高中数学必修二第一章 1.1 空间几何体的结构PPT课件

合集下载

1.1.1棱柱、棱锥、棱台的结构特征 课件

1.1.1棱柱、棱锥、棱台的结构特征  课件


② ·
棱可以与底面垂直也可以不与底面垂直,故D不正确.


A

返回导航
第一章 空间几何体
命题方向2 ⇨棱锥、棱台的结构特征
下列关于棱锥、棱台的说法:
(1)棱台的侧面一定不会是平行四边形;
(2)棱锥的侧面只能是三角形;
(3)由四个面围成的封闭图形只能是三棱锥;
(4)棱锥被平面截成的两部分不可能都是棱锥.
第一章 空间几何体
『规律方法』 (1)紧扣棱柱的结构特征进行有关概念辨析 ①两个面互相平行; ②其余各面是四边形; ③相邻两个四边形的公共边互相平行. (2)多注意观察一些实物模型和图片便于反例排除.
数 学 必 修 ② · 人 教 A 版
返回导航
第一章 空间几何体
〔跟踪练习 1〕下列说法正确的是( B )
一、空间几何体 1.概念:如果只考虑物体的_形__状____和_大__小___,而不考 虑其他因素,那么由这些物体抽象出来的空__间__图__形___叫做空 间几何体.
数 学 必 修 ② · 人 教 A 版
返回导航
归类分析
归类分析
2、多面体
我们把由若干个平面多边形围成的几何体叫 做多面体.
围成多面体的各个多边形叫做多面体的面 相邻两个面的公共边叫做多面体的棱 棱与棱的公共点叫做多面体的顶点
A.棱柱的侧面都是矩形
B.棱柱的侧棱都相等
C.棱柱的棱都平行
D.棱柱的侧棱总与底面垂直
[解析] 由棱柱的定义知,棱柱的侧面都是平行四边形,不一定都是矩形,
故A不正确;而平行四边形的对边相等,故侧棱都相等,所以B正确;对选项

学 必
C,侧棱都平行,但底面多边形的边(也是棱)不一定平行,所以错误;棱柱的侧

高一数学课件.ppt

高一数学课件.ppt

(1)
(2)
(3)
2. 说出下列图形绕虚线旋转一周,可 以形成怎样的几何体?
(1)
(2)
(3)
(4)
课堂小结:
这节课我们学习了圆台,棱 台,球等立体图形,这些图形在 日常生活中随处可见,希望同学 们平时留心观察事物,认识它们, 正确画出这些基本立体图形.
第一章: 空间几何体
1.1空间几何体的结构
棱台与圆台的结构特征
(1) 棱台的结构特征:如下图,用一个平行于 棱锥底 面的平面去截棱锥,底面与截面之 间的部分,这样的几何体叫做棱台
o
D/
C/
A/
B/
D
C
A
B
想一想:仿照棱锥中关于侧面,侧棱,底面,顶
点的定义,在下图中标出棱台的侧面,侧棱,底
面,顶点.
顶点 S
侧棱
侧面
底面 A
D
C
顶点
B
上底面
侧面
D/
C/
A/Leabharlann B/侧棱DC
A
B 下底面
由三棱锥,四棱锥,五棱锥…..截得的棱 台分别叫做三棱台,四棱台,五棱台….与棱 柱的表示一样,下图的棱台表示为棱台
ABC-A/B/C/……
C/
A/
B/
C
……
A
B
三棱台
四棱台
五棱台
(2) 圆台的结构特征:如下图,用一
个平行于圆锥底 面的平面去截圆锥, 底面与截面之间的部分,这样的几何体 叫做圆台
母线
O/
侧面
O

底面
球的结构特征
以半圆的直径所在直线为旋转轴,半圆面旋 转一周形成的几何体叫做球体,简称球.

高中数学1.1空间几何体的结构 优秀课件1

高中数学1.1空间几何体的结构 优秀课件1

2

当 0 9 0 时 , S 1 l2 sin
2
S0
1 2
l2
sin
② 当 90180时 , P
S0
1 l2 sin
2
1 2
l2
sin 90
即 S0
1 2
l2.
l
P
l
综上选 B.
A
O
BA
O
B
C
C
作业
1. 《导学精练》1.1.1 活页+蓝皮〔分层要求〕 2.预习教材“简单组合体的结构特征〞
简单组合体
圆柱、圆锥、圆台的轴截面问题 通常我们称过旋转体旋转轴的截面为轴截面.
圆柱、圆锥、圆台轴截面分别是矩形、等腰三角形、 等腰梯形,这些轴截面集中反映了旋转体的各主要元 素,处理旋转体的有关问题一般要作出轴截面.
练习. 以下命题中错误的选项是〔 〕 A.圆柱的轴截面是过母线的截面中面积最大的一个. B.圆锥的轴截面是所有过顶点的截面中面积最大的一个. C.圆台的所有平行于底面的截面都是圆. D.圆锥的所有轴截面都是全等的等腰三角形.
几何学是研究现实世界中物体的形状、大小与位置关系的数学学科.空 间几何体是几何学的重要组成局部,它在土木建筑、机械设计、航海测绘等 大量实际问题中都有广泛的应用.
观察与思考
空间我几们何周体围的存定在义着:各种各样的物体,它们都占 据着空如间果的只一考局虑部物. 体的形状和大小,而不考虑 其它因素,那么这些由物体抽象出来的空间图 形就叫做空间几何体.
第一章 空间几何体
本节我们从空间几何体的整体观察入手,研 究空间几何体的结构特征.
观察与思考
由假观设察干以平下面物多体边的形形围状成和的大几小何,体试叫给做出多相面体. 应的空间几何体,说说有它们的共同特征。

人教版高一数学必修2电子课本课件【全册】

人教版高一数学必修2电子课本课件【全册】
人教版高一数学必修2电子课本课 件【全册】
第一章 空间几何体
人教版高一数学必修2电子课本课 件【全册】
1.1 空间几何体的结构
人教版高一数学必修2电子课本 课件【全册】目录
0002页 0165页 0221页 0296页 0349页 0418页 0456页 0496页 0573页 0597页 0610页 0664页 0687页 0750页 0798页 0813页
第一章 空间几何何体的表面积与体积 实习作业 复习参考题 2.1 空间点、直线、平面之间的位置关系 2.3 直线、平面垂直的判定及其性质 小结 第三章 直线与方程 探究与发现 魔术师的地毯 3.3 直线的交点坐标与距离公式 小结 第四章 圆与方程 阅读与思考 坐标法与机器证明 4.3 空间直角坐标系 小结
人教版高一数学必修2电子课本课 件【全册】
1.2 空间几何体的三视图和直 观图
人教版高一数学必修2电子课本课 件【全册】
阅读与思考 画法几何与蒙日

【同步课堂】人教A版高中数学必修2第一章1.1.1-2空间几何体的结构课件(共40张PPT)

【同步课堂】人教A版高中数学必修2第一章1.1.1-2空间几何体的结构课件(共40张PPT)
棱柱 2.其余各面都是四边形(侧面)
3.每相邻两个侧面的公共边(侧棱)都互 相平行
10
探究问题 1:
长方体按如图截去一角后所得的两部分还是棱柱 吗?
D’
C’
A’
B’
D C
A
B
11
探究问题 2:
有两个面互相平行,其余各面都是平行四边形的几 何体是棱柱吗? 定义: 1、有两个面互相平行,
2、其余各面都是四边形,
D
C 底面
的侧棱。
A
B
棱锥可以表示为:棱锥S-ABCD
底面是三角形,四边形,五边形----的棱锥分 别叫三棱锥,四棱锥,五棱锥---
13
思考:一个棱锥至少有几个面?一个N棱锥有分别 有多少个底面和侧面?有多少条侧棱?有多少个 顶点?
至少有4个面;1个底面,N个侧面,N条侧棱,1个顶 点.
14
练习:下列几何体是不是棱锥,为什么?
旋转体: 由一个平面图形绕它所在平面内的
一条定直线旋转所形成的封闭几何体
注:棱柱与圆柱统称为柱体
5
1.棱柱的结构特征:
①有两个面互相平行 ②其余各面都是四边形
③每相邻两个四边形的公共边互相平行
有两个面互相平行,其余各面都是四边形,每相邻两个四
边形的公共边互相平行,由这些面围成的图形叫做棱柱
6
1、棱柱 1、两个互相平行的面叫棱柱的底面。
3、每相邻两个四边形的公共边 都互相平行。
12
2.棱锥的结构特征
有一个面是多边形,其余各面都是有一个公共顶
点的三角形,由这些面所围成的多面体叫做棱锥.
底面:棱锥中的多边形面叫做棱锥的底面或底。 S 顶点
侧面:有公共顶点的各个三角形面叫做棱锥

1.1.1 棱柱、棱锥、棱台的结构特征-高一数学教材配套教学课件(人教A版必修二)

1.1.1 棱柱、棱锥、棱台的结构特征-高一数学教材配套教学课件(人教A版必修二)

(2)有关概念: ①底面:_两__个__互__相__平__行__的__面__; ②侧面:_其__余__各__面__; ③侧棱:_相__邻__侧__面__的__公__共__边__; ④顶点:_侧__面__与__底__面__的__公__共__顶__点__.
【对点训练】 1.棱柱的侧面 ( A.是平行四边形 C.是三角形
分类 按底面多边形的边数分:三棱锥、四棱锥、…
【对点训练】 1.下列图形所表示的几何体中,不是棱锥的为 ( )
【解析】选A.根据棱锥的结构特征,可知A不是棱锥.
2.下面描述中,不是棱锥的几何结构特征的为 ( ) A.三棱锥有四个面是三角形 B.棱锥都有两个面是互相平行的多边形 C.棱锥的侧面都是三角形 D.棱锥的侧棱交于一点
形的几何体不一定是棱台;③两个互相平行的面是正
方形,其余各面是四边形的几何体一定是棱台.其中正
确的说法的序号有 ( )
A.0个
B.1个
C.2个
D.3个
【解析】选C.①正确,因为具有这些特 征的几何体的侧棱一定不相交于一点, 故一定不是棱台;②正确,如图所示;③不正确,当 两个平行的正方形完全相等时,一定不是棱台.
顶点:侧面与上(下)底面的 _公__共__顶__点__
分类
由几棱锥截得即为几棱台:如三棱台、四棱 台、…
【对点训练】 1.下列三种叙述,正确的有 ( ) ①用一个平面去截棱锥,棱锥底面和截面之间的部分 是棱台; ②两个底面平行且相似,其余各面都是梯形的多面体 是棱台;
③有两个面互相平行,其余四个面都是等腰梯形的六
A.南
B.北
C.西
D.下
【解析】选B.正方体展开图还原为正方体,如图所示, 故标△的方位为北.
【补偿训练】如图,在三棱锥V-ABC中,VA=VB=VC=4, ∠AVB=∠AVC=∠BVC=30°,过点A作截面△AEF,求 △AEF周长的最小值.

人教版高中数学必修二全册课件ppt

人教版高中数学必修二全册课件ppt

探究点1 多面体和旋转体 观察下面的图片,这些图片中的物体具有怎
样的形状?日常生活中,我们把这些物体的形状 叫做什么?我们如何描述它们的形状?
其中(2),(5),(7),(9),(13),(14), (15),(16)具有相同的特点:组成几何体的每个 面都是平面图形,并且都是平面多边形.
多面体:一般地,我们把由若干个平面多边形围成 的几何体叫做多面体. 围成多面体的各个多边形叫做多面体的面. 相邻两个面的公共边叫做多面体的棱. 棱与棱的公共点叫做多面体的顶点.
半径是指什么?如何用字母表示球?
本 答 以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋
课 时
转体叫做球体,简称球.半圆的圆心叫做球的球心,半圆的半径
栏 叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字

开 母 O 表示,如球 O.

研一研·问题探究、课堂更高效
例 2 判断下列各命题是否正确:
柱是怎样形成的呢?与圆柱有关的几个概念是
如何定义的?
答 圆柱的定义:以矩形的一边所在直线为旋转轴,其余三边旋转
本 课
形成的面所围成的旋转体叫做圆柱,旋转轴叫做圆柱的轴;垂直于
时 轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的

目 曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫

课 时
垂直于轴的边旋转而成的圆面叫做圆柱的 底面 ;平行于
栏 目
轴的边旋转而成的曲面叫做圆柱的 侧面 ;无论旋转到
开 关
什么位置,不垂直于轴的边叫做圆柱侧面的 母线 .
2.以直角三角形的一条直角边所在直线为旋转轴,其余两
边旋转形成的面所围成的旋转体叫做 圆锥 .

高一数学人教A版必修2:1-1-1棱柱、棱锥、棱台的结构特征课件

高一数学人教A版必修2:1-1-1棱柱、棱锥、棱台的结构特征课件
第一章 1.1 1.1.1
第六页,编辑于星期日:二十二点 一分。
新课引入 中国人认为:没有规矩不成方圆,按照制定出来的规矩做 事,就可以获得整体的和谐统一.在中国传统文化中,“天圆 地方”的设计思想催生了“水立方”,它与圆形的“鸟 巢”——国家体育场相互呼应,相得益彰,可以说“水立方” 就是现代时尚和中国传统文化的智慧结晶,它的建成是我的中 华民族的骄傲,它给我们带来了美的享受和美的向往.“鸟巢” 和“水立方”也都是由一些简单几何体组成的,本节我们学习 棱柱、棱锥、棱台等这些简单几何体的结构特征.
些物体抽象出来的空间图形就叫做空间几何体
第一章 1.1 1.1.1
第九页,编辑于星期日:二十二点 一分。
概念
定义
一般地,我们把由若干个 平面多边形 围成的几何体叫
多面 做多面体.围成多面体的各个多边形叫做多面体的 面 ;
体 相邻两个面的 公共边 叫做多面体的棱;棱与棱的 公共点
叫做多面体的顶点
旋转 体
故(1)(2)(3)正确,(4)不正确.
第一章 1.1 1.1.1
第三十一页,编辑于星期日:二十二点 一分。
根据下列关于几何体的描述,说出几何体的名称: (1)由八个面围成,其中两个面是互相平行且全等的正六 边形,其他各面都是矩形; (2)由五个面围成,其中一个面是正方形,其他各面都是 有一个公共顶点的全等三角形; (3)由五个面围成,其中上、下两个面是相似三角形,其 余各面都是梯形,并且这些梯形的腰延长后能相交于一点.
定义 之间的部分叫做棱台 原棱锥的底面和截面分别叫做棱台的下底面 和 上底面
有关 ;其他各面叫做棱台的 侧面 ;相邻侧面的公共边 叫 概念 做棱台的侧棱;底面与 侧面 的公共顶点叫做棱台的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考4:经过圆柱的轴的截面称为轴截面, 你能说出圆柱的轴截面有哪些基本特征吗?
七、圆锥的结构特征
思考:将一个直角三角形以它的一条直角边 为轴旋转一周,那么其余两边旋转形成的面所 围成的旋转体是一个什么样的空间图形?
圆锥
如何定义圆锥的轴、底面、侧面、母线?
轴 母线 底面
顶点 侧面 母线
七、圆锥的结构特征
课后练习 课本P8:1(1)--(3),5
六、圆柱的结构特征
思考:如图所示的空间几何体叫做圆柱, 那么圆柱是怎样形成的呢?
以矩形的一边所在直线为旋转轴,其余 三边旋转形成的面所围成的旋转体.
各部分名称
轴 母线
侧面 母线 底面
六、圆柱的结构特征
思考:平行于圆柱底面的截面,经过圆柱任 意两条母线的截面分别是什么图形?
F
D A
C
D
B
A
C B
三、棱柱的结构特征
思考:棱柱上、下两个底面的形状 大小如何?各侧面的形状如何?
两底面是全等的多边形, 各侧面都是平行四边形
四、 棱锥的结构特征
有一个面是多边形,其余各面都是 有一个公共顶点的三角形,由这些面 围成的多面体叫做棱锥.
四、 棱锥的结构特征
各部分名称
顶点 侧棱
侧面 底面四、 棱锥的结构特征来自十、简单组合体的结构特征
思考:现实世界中几何体的形状各种各样, 除了柱体、锥体、台体和球体等简单几何 体外,还有大量的几何体是由这些简单几 何体组合而成的,这些几何体叫做简单组 合体.你能说出周围物体所示的几何体是由 哪些简单几何体组合而成的吗?
十、简单组合体的结构特征
思考:试说明下列物体分别是怎样构成的?
三、棱柱的结构特征
各部分名称
顶点 侧棱
底面 侧面
表示法:棱柱ABCDEF-A’B’C’D’E’F’
三、棱柱的结构特征
思考:下列多面体都是 棱柱吗?如何在名称上 区分这些棱柱?如何用 符号表示?
C1 B1
C B
D1 C1
A1
A
E1
A1
D
C
B1 D1
D1
C1
A1
C1
B1
A1
B1
C
E
D
B
D
C
A
B
A
A
B
侧面 轴
上底面 母线 下底面
八、圆台的结构特征
思考:经过圆台任意两条母线的截面是什 么图形?轴截面有哪些基本特征?
九、球的结构特征
思考:从旋转的角度分析,球是由什 么图形绕哪条直线旋转而成的?
以半圆的直径所在直线为旋转轴, 半圆面旋转一周形成的旋转体叫做 球体,简称球.
九、球的结构特征
思考:半圆的圆心、半径、直径,在球体 中分别叫做球的球心、球的半径、球的直 径,球的外表面叫做球面.那么球的半径 还可怎样理解?
各部分名称
上底面
侧棱
顶点 侧面 下底面
五、棱台的结构特征
思考:下列多面体一定是 棱台吗?如何判断?
思考:三棱台、四棱台、五棱台、 ……分别是什么含义?
例题选讲
例1、由棱柱的定义你能得到 棱柱下列的几何性质吗? ①侧棱都相等,侧面都是 平行四边形; ②两个底面与平行于底面 的截面是全等的多边形; ③过不相邻的两条侧棱的 截面是平行四边形.
长方体的面
长方体的棱
长方体的顶点
二、空间几何体的类型
由若干个平面多边形围成 的几何体叫做多面体 .
顶点


二、空间几何体的类型
由一个平面图形绕它所在平面 内的一条定直线旋转所形成的封闭 几何体叫做旋转体

三、棱柱的结构特征
有两个面互相平行,其余各面都是四边形, 每相邻两个四边形的公共边都互相平行,由 这些面围成的多面体叫做棱柱.
例题选讲
例2、如图,截面BCEF将长方体分割成 两部分,这两部分是否为棱柱?
D1
E
C1
A1
F
D
A
B1 C
B
练习 1、下列关于多面体的说法中: (1)底面是矩形的直棱柱是长方体; (2)底面是正方形的棱锥是正四棱锥; (3)两底面都是正方形的棱台是正棱台; (4)正四棱柱就是正方体;
其中正确的是__(_1_)_____
思考:经过圆锥任意两条母线的截面 是什么图形?
思考:经过圆锥的轴的截面称为轴截面,你 能说出圆锥的轴截面有哪些基本特征吗?
八、圆台的结构特征
思考:用一个平行于圆锥底面的平面去截 圆锥,截面与底面之间的部分叫做圆台. 圆台可以由什么平面图形旋转而形成?
八、圆台的结构特征
思考:与圆柱和圆锥一样,圆台也有轴、底 面、侧面、母线,它们的含义分别如何?
思考:用一个平行于棱锥底面的平面去截 棱锥,截面与底面的形状关系如何?
相似多边形
五、棱台的结构特征
思考:用一个平行于棱锥底面的平面去截 棱锥,截面与底面之间的部分形成另一个 多面体,这样的多面体叫做棱台.那么棱 台有哪些结构特征?
有两个面是互相平行的 相似多边形,其余各面 都是梯形,每相邻两个 梯形的公共腰的延长线 共点.
球面上的点到 球心的距离
半径 O
直径
球心
九、球的结构特征
思考:用一个平面去截一个球, 截面是什么图形?
O
练习
1、下列命题正确的是( D)
A、圆台是直角梯形绕其一边旋转而成的 B、圆锥是直角三角形绕其一边旋转而成的 C、圆柱不是旋转体 D、圆台可以看作是平行于底面的平面截一 个圆锥而得到的
练习
2. 直角三边长分别为3、4、5,绕着 其中一边旋转得到圆锥,对所有可能
十、简单组合体的结构特征
思考:试说明下列几何体分别是怎样组成的?
拼接 截割
例题选讲
例1、将下列平面图形绕直线AB旋转 一周,所得的几何体分别是什么?
B
B
B
A 图1
A 图2
A 图3
·
·
·
·
·
例2、如图,四边形ABCD为平行四边形,
EF∥AB,且EF<AB,试说明这个简单组合体 的结构特征.
E
F
E
思考:下列多面体都是棱锥吗?如何在名 称上区分这些棱锥?如何用符号表示?
S
C
A
D
S
C B
B
A
S
D C
E
F
B
A
四、 棱锥的结构特征
思考:一个棱锥至少有几个面?一个N棱锥 有分别有多少个底面和侧面?有多少条侧 棱?有多少个顶点?
至少有4个面;1个 底面,N个侧面,N 条侧棱,1个顶点.
四、 棱锥的结构特征
1.1 空间几何体的结构
学习目标
1. 感受空间实物及模型,增强直观感知; 2. 能根据几何结构特征对空间物体进行分类; 3. 理解多面体、旋转体的有关概念; 4. 会用语言概述棱柱、棱锥、棱台、圆柱、
圆锥、圆台、球的结构特征; 5. 能描述一些简单组合体的结构.
一、空间几何体及其基本元素
构成几何体的基本元素——点、线、面
描述不对的是( C ).
A.是底面半径3的圆锥 B.是底面半径为4的圆锥 C.是底面半径5的圆锥 D.是母线长为5的圆锥
练习
3. 下列命题中正确的是( C ).
A.直角三角形绕一边旋转得到的旋 转体是圆锥
B.夹在圆柱的两个平行截面间的几 何体是旋转体
C.圆锥截去一个小圆锥后剩余部分 是圆台 D.通过圆台侧面上一点,有无数条母线
练习
2、能将一个三棱柱分割成几 个三棱锥吗?
C1
B1 C1
B1
A1
A1
C
BC
B
A
A
练习
3. 一个多边形沿不平行于矩形所在平
面的方向平移一段距离可以形成(B )
A.棱锥
B.棱柱
C.平面
D.长方体
4. 棱台不具有的性质是( C ).
A.两底面相似 B.侧面都是梯形
C.侧棱都相等 D.侧棱延长后都交于一点
相关文档
最新文档