轴、y轴或z轴的线段,在直观图中 分别画成_平__行_于x′轴、y′轴或z′轴的线段。
平行于x轴和z轴的线段,在直观图中长度_不__变__;平行 于y轴的线段,长度变为原来_一__半__.
优秀课件
15
题型三 几何体的直观图 例题 学案P162例2
优秀课件
16
【方法点睛】用斜二测画法画几何体直观图要注 意原图形与直观图
优秀课件
3
4.圆柱:以_矩__形__的一边所在的直线为旋转轴, 其余三边旋转形成的_曲__面__所围成的几何体叫做圆 柱. 5.圆锥:以_直__角__三__角_形___的__一_条__直__角__边__所在的直 线为旋转轴,其余两边旋转形成的曲面所围成的 几何体叫做圆锥. 6.圆台:用一个_平__行_于___圆锥底面的平面去截圆 锥,底面与截面之间的部分叫做圆台. 7.球:以_半__圆__的_直__径__所在直线为旋转轴, _半__圆__面__旋转一周形成的几何体叫做球.
(1)平行性不变 ( 2)与x、z轴平行的线段的长度不变,
与y轴平行的线段的长度变为原来的一半.
优秀课件
17
变式训练
1.如图△A′B′C′是△ABC的直观图,那么
△ABC是
(B )
A.等腰三角形 C.等腰直角三角形
B.直角三角形 D.钝角三角形
优秀课件
18
2..如图所示为一平面图形的直观图,
则这个平面图形可能是
优秀课件
4
典型例题 题型一 空间几何体的结构特征
【例1】下列命题中,正确的是( D ) (A)有两个侧面是矩形的棱柱是直棱柱 (B)侧面都是等腰三角形的棱锥是正棱锥 (C)侧面都是矩形的四棱柱是长方体 (D)底面为正多边形,且有相邻两个侧面 与底面垂直的棱柱是正棱柱
优秀课件
5
【方法点睛】解决此类问题的技巧 (1)紧扣结构特征是判断的关键. (2)通过反例对结构特征进行辨析,即要说明 一个命题是错误的,只要举出一个反例即可.
第八章 立体几何
§8.1 空间几何体的结构 及其画法
优秀课件
1
1.认识柱、锥、台、球及其简单组合体的结构 特征,并能运用这些特征描述现实生活中简单物 体的结构.
2.能画出简单空间图形(长方体、球、圆柱、圆 锥、棱柱等的简易组合)的三视图,能识别上述 三视图所表示的立体模型,会用斜二测画法画出 它们的直观图.了解空间图形的不同表示形式.
解析 由三视图可知,此几何体为直三棱柱,
其底面为一边长为2,高为a的等腰三角形.由棱
柱的体积公式得 1 2 a 3 3 3,所以a 3.
2 优秀课件
24
优秀课件
25
相关文档
最新文档