模拟电路电子技术 第二章 晶体三极管及其应用电路

合集下载

模拟电路第二章知识点总结

模拟电路第二章知识点总结

2 F
2 F
) 2
5.MOS 电流源
在 MOS 模拟集成电路中,电流源的形式与 BJT 电流源相似。
MOS 镜像电流源:
Ir
IO
T1
T2
图 简单镜像电流源 MOS 镜像电流源的电路和原理、等效电路、电流与输出电阻
ro1 vgs
gm2vgs
ro 2
Ir Io Io Ir ro1gm2 ro1 ro2
(3)甲乙类工作状态:它是介于甲类和乙类之间的一种工作状态,即发射结 处于正向运用的时间超过半个周期,但小于一个周期,即导通角大于 小于 。甲 乙类工作状态又称为 AB 类工作状态。
(4)丙类工作状态:发射结处于正向运用的时间小于半个周期,集电极电流 流通的时间还不到半个周期,即导通角小于 90º。丙类工作状态又称为 C 类工作 状态。
IB
VBB
RB
I BQ
Q
O
VBEQ
交流分析:
VCC IC RL
ICQ 1 arctan RB
VBB VBE
O
iB
Q
iB ib
I BQ
VCC iC RC
o o VBEQ t
VBB VIN VBB
vBE vbe
vBE VBB VIN o
v
t
O
O
Q IB IBQ
VCEQ
arctan 1 RL
VCC
VDD
八、推挽输出级放大电路
功率放大器根据功放管导通时间的长短(或集电极电流流通时间的长短或导 通角大小),分为以下 4 个工组状态:
(1)甲类工作状态:在整个周期内晶体管的发射结都处于正向运用,集电极 电流始终是流通的,即导通角等于 180º。甲类工作状态又称为 A 类工作状态。

《模拟电子技术》教案(全)

《模拟电子技术》教案(全)

《模拟电子技术》教案(全)模拟电子技术教案信息工程系目录第一章常用半导体器件第一讲半导体基础知识第二讲半导体二极管第三讲双极型晶体管三极管第四讲场效应管第二章基本放大电路第五讲放大电路的主要性能指标及基本共射放大电路组成原理第六讲放大电路的基本分析^p ^p 方法第七讲放大电路静态工作点的稳定第八讲共集放大电路和共基放大电路第九讲场效应管放大电路第十讲多级放大电路第十一讲习题课第三章放大电路的频率响应第十二讲频率响应概念、RC电路频率响应及晶体管的高频等效模型第十三讲共射放大电路的频率响应以及增益带宽积第四章功率放大电路第十四讲功率放大电路概述和互补功率放大电路第十五讲改进型OCL电路第五章模拟集成电路基础第十六讲集成电路概述、电流电路和有负载放大电路第十七讲差动放大电路第十八讲集成运算放大电路第六章放大电路的反馈第十九讲反馈的基本概念和判断方法及负反馈放大电路的方框图第二十讲深度负反馈放大电路放大倍数的估算第二十一讲负反馈对放大电路的影响第七章信号的运算和处理电路第二十二讲运算电路概述和基本运算电路第二十三讲模拟乘法器及其应用第二十四讲有滤波电路第八章波形发生与信号转换电路第二十五讲振荡电路概述和正弦波振荡电路第二十六讲电压比较器第二十七讲非正弦波发生电路第二十八讲利用集成运放实现信号的转换第九章直流电第二十九讲直流电的概述及单相整流电路第三十讲滤波电路和稳压管稳压电路第三十一讲串联型稳压电路第三十二讲总复习第一章半导体基础知识本章主要内容本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析^p ^p 。

首先介绍构成PN结的半导体材料、PN结的形成及其特点。

其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。

然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析^p ^p 方法。

本章学时分配本章分为4讲,每讲2学时。

模拟电子技能技术总结习题及答案

模拟电子技能技术总结习题及答案

精心整理模拟电子技术第1章半导体二极管及其基本应用1.1填空题1.半导体中有空穴和自由电子两种载流子参与导电。

2.本征半导体中,若掺入微量的五价元素,则形成N型半导体,其多数载流子是电子;若掺入微量的三价元素,则形成P型半导体,其多数载流子是空穴。

3.PN结在正偏时导通反偏时截止,这种特性称为单向导电性。

456781.1A2.A3A4A5A1.12341.1值。

解:(a)二极管正向导通,所以输出电压U=(6—0.7)V=5.3V。

(b)令二极管断开,可得UP =6V、UN=10V,UP<UN,所以二极管反向偏压而截止,U=10V。

(c)令V1、V2均断开,UN1=0V、UN2=6V、UP=10V,UP—UN1>Up—UN2,故V1优先导通后,V2截止,所以输出电压U=0.7V。

2.电路如图T1.2所示,二极管具有理想特性,已知ui=(sinωt)V,试对应画出ui 、u、iD的波形。

解:输入电压ui 为正半周时,二极管正偏导通,所以二极管两端压降为零,即u=0,而流过二极管的电流iD =ui/R,为半波正弦波,其最大值IDm=10V/1kΩ=10mA;当ui为负半周时,二极管反偏截止,iD =0,u=ui为半波正弦波。

因此可画出电压u电流iD的波形如图(b)所示。

3.稳压二极管电路如图T1.3所示,已知UZ =5V,IZ=5mA,电压表中流过的电流忽略不计。

试求当开关s断开和闭合时,电压表和电流表、读数分别为多大?解:当开关S断开,R2支路不通,IA2=0,此时R1与稳压二极管V相串联,因此由图可得可见稳定二极管处于稳压状态,所以电压表的读数为5V。

当开关S闭合,令稳压二极管开路,可求得R2两端压降为故稳压二极管不能被反向击穿而处于反向截止状态,因此,R1、R2构成串联电路,电流表A1、A2的读数相同,即而电压表的读数,即R2两端压降为3.6V。

第2章半导体三极管及其基本应用2.1填空题12种载流子参与导电。

(完整word版)模拟电子技术教学大纲

(完整word版)模拟电子技术教学大纲

目录编写说明 (2)教材和教学参考书 (4)第一部分理论教学要求 (4)第二部分实践教学要求 (17)第三部分教学进度表 (20)第四部分考核要求 (21)《模拟电子技术》课程教学大纲贺存锋编写说明一、课程的性质和教学目的本课程是电气、电子类专业的主要技术基础课之一,是一门理论和实际紧密结合的应用性很强的课程。

教学目的:在使学生获得模拟电子技术必备的的基本理论、基础知识的同时,着重培养学生的智力技能,提高他们分析问题、解决问题以及实践应用的能力,为学习后续课程和毕业后从事电子技术方面的工作打下必要的基础。

二、课程的任务和基本要求通过本课程的学习,在基本理论和基本技能方面应达到以下要求:1.基本器件方面了解常用半导体二极管、三极管、场效应管、线性集成电路的基本工作原理、特性和主要参数,并能合理选择和使用这些器件。

2.基本电路原理及结构方面掌握共射、共集放大电路,差分放大电路,互补对称功率放大电路,负反馈放大电路,集成运算放大电路的结构、理解它们的工作原理、性能及应用。

3.应用电路方面(1)熟悉正弦和非正弦信号产生电路,一阶有源滤波电路、整流滤波电路的结构、工作原理、性能及应用;熟悉三端稳压器件的应用。

(2)了解集成功放、集成模拟乘法器、集成函数信号发生器的应用。

(3)了解调制解调的基本概念和调制解调的基本方式。

4.分析计算方面(1)了解单级放大电路的图解分析方法。

(2)掌握三极管简化H参数微变等效电路分析方法,能估算单级放大电路的电压放大倍数、输入和输出电阻,了解多级放大电路的分析方法。

(3)掌握负反馈放大电路的类型判别,在深度负反馈条件下,掌握利用虚短或虚断估算电路电压放大倍数的方法。

(4)掌握正弦振荡条件的判断。

(5)熟悉稳压管稳压电路、串联型稳压电路的工程计算。

(6)掌握理想运放的基本运算规则、线性应用和非线性应用的分析计算方法。

(7)了解放大器频率特性和指标含义。

5.基本技能方面(1)初步掌握阅读和分析模拟电路原理图的一般规律。

电子技术基础模拟部分第六版

电子技术基础模拟部分第六版
(参见“本书常用符号表”)
32
精选ppt
32
例R1 3.4.1 电路如图所示,已知二极管的V-I特性曲线、电源VDD和电 阻R,求二极管两端电压vD和流过二极管的电流iD 。
R
iD
+
VDD
D
vD
-
解:由电路的KVL方程,可得
iD
VDDvD R
即 iDR 1vDR 1VDD是一条斜率为-1/R的直线,称为负载线
一些典型的数据如下:
1 T=300 K室温下,本征硅的电子和空穴浓度: n=p
=21.掺4×杂1后010N/cm型3半导体中的自由电子浓度: n=5×1016/cm3
3 本征硅的原子浓度: 4.96×1022/cm3
以上三个浓度基本上依次相差106/cm3 。
11
精选ppt
11
3.2 PN结的形成及特性
当vs为正半周时,二极管导通,且导通压降为0V,vo = vs
vs
+
D
+
vs
R
vo
-
-
(a)
O
2 3
4 t
vo
O
2 3
4 t
39
精选ppt
39
2.模型分析法应用举例
(2)静态工作情况分析
当VDD=10V 时, (R=10k ) 理想模型
VD 0V
恒压模型
IDVDD /R1mA (a)简单二极管电路 (b)习惯画法
在一定的温度条件下,由本征激
反向偏 置特性
iD = -IS
-1.0
-0.5
iD/mA
发决定的少子浓度是一定的,故少
1.0
正向偏 子形成的漂移电流是恒定的,基本

模拟电子技术第二章

模拟电子技术第二章

电压放大电路可以用有输入口和输出口的四端网络表 示,如图:
ui
Au
uo
放大电路放大的本质是能量的控制和转换。
放大的前提是不失真,即只有在不失真的情况下 放大才有意义。
2021/4/11
3
2.1.2.放大电路的性能指标
放大电路示意图
图2.1.2放大电路示意图
2021/4/11
4
一、放大倍数
表示放大器的放大能力
VCC
U BEQ Rb
(12 0.7 )mA 40 μA 280
做直流负载线,确定 Q 点
根据 UCEQ = VCC – ICQ Rc iC = 0,uCE = 12 V ; uCE = 0,iC = 4 mA .
2021/4/11
T
22
iC /mA
4 3 2 1 0
80 µA
60 µA
静态工作点 40 µA
U i →△uBE →△iB
→△iC(b△iB)
VBB
→△uCE(-△iC×Rc)
UI


Uo
+VCC ( +12V)
RC
IC +△IC
IB
B Rb 1
+△I B
3C ET2
U CE
U BE +△UBE
+△U CE
+
UO
-
电压放大倍数:


Au
Uo

Ui
2021/4/11
13
+VCC (+12V)
iC / mA
4
交流负载线 80
60
IC
Q
iC 2

模拟电子技术基础目录

模拟电子技术基础目录模拟电子技术基础目录模拟电子技术基础目录前言教学建议第1章半导体二极管及其应用1.1 半导体物理基础知识1.1.1 本征半导体1.1.2 杂质半导体1.2 pn结1.2.1 pn结的形成1.2.2 pn结的单向导电性1.2.3 pn结的反向击穿特性1.2.4 pn结的电容特性1.3 半导体二极管及其基本电路1.3.1 半导体二极管的伏安特性曲线1.3.2 半导体二极管的主要参数1.3.3 半导体二极管的电路模型1.3.4 二极管基本应用电路1.4 特殊二极管1.4.1 稳压二极管.1.4.2 变容二极管1.4.3 光电二极管1.4.4 发光二极管思考题习题第2章双极型晶体管及其放大电路2.1 双极型晶体管的工作原理2.1.1 双极型晶体管的结构2.1.2 双极型晶体管的工作原理2.2 晶体管的特性曲线2.2.1 共射极输出特性曲线2.2.2 共射极输入特性曲线2.2.3 温度对晶体管特性的影响2.2.4 晶体管的主要参数2.3 晶体管放大电路的放大原理2.3.1 放大电路的组成2.3.2 静态工作点的作用2.3.3 晶体管放大电路的放大原理2.3.4 基本放大电路的组成原则2.3.5 直流通路和交流通路2.4 放大电路的静态分析和设计2.4.1 晶体管的直流模型及静态工作点的估算2.4.2 静态工作点的图解分析法2.4.3 晶体管工作状态的判断方法2.4.4 放大状态下的直流偏置电路2.5 共射放大电路的动态分析和设计2.5.1 交流图解分析法2.5.2 放大电路的动态范围和非线性失真2.5.3 晶体管的交流小信号模型2.5.4 等效电路法分析共射放大电路2.5.5 共射放大电路的设计实例2.6 共集放大电路(射极输出器)2.7 共基放大电路2.8 多级放大电路2.8.1 级间耦合方式2.8.2 多级放大电路的性能指标计算2.8.3 常见的组合放大电路思考题习题第3章场效应晶体管及其放大电路3.1 场效应晶体管3.1.1 结型场效应管3.1.2 绝缘栅场效应管3.1.3 场效应管的参数3.2 场效应管工作状态分析及其偏置电路3.2.1 场效应管工作状态分析3.2.2 场效应管的偏置电路3.3 场效应管放大电路3.3.1 场效应管的低频小信号模型3.3.2 共源放大电路3.3.3 共漏放大电路思考题习题第4章放大电路的频率响应和噪声4.1 放大电路的频率响应和频率失真4.1.1 放大电路的幅频响应和幅频失真4.1.2 放大电路的相频响应和相频失真4.1.3 波特图4.2 晶体管的高频小信号模型和高频参数4.2.1 晶体管的高频小信号模型4.2.2 晶体管的高频参数4.3 晶体管放大电路的频率响应4.3.1 共射放大电路的频率响应4.3.2 共基、共集放大器的频率响应4.4 场效应管放大电路的频率响应4.4.1 场效应管的高频小信号等效电路4.4.2 共源放大电路的频率响应4.5 多级放大器的频率响应4.5.1 多级放大电路的上限频率4.5.2 多级放大电路的下限频率4.6 放大电路的噪声4.6.1 电子元件的噪声4.6.2 噪声的度量思考题习题第5章集成运算放大电路5.1 集成运算放大电路的特点5.2 电流源电路5.3 以电流源为有源负载的放大电路5.4 差动放大电路5.4.1 零点漂移现象5.4.2 差动放大电路的工作原理及性能分析5.4.3 具有电流源的差动放大电路5.4.4 差动放大电路的大信号分析5.4.5 差动放大电路的失调和温漂5.5 复合管及其放大电路5.6 集成运算放大电路的输出级电路5.7 集成运算放大电路举例5.7.1 双极型集成运算放大电路f0075.7.2 cmos集成运算放大电路mc145735.8 集成运算放大电路的外部特性及其理想化5.8.1 集成运放的模型5.8.2 集成运放的主要性能指标5.8.3 理想集成运算放大电路思考题习题第6章反馈6.1 反馈的基本概念及类型6.1.1 反馈的概念6.1.2 反馈放大电路的基本框图6.1.3 负反馈放大电路的基本方程6.1.4 负反馈放大电路的组态和四种基本类型6.2 负反馈对放大电路性能的影响6.2.1 稳定放大倍数6.2.2 展宽通频带6.2.3 减小非线性失真6.2.4 减少反馈环内的干扰和噪声6.2.5 改变输入电阻和输出电阻6.3 深度负反馈放大电路的近似计算6.3.1 深负反馈放大电路近似计算的一般方法6.3.2 深负反馈放大电路的近似计算6.4 负反馈放大电路的稳定性6.4.1 负反馈放大电路的自激振荡6.4.2 负反馈放大电路稳定性的判断6.4.3 负反馈放大电路自激振荡的消除方法思考题习题第7章集成运算放大器的应用7.1 基本运算电路7.1.1 比例运算电路7.1.2 求和运算电路7.1.3 积分和微分运算电路7.1.4 对数和反对数运算电路7.2 电压比较器7.2.1 电压比较器概述7.2.2 单门限比较器7.2.3 迟滞比较器7.2.4 窗口比较器7.3 弛张振荡器7.4 精密二极管电路7.4.1 精密整流电路7.4.2 峰值检波电路7.5 有源滤波器7.5.1 滤波电路的作用与分类7.5.2 一阶有源滤波器7.5.3 二阶有源滤波器7.5.4 开关电容滤波器思考题习题第8章功率放大电路8.1 功率放大电路的特点与分类8.2 甲类功率放大电路8.3 互补推挽乙类功率放大电路8.3.1 双电源互补推挽乙类功率放大电路8.3.2 单电源互补推挽乙类功率放大电路8.3.3 采用复合管的准互补推挽功率放大电路8.4 集成功率放大器8.5 功率器件8.5.1 双极型大功率晶体管8.5.2 功率mos器件8.5.3 绝缘栅双极型功率管及功率模块8.5.4 功率管的保护思考题习题第9章直流稳压电源9.1 直流电源的组成9.2 整流电路9.2.1 单相半波整流电路9.2.2 单相全波整流电路9.2.3 单相桥式整流电路9.2.4 倍压整流电路9.3 滤波电路9.3.1 电容滤波电路9.3.2 电感滤波电路9.3.3 复合型滤波电路9.4 稳压电路9.4.1 稳压电路的主要指标9.4.2 线性串联型直流稳压电路9.4.3 开关型直流稳压电路思考题习题第10章可编程模拟器件与电子电路仿真软件10.1 在系统可编程模拟电路原理与应用10.1.1 isppac10的结构和原理10.1.2 其他isppac器件的结构和原理10.1.3 isppac的典型应用10.2 multisim软件及其应用10.2.1 multisim 8的基本界面10.2.2 元件库10.2.3 仿真仪器10.2.4 仿真分析方法10.2.5 在模拟电路设计中的应用思考题习题第11章集成逻辑门电路11.1 双极型晶体管的开关特性11.2 mos管的开关特性11.3 ttl门电路11.3.1 ttl标准系列与非门11.3.2 其他类型的ttl标准系列门电路11.3.3 ttl其他系列门电路11.4 ecl门电路简介11.5 cmos门11.5.1 cmos反相器11.5.2 其他类型的cmos电路11.5.3 使用cmos集成电路的注意事项11.5.4 cmos其他系列门电路11.6 cmos电路与ttl电路的连接思考题习题参考文献延伸阅读:模拟电子技术基础50问1、空穴是一种载流子吗?空穴导电时电子运动吗?答:不是,但是在它的运动中可以将其等效为载流子。

《模拟电子技术》胡宴如主编耿苏燕版(第四版)习题解答第2章

第2章放大电路中某三极管三个管脚○1○2○3测得对地电位-8V ,-3V,和3V 、12V 、,试判别此管的三个电极,并说明它是NPN 管还是PNP 管,是硅管还是锗管解:放大电路中的发射结必定正偏导通,其压降对硅管为,对锗管则为。

(1)三极管工作在放大区时,U B 值必介于U C 和U E 之间,故对应的管脚○3为基极,U B =,○2脚电位与○3脚基极电位差为,所以○2脚为发射极,则○1脚为集电极,该管为PNP 锗管。

(2)由于○3脚电位为介于3V 和12V 之间,故○3脚为基极,○1脚电位低于○3脚,故○1脚为发射极,则○2脚为集电极,该管为NPN 硅管。

对图所示各三极管,试判别其三个电极,并说明它是NPN 管还是PNP 管,估算其β值。

解:(a )因为i B <i C <i E ,故①、②、③脚分别为集电极、发射极和基极。

由电流流向可知是NPN 管:4904.096.1==≈mAmAi i B C β (b )①、②、③脚分别为基极、集电极和发射极。

由电流流向知是PNP 管10001.01==≈mAmA i i B C β 图所示电路中,三极管均为硅管,β=100,试判断各三极管的工作状态,并求各管的图图I B 、I C 、U CE 。

解:(a )mA k VV I B 1.0517.06≈Ω-=设三极管工作在放大状态,则 I C =βI B =100×=10mA U CE =16V -10mA ×1k Ω=6V由于U CE =6V>U CE =,三极管处于放大状态,故假设成立。

因此三极管工作在放大状态,I B =,I C =10 mA ,U CE =6V 。

(b )mA k VI B 077.056)7.05(=Ω-=设三极管工作在放大状态,则得 I C =βI B =100×= 则U CE =-(5V -×3k Ω)=-(5V - >0说明假设不成立,三极管已工作在饱和区,故集电极电流为mA k V R U V I I C CES CC CS C 57.13V3.0-5=Ω=-==因此三极管的I B=,I C=,U CE=U CES≈(c)发射结零偏置,故三极管截止,I B=0,I C=0,U CE=5V。

模拟电子技术基础2 6 7章课后答案

>VZ
说明稳压管DZ已经导通,假定不正确,V0=VZ=6V。
由于IZmin<IZ<IZmax,说明稳压管DZ已经导通,并且能正常工作。
(2)当负载开路时,稳压管中的电流等于限流电阻中的电流,即
>IZmax
稳压管将因功耗过大而损坏。
2-16在测试电流为28mA时稳压管的稳压值为9.1V,增量电阻为5Ω。求稳压管的VZO,并分别求电流为10mA和100mA时的稳压值。
解:(1)根据
其中
(2)如果流向负载的电流为1mA,则流过二极管的电流为

所以输出电压的变化为:
2-7在题2-7图所示电路中,设二极管为理想的,试判断图中各二极管是否导通,并求VAO值。
解:根据题意,电路中的二极管都是理想的。
(a)二极管D不通
(b)D导通
(c)D1导通,D2不通
(d)D1、D2均导通,则
(3)求该放大器的通频带 。
(4)放大器输入信号 时,是否会产生频率失真?请说明原因。
(5)放大器输入信号 时,是否会产生频率失真?请说明原因。
答:
(1)
(2) ,
(3)
(4)单一频率的信号,不会产生频率失真;
(5)不同频率信号的放大倍数不同,会产生频率失真
6-10已知某放大电路的的电压放大倍数为 。
(1)求解 ;
(2)画出波特图。
答:
6-11已知某放大电路的波特图如图P6-11所示,试写出电压放大倍数 的表达式。
图P6-11
答:
6-12阻容耦合放大器幅频特性如图P6-12,问:
图P6-12
(1)给放大器输入 , 的正弦信号时,输出电压 为多少?
(2)给放大器输入 , 的正弦信号时,输出电压 为多少?

完整版)模拟电子技术基础-知识点总结

完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。

2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。

3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。

三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。

2.共集电极放大电路---具有电压跟随和电流跟随的作用。

3.共基极放大电路---具有电压放大的作用,输入电阻较低。

4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。

四.三极管的应用1.放大器---将弱信号放大为较强的信号。

2.开关---控制大电流的通断。

3.振荡器---产生高频信号。

4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。

模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。

2.半导体具有光敏、热敏和掺杂特性。

3.本征半导体是纯净的具有单晶体结构的半导体。

4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。

5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。

根据掺杂元素的不同,可分为P型半导体和N型半导体。

6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。

7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。

8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。

二.半导体二极管半导体二极管是由PN结组成的单向导电器件。

1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。

2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。

3.分析半导体二极管的方法包括图解分析法和等效电路法等。

三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VBEQ VBE 0.7V , I BQ (VCC VBEQ ) / Rb
***假定工作在放大状态***
ICQ I B ,VCEQ VCC ICQ Rc
(2)当Rb=110K时,将参数代入计算得
(VBEQ 0.7V , ICQ 103 A),( ICQ 5.15mA,VCEQ 3.45V )
1.2.2三极管放大电路的组成原理
1、放大电路的工作原理
已知放大电路、输入特性曲线、输出 特性曲线如图所示,υ I=VBB+υ i, VBB =1.6V,υ i=0.5sinω t(V) ,输入特性 曲线和输出特性曲线,试用图解法分 析υ i与υ ce之间的关系。
C Q J
集成电子技术基础教程
(1)由υ I计算iB
iC iB vCE vCES (很小)
**最大集电极饱和电流**
vCE vCES VCC ICS Rc
**饱和时三极管静态模型**
C Q J
集成电子技术基础教程
4、PNP型三极管的伏安特性曲线
C Q J
集成电子技术基础教程
5、判断三极管工作状态的方法(NPN管为例)
(1)第一步: IB小于0,截止状态 (2)第二步:IB大于0,放大或饱和 (a)放大状态 VCE>0.3V, IB<IBS, IC<ICS
ICQ

1
I EQ

VB VBEQ
1 Rb /(1 ) Re
, 1
(2)计算VCEQ
VCC VCEQ ICQ Rc I EQ Re(输出回路方程)
C Q J
集成电子技术基础教程
例2,已知放大电路如图,计算三极管的静态工作点。
(3)本例静态工作点特点
=10-3.4sinω t(V)
Av Vcem /Vi 6 / 0.5 12
C Q J
集成电子技术基础教程
2、典型放大电路——结构
(1)构建放大平台
**电阻Rc、Rb和三极管T使T工作在放大状态** (2)待放大交流小信号的输入 **vs通过电容器C1耦合入放大电路** (3)放大后的交流信号的输出 **vce通过电容器C2耦合输出**
υ I=VBB+υ
vI vBB iB Rb
i
=1.6+0.5sinω t(V)
iB=IBQ+ib =35+20sinω t(μ A)
C Q J
集成电子技术基础教程
(2)由iB计算 υ
CE
vCE VCC iC Rc
iC iB 1.5+0.5sin( t)(mA)
υ
CE=VCEQ+υ ce
***假定放大不成立,工作在饱和状态***
VCEQ VCES 0.3V , ICQ (VCC VCES ) / Rc 3.9mA
C Q J
集成电子技术基础教程
例2,已知放大电路如图,计算三极管的静态工作点。
Rb Rb1 // Rb 2 ,VBB
Rb 2 VCC Rb1 Rb 2
**KCL定律 IE=IB+IC
NPN管电流关系
C Q J
集成电子技术基础教程
(3)放大状态的简化电流分配关系
I E IC I B
I CN I C IB ' IB
***放大倍数反映发射极多子到达基区和集电区的比例关系***
****三极管是电流控制型器件***
C Q J
集成电子技术基础教程
3、NPN三极管放大状态下的伏安特性曲线
(1)输入回路方程(不考虑集电结影响)
输入回路方程:
vBE vBB iB Rb
输入特性方程:
iB f (vBE )
**图解法***
C Q J
集成电子技术基础教程
(2)集电结对输入特性方程的影响
输入特性方程: iB
f (vBE , vCE )
**VCE=0,相当于2个二极管并联;
ICQ

VB VBEQ
1 Rb /(1 ) Re

VB VBEQ Re
, 1
***三极管静态工作点与其参数无关***
***Re的作用(负反馈)*** 温度T℃↑→IC↑IE↑→VE↑(=IERe) ↓(VB固定) VBE↓ (=VB-VE↑) → IB↓ → IC↓
iC f (vCE , iB ) iB vBE VT
**iC不受vCE的影响,又称恒流区**
**典型电路**
**放大时三极管静态模型**
C Q J
集成电子技术基础教程
(3)三极管输出特性——放大物理意义
(a)据输入回路方程,输入电压vBB变化引起iB变 (b)放大状态下,iB变化引起iC变
集电结 反偏 正偏 反偏 正偏
工作状态 截止 倒置 放大 饱和
C Q J
集成电子技术基础教程
3、三极管放大状态(以NPN管为例)
(1)保证放大状态的典型电路设计
发射结正偏
集电结反偏
C Q J
集成电子技术基础教程
(2)放大状态三集电流分配关系
**JE正偏:有利E区N+和B区多子扩散
IE=IEN+IEP,且 IEN>>IEP I’B= IBN(B区多子扩散至E区)+IEP(E区扩散至B区复合) **JC反偏:有利少子( E区扩散至B区的电子和B区自身电子)漂移 ICN(E区进入C区的电子形成) = IEN-IEP (E区扩散至B区复合) IC=ICN(E区进入C区的电子形成)+ICBO(B区少子形成) IB= I’B -ICBO(流入C区)
C Q J
集成电子技术基础教程
2、典型放大电路——放大平台参数分析
**放大平台与交流小信号无关,又称直流分析或静态分析 **
(1)画直流通路 **C开路,L短路*** (2)计算三极管静态参数(或静态工作点Q)
VBEQ VT 0.7V VBEQ VCC I BQ Rb (输入回路方程)

PNP 型三极管结构示意图与电路符号 c b
e
(1)二个PN结:发射结,集电结 (2)三个区:基区,发射区,集电区 (3)三个集:基集,发射集,集电集
**工艺特点同NPN**
C Q J
集成电子技术基础教程
2、半导体三极管(晶体管)的工作状态
**三极管发射结和集电结的偏置组合构成四种工作状态**
发射结 反偏 反偏 正偏 正偏
C Q J
集成电子技术基础教程
1、半导体三极管(晶体管)结构与符号

NPN 型三极管结构示意图与电路符号
c
b
e
(1)二个PN结:发射结,集电结 (2)三个区:基区,发射区,集电区 (3)三个集:基集,发射集,集电集 工艺特点: E区掺杂浓度高
基区薄 集电结面积大
C Q J
集成电子技术基础教程
C Q J
集成电子技术基础教程
6、三极管主要电特性参数(续2)
(6)反向击穿电压
c b e
**JC开路,BE间的反向击穿电压V(BR)EBO (几伏~十几伏)**
**JE开路, BC间的反向击穿电压V(BR)CBO(几十~上千伏) **
**JB开路, CE间反向击穿电压V(BR)CEO(几十~上千伏) **
C Q J
集成电子技术基础教程
例2,已知放大电路如图,计算三极管的静态工作点。
***假定工作在放大状态***
VBEQ 0.7V , I EQ (1 )I BQ , ICQ I BQ
(1)计算IBQ,ICQ,IEQ
VB I BQ Rb VBEQ I EQ Re(输入回路方程) I EQ (1 ) I BQ (放大状态电流关系)
***假定工作在放大状态***
ICQ I B ,VCEQ VCC ICQ Rc
(1)当Rb=280K时,将参数代入计算得
(VBEQ 0.7V , ICQ 40 A),( ICQ 2mA,VCEQ 6V )
***假定成立***
C Q J
集成电子技术基础教程
例1,已知放大电路如图,三极管 VBE=0.7V,VCES=0.3V电流放大倍数50,求三 极管静态工作点Q若RB=110K,重新计算。
(I BQ ,VBEQ ),(ICQ ,VCEQ )
C Q J
集成电子技术基础教程
例1,已知放大电路如图,三极管 VBE=0.7V,VCES=0.3V电流放大倍数50,求三 极管静态工作点Q若RB=110K,重新计算。
VBEQ VBE 0.7V , I BQ (VCC VBEQ ) / Rb
**VCE增为0.7V:JC由正偏转为反偏, C区吸引E区电子的能力增强,IB相对 偏低,曲线右移。
C Q J
集成电子技术基础教程
(3)三极管输出回路方程与输出特性
输出回路方程: 输出特性方程:
vCE VCC iC Rc
iC f (vCE , iB )
**一簇曲线***
C Q J
集成电子技术基础教程
(3)三极管输出特性——截止区
进入截止区条件:发射结反偏,集电结反偏
**为了可靠截止,常使发射结处于零 偏压或反偏压,IB=IC=0** **典型电路**
**截止时三极管静态模型**
C Q J
集成电子技术基础教程
(3)三极管输出特性——放大区
进入放大区条件:JE正偏JC反偏 **主要特征1 **主要特征2
vBE vBB iB Rb
iC iB
vCE VCC iC Rc
相关文档
最新文档