传感器基础知识

合集下载

第一章 传感器的基本知识

第一章 传感器的基本知识

第一章传感器的基本知识复习思考题1. 简述传感器的概念、作用及组成。

2. 传感器的分类有哪几种?各有什么优缺点?3. 传感器是如何命名的?其代号包括哪几部分?在各种文件中如何应用?4. 传感器的静态性能指标有哪些?其含义是什么?5. 传感器的动态特性主要从哪两方面来描述?采用什么样的激励信号?其含义是什么?1.1 传感器的作用与地位◆世界是由物质组成的,各种事物都是物质的不同形态。

人们为了从外界获得信息,必须借助于感觉器官。

◆人的“五官”——眼、耳、鼻、舌、皮肤分别具有视、听、嗅、味、触觉等直接感受周围事物变化的功能,人的大脑对“五官”感受到的信息进行加工、处理,从而调节人的行为活动。

◆人们在研究自然现象、规律以及生产活动中,有时需要对某一事物的存在与否作定性了解,有时需要进行大量的实验测量以确定对象的量值的确切数据,所以单靠人的自身感觉器官的功能是远远不够的,需要借助于某种仪器设备来完成,这种仪器设备就是传感器。

传感器是人类“五官”的延伸,是信息采集系统的首要部件。

电量和非电量◆表征物质特性及运动形式的参数很多,根据物质的电特性,可分为电量和非电量两类。

◆电量——一般是指物理学中的电学量,例如电压、电流、电阻、电容及电感等;◆非电量——则是指除电量之外的一些参数,例如压力、流量、尺寸、位移量、重量、力、速度、加速度、转速、温度、浓度及酸碱度等等。

◆人类为了认识物质及事物的本质,需要对物质特性进行测量,其中大多数是对非电量的测量。

传感器的作用◆非电量不能直接使用一般的电工仪表和电子仪器进行测量,因为一般的电工仪表和电子仪器只能测量电量,要求输入的信号为电信号。

◆非电量需要转化成与其有一定关系的电量,再进行测量,实现这种转换技术的器件就是传感器。

◆传感器是获取自然或生产中信息的关键器件,是现代信息系统和各种装备不可缺少的信息采集工具。

采用传感器技术的非电量电测方法,就是目前应用最广泛的测量技术。

传感器的地位◆随着科学技术的发展,传感器技术、通信技术和计算机技术构成了现代信息产业的三大支柱产业,分别充当信息系统的“感官”、“神经”和“大脑”,他们构成了一个完整的自动检测系统。

传感器基础知识点整理

传感器基础知识点整理

传感器基础知识点整理
本文档旨在梳理传感器的基础知识点,帮助读者了解传感器的工作原理和常见类型。

1. 传感器简介
传感器是一种用于检测和测量物理量的器件,可以将各种物理量(如温度、压力、力、光等)转换为可读取的电信号。

2. 传感器的工作原理
传感器工作原理根据不同的物理量而异,但通常包括以下几个步骤:
- 接收:传感器接收待测物理量的信号。

- 转换:传感器将接收到的信号转换成可读取的电信号。

- 输出:传感器将转换后的电信号输出给其他设备或系统。

3. 传感器的常见类型
3.1 温度传感器
温度传感器用于测量环境或物体的温度。

常见的温度传感器有:
- 热电偶:基于热电效应,利用两种不同金属的接触产生电势
差来测量温度。

- 热敏电阻:利用材料电阻与温度的关系来测量温度。

3.2 压力传感器
压力传感器用于测量气体或液体的压力。

常见的压力传感器有:
- 压阻式传感器:利用应变片的变形来测量压力。

- 电容式传感器:利用电容的变化来测量压力。

- 压力膜片传感器:利用薄膜片的弯曲来测量压力。

3.3 光传感器
光传感器用于检测光的存在、光的强度或光的颜色。

常见的光传感器有:
- 光敏电阻:利用光照射产生的光电效应来测量光的强度。

- 光电二极管:基于光电效应来测量光的强度。

- 光电三极管:在光电二极管的基础上增加了一个控制端口,用于增强灵敏度。

4. 总结
本文档简要介绍了传感器的基础知识点,包括传感器的工作原理和常见类型。

通过了解这些知识,读者可以更好地理解传感器的应用场景和原理。

传感器的基础知识.ppt

传感器的基础知识.ppt

21
3).随机误差
在同一条件下,多次测量同一被测量,有时 会发现测量值时大时小,误差的绝对值及正、负 以不可预见的方式变化,该误差称为随机误差, 也称偶然误差,它反映了测量值离散性的大小。 随机误差是测量过程中许多独立的、微小的、偶 然的因素引起的综合结果。
存在随机误差的测量结果中,虽然单个测量 值误差的出现是随机的,既不能用实验的方法消 除,也不能修正,但是就误差的整体而言,多数 随机误差都服从正态分布规律。
1.误差产生的因素:1).粗大误差
明显偏离真值的误差称为粗大误差,也
叫过失误差。粗大误差主要是由于测量人员
的粗心大意及电子测量仪器受到突然而强大
的干扰所引起的。如测错、读错、记错、外
界过电压尖峰干扰等造成的误差。就数值大
小而言,粗大误差明显超过正常条件下的误
差。当发现粗大误差时,应予以剔除。
2021/4/3
2021/4/3
14
2.分辨力:指传感器能检出被测信号
的最小变化量。当被测量的变化小于分 辨力时,传感器对输入量的变化无任何 反应。对模拟式传感器,以最小刻度的 一半所代表的输入量表示;对数字式传 感器,如果没有其他附加说明,可以认 为该表的最后一位数值所代表的输入量 就是它的分辨力。
2021/4/3
……
2021/4/3
10
四、传感器基本特性
传感器的特性一般指输入、输出特性, 包括:灵敏度、分辨力、线性度、迟滞、 重复性、漂移等。
2021/4/3
11
1.灵敏度 :
灵敏度是指传感器在稳态下输出变 化值与输入变化值之比,用K 来表示:
K dy y dx x
(1-1)
2021/4Βιβλιοθήκη 312作图法求灵敏度过程

1 传感器的基础知识-半导体传感器原理与应用-李新-清华大学出版社

1 传感器的基础知识-半导体传感器原理与应用-李新-清华大学出版社
y=a0+a1x+a2x2+…….+anxn
线性模型: y=a0+a1x或y=ax ➢ 动态模型(输入信号随时间变化): 微分方程
and n y / dtn a1dy / dt a0 y bmd mx / dtm b1dx / dt b0x c
当传感器的数学模型初值为0时,对其进行拉氏变换,可得
1、传感器的基础知识
取决于传感器本身,可通过传感器本身的改善来加以抑制, 有时也可以对外界条件加以限制。
冲振
外界影响
温度
电磁场
电源
输入
输出
Sensor
线性 迟滞 重复性
温漂 稳定性(零漂) 灵敏度
衡量传感器特性的主要技术指标
传感器的输入-输出关系
1、传感器的基本特性
➢ 传感器的数学模型 指传感器的输入输出关系。 ➢ 传感器的静态模型(输入信号不随时间变化):
➢最小二乘法线性度
设拟合直线方程: y=kx+b
y
yi
若实际校准测试点有n个,则第i个校准
数据与拟合直线上响应值之间的残差为 0
Δi=yi-(kxi+b)
y=kx+b
xI
x
最小二乘拟合法
最小二乘法拟合直线的原理就是使 2i 为最小值,即
n
n
2
2i yi kxi b min
i 1
i 1
2i 对k和b一阶偏导数等于零,求出b和k的表达式
规定工作条件下,环境温度每变化1℃,零点输出变化(灵敏度变化) 与满量程输出(灵敏度)之比,称为零点温漂(灵敏度温漂)。
➢ 精度 表征测试系统的测量结果与被测量真值的符合程度。
方和根表示法:

传感器基础知识

传感器基础知识
(2)非电量电测量技术优点: 测量精度高、反应速度快、能自动连续地进行测 量、可以进行遥测、便于自动记录、可以与计算 机联结进行数据处理、可采用微处理器做成智能 仪表、能实现自动检测与转换等。
酒精测试仪
呼气管
电子湿度计模块
封装后的外 形
1.2.2 测量方法
1) 直接测量、间接测量和组合测量 (又称联立 测量)。经过求解联立方程组,才能得到被测物 理量的最后结果,则称这样的测量为组合测量。
2020年08月27日
Thursday
39
①主称——传感器代号C ②被测量—用一个或两个汉语拼音 的第一个大写字母标记。③转换原理——用一个或两个汉语 拼音的第一个大写字母标记。④序号——用一个阿拉伯数字 标记,厂家自定,用来表征产品设计特性、性能参数、产品 系列等。
例:应变式位移传感器: C WY-YB-20 光纤压力传感器:C Y-GQ-2
④+①超调量σ 传感器输出超过稳态值的最 大值。
④ +②衰减比d 衰减震荡的二阶传感器输 出响应曲线第一个峰值与第二个峰值之比。
2. 频率响应特性
传感器对不同频率正弦输入信号的响应特性,称为 频率响应特性。
频率响应法是从传感器的频率特性出发研究传感器 的动态特性。
(1)零阶传感器的频率特性 (2)一阶传感器的频率特性 (3) 二阶传感器的频率特性 (4)频率响应特性指标
检测技术主要研究被测量的测量原理、测量方
法、检测系统和数据处理等方面的内容。
不同性质的被测量要采用不同的原理去测量, 测量同一性质的被测量也可采用不同测量原 理。
2020年08月27日
Thursday
43
自动检测技术的重要性
(1)测试手段就是仪器仪表 在工程上所要测量的参数大多数为非电量,促使 人们用电测的方法来研究非电量,即研究用电测 的方法测量非电量的仪器仪表,研究如何能正确 和快速地测得非电量的技术。

传感器基础知识讲解

传感器基础知识讲解

传感器基础知识讲解传感器,在现代科技中扮演着重要的角色。

它们是将物理量或化学量转化为可测量、可感知的电信号或其他形式的能量输出的装置。

本文将为您详细介绍传感器的基础知识,包括其工作原理、分类和应用领域等。

一、传感器的概念及工作原理传感器是指能够将所测量的物理量或化学量转换成可读的电信号或其他形式的能量输出的装置。

传感器的工作原理主要分为以下几种:1. 电阻式传感器:电阻式传感器利用物理量改变电阻值的特性,通过测量电阻值的变化来获取目标物理量的值。

例如,温度传感器就是一种电阻式传感器,它根据温度的变化来改变电阻值。

2. 压阻式传感器:压阻式传感器利用物理量改变电阻值的原理,通过测量电阻值的变化来间接获取目标物理量的值。

比如,压力传感器利用介质压力的变化引起电阻值的变化,从而测量介质的压力大小。

3. 电容式传感器:电容式传感器利用物理量改变电容值的特性,通过测量电容值的变化来获得目标物理量的值。

例如,湿度传感器就是一种电容式传感器,它根据湿度的变化引起电容值的变化来测量湿度。

4. 磁敏式传感器:磁敏式传感器利用物理量改变磁场强度的原理,通过测量磁场强度的变化来获得目标物理量的值。

例如,磁力传感器可以根据磁场强度的变化来测量磁力大小。

二、传感器的分类根据应用领域和测量原理的不同,传感器可以分为多个类别。

以下是一些常见的传感器分类:1. 温度传感器:用于测量环境或物体的温度,常见的有热敏电阻、热电偶和红外温度传感器等。

2. 压力传感器:用于测量气体或液体的压力,常见的有压电传感器、压阻传感器和压电式绝对压力传感器等。

3. 湿度传感器:用于测量空气或物体的湿度,常见的有电容式湿度传感器和表面声波湿度传感器等。

4. 光电传感器:用于检测光源、物体的透明度或反射光强度,常见的有光电开关和光电二极管等。

5. 位移传感器:用于测量物体的位移或位置,常见的有电感位移传感器和光电编码器等。

6. 加速度传感器:用于测量物体的加速度或振动,常见的有压电加速度传感器和微机械加速度传感器等。

传感器基础知识

传感器基础知识

第1章传感器的基本知识一、简述题1-1何谓结构型传感器?何谓物性型传感器?试述两者的应用特点。

1-2一个实用的传感器由哪几部分构成?各部分的功用是什么?用框图标示出你所理解的传感器系统。

1-3衡量传感器静态特性的主要指标有哪些?说明它们的含义。

1-4什么是传感器的静态特性和动态特性?差别何在?1-5怎么评价传感器的综合静态性能和动态性能?二、计算题1-6有一只压力传感器的校准数据如下表所列。

根据这些数据求最小二乘法线性化的拟合直线方程,并求其线性度。

1-7液体温度传感器是一阶传感器,现已知某玻璃水银温度计特性的微分方程为4dy/dx+2y = 2×103x。

式中y为汞柱高(m),x为被测温度(℃)。

试求:(1) 水银温度计的传递函数;(2) 温度计的时间常数及静态灵敏度;(3) 若被测物体的温度是频率为0.5 Hz的正弦信号,求此时传感器的输出信号振幅误差和相角误差。

1-8今有两加速度传感器均可作为二阶系统来处理,其中一只固有频率为25 kHz,另一只为35 kHz,阻尼比均为0.3。

若欲测量频率为10kHz 的正弦振动加速度,应选用哪一只传感器?试计算测量时将带来多大的振幅误差和相位误差。

第3章电感式传感器3-1简述变气隙式自感传感器的工作原理和输出特性,传感器的灵敏度与哪些因素有关?如何提高其灵敏度?3-2电源频率波动对自感式传感器的灵敏度有何影响?如何确定传感器的最佳电源频率?3-3差动变压器式传感器的等效电路包括哪些元件和参数?各自的含义是什么?3-4试分析差动变压器式电感传感器的相敏整流测量电路的工作过程。

带相敏整流的电桥电路具有哪些优点?3-5差动变压器式传感器的零点残余电压产生的原因是什么?怎样减小和消除它的影响?3-6图3.38所示为差动变压器式接近开关原理图,结构中使用H型铁芯,分析它的工作原理,并设计后续信号处理电路,使被测金属部件与探头距离达设定距离时,继电器吸合。

第一章传感器技术基础知识

第一章传感器技术基础知识
频带:传感器增益保持在一定值内的频率范围为传感器频带 或通频带,对应有上、下截止频率。
时间常数:用时间常数τ来表征一阶传感器的动态特性。τ越小, 频带越宽。
固有频率:二阶传感器的固有频率ωn表征了其动态特性。
传感器的选用原则
与测量条件有关的因素 (1)测量的目的 (2)被测试量的选择 (3)测量范围 (4)输入信号的幅值,频带宽度 (5)精度要求 (6)测量所需要的时间
相应的响应曲线 :
传感器存在惯性,它的输出不能立即复现输入信号,而是从零开 始,按指数规律上升,最终达到稳态值。 理论上传感器的响应只在t趋于无穷大时才达到稳态值,但实际上 当t=4τ时其输出达到稳态值的98.2%,可以认为已达到稳态。 τ越小,响应曲线越接近于输入阶跃曲线, 因此,τ值是一阶传感器重要的性能参数。
测量
测量是指人们用实验的方法,借助于一定的仪器或 设备,将被测量与同性质的单位标准量进行比较,
并确定被测量对标准量的倍数,从而获得关于被测
量的定量信息。
xnu或
x——被测量值;
n x u
u——标准量,即测量单位;
n——比值,含有测量误差。
测量过程
传感器从被测对象获取被测量的信息,建立起 测量信号,经过变换、传输、处理,从而获得 被测量量值的过程。
线性传感器
S y x
灵敏度是它的静态特性的斜率,即S为常数。
非线性传感器
它的灵敏度S为一变量,用下式表示。
S dy dx
传感器的灵敏度如图1-3所示。
Y
Y
S y - y0
Yo
x
X O
a)线形传感器
Байду номын сангаас
Y dy
dx S dy dx X
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础知识传感器:将能感受到的及规定的被测量按一定规律转换成可用输出信号的器件或装置。

传感器特性:①静态特性:输入为0 时,输出也为0,或输出相对于输入应保持一定的对应关系;②动态特性:传感器对于随时间变化的输入信号的响应特性,通常要求传感器不仅能精确地显示被测量的大小,而且还能复现被测量随时间变化的规律。

静态特性分类:①灵敏度:传感器在稳态工作情况下输出量变化△ y 对输入量变化△ x 的比值。

它是输出一输入特性曲线的斜率。

如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。

否则,它将随输入量的变化而变化。

灵敏度的量纲是输出、输入量的量纲之比。

②线性:输入与输出量之间为线性比例关系,称为线性关系。

③时滞(滞后):输入与输出不是一一对应的关系。

④环境特性:周围环境对传感器影响的最大温度。

⑤稳定性:理性特性的传感器是加相同大小输入量时,输出量总是相同的。

⑥精度:评价系统的优良程度。

A 准确度:测量值与真实值偏离程度;B 精密度:即使测量相同对象,每次测量也会得到不同测量值,即为离散偏差。

⑦重复性:在相同的工作条件下,对同一个输入值在短时间内多次连续测量输出所获得的极限值之间的代数差。

⑧温漂:;连续工作的传感器,在输入恒定的情况下,输出量也会朝着一个方向偏移。

⑨零点漂移:由于温度或其他原因会导致传感器在检测的基准零点发生变化,偏离零点位置。

⑩分辨率:分辨率是指传感器可感受到的被测量的最小变化的能力。

光电传感器光电效应:物体吸收了光能后转换为该物体中某些电子的能量而产生的电效应。

外光电效应:在光照射下,电子逸出物体表面而产生光电子发射的现象称为外光电效应。

光电子能否产生,取决于光电子的能量是否大于该物体的表面电子逸出功A 。

由于不同材料具有不同的逸出功,因此对某种材料而言便有一个频率限,当入射光的频率低于此频率限时,不论光强多大,也不能激发出电子;反之,当入射光的频率高于此极限频率时,即使光线微弱也会有光电子发射出来,这个频率限称为“红限频率” 。

在入射光的频谱成分不变时,产生的光电流正比于光强。

即光强愈大,意味着入射光子数目越多,逸出的电子数也就越多。

基于外光电效应的光电器件属于光电发射型器件,有光电管、光电倍增管等。

光电子的初动能决定于光的频率,与频率成线性关系,与入射光强度无关。

光电子逸出物体表面具有初始动能,故即使没有阳极电压也会产生光电流,为了使零点稳定,应加反向截止电压,切电压大小与入射光频率成正比。

内光电效应:在光的照射下材料的电阻率发生变化或产生光生电动势的现象称为内光电效应。

可分为:光照引起半导体电阻值变化的光电导效应;光照产生电动势的光生伏特效应。

光敏电阻又称光导管,为纯电阻元件,没有极性,使用时可加直流电压,也可以加交流电压。

其工作原理是基于光电导效应,其阻值随光照增强而减小。

光敏电阻在未受到光照时的阻值称为暗电阻,此时流过的电流称为暗电流。

在受到光照时的电阻称为亮电阻,此时的电流称为亮电流。

亮电流与暗电流之差称为光电流。

一般暗电阻越大,亮电阻越小,光敏电阻的灵敏度越高。

光电导效应,又称为光电效应、光敏效应,是光照变化引起半导体材料电导变化的现象。

即光电导效应是光照射到某些物体上后,引起其电性能变化的一类光致电改变现象的总称。

当光照射到半导体材料时,材料吸收光子的能量,使非传导态电子变为传导态电子,引起载流子浓度增大,因而导致材料电导率增大。

在光线作用下,对于半导体材料吸收了入射光子能量,若光子能量大于或等于半导体材料的禁带宽度,就激发出电子-空穴对,使载流子浓度增加,半导体的导电性增加,阻值减低,这种现象称为光电导效应。

光敏电阻就是基于这种效应的光电器件。

电阻传感器压阻效应,是指当半导体受到应力作用时,由于载流子迁移率的变化,使其电阻率发生变化的现象。

金属的电阻应变效应:金属导体的电阻值随着它受力所产生机械变形(拉伸或压缩)的大小而发生变化的现象。

横向效应:应变片的核心部分是敏感栅。

将电阻丝绕成敏感栅后,虽然长度不变,但其直线段和圆弧段的应变状态不同,其灵敏系数K 较整长电阻丝的灵敏系数K0 小的现象。

蠕变:不稳定性,由胶层间的“滑动”引起。

热电阻的测温原理:基于导体或半导体的电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。

(Rt=Ro(1+α)△t)热电偶测温的基本原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当两个接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。

热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。

在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。

因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。

热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。

若测量时,冷端的(环境)温度变化,将严重影响测量的准确性。

在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿正常。

与测量仪表连接用专用补偿导线。

均质导体定律:由同一种均质材料(导体或半导体)两端焊接组成闭合回路,无论导体截面如何以及温度如何分布,将不产生接触电势,温差电势相抵消,回路中总电势为零。

可见,热电偶必须由两种不同的均质导体或半导体构成。

若热电极材料不均匀,由于温度梯存在,将会产生附加热电势。

中间导体定律:在热电偶回路中接入中间导体(第三导体),只要中间导体两端温度相同,中间导体的引入对热电偶回路总电势没有影响,这就是中间导体定律。

应用:常采用热端焊接、冷端开路的形式,冷端经连接导线与显示仪表连接构成测温系统。

中间温度定律:热电偶回路两接点(温度为T、T0)间的热电势,等于热电偶在温度为T、Tn 时的热电势与在温度为Tn、T0 时的热电势的代数和。

Tn 称中间温度。

应用:由于热电偶E-T 之间通常呈非线性关系,当冷端温度不为0 摄氏度时,不能利用已知回路实际热电势E (t,t0)直接查表求取热端温度值;也不能利用已知回路实际热电势 E (t,t0)直接查表求取的温度值,再加上冷端温度确定热端被测温度值,需按中间温度定律进行修正。

初学者经常不按中间温度定律来修正!参考电极定律:这个定律是专业人士才研究、关注的,一般生产、使用环节的人士不太了解,简单说明就是:用高纯度铂丝做标准电极,假设镍铬- 镍铬热电偶的正负极分别和标准电极配对,他们的值相加是等于这支镍铬-镍铬的值。

单丝补偿主要是通过选用合适温度系数的电阻材料,作为应变片的敏感栅,使其在某种相匹配的受力构件上使用时,由温度变化产生的电阻变化量,由于它们的线膨胀系数不同而产生的电阻变化量相抵消,以达到消除温度变化所引起的电阻变化。

此种自补偿形式无需改变应变片的结构,简便易行,但它必须在特定材料的受力构件上才能使用,也就是存在匹配问题,故使其应用受到了很大的限制。

双丝组合式自补偿应变片主要是利用两种不同电阻温度系数(一种是正温度系数、另一种为负的材料串联组成应变片的敏感栅,以达到在某一温度范围内自动实现温度的补偿。

这种补偿法的优点是在制造应变片时可以通过调节两段敏感栅的长度之比来适应不同的受力元件,以获得在一定温度范围内具有良好的温度自适应性。

这种方法虽有较好的补偿效果,但应变片的结构较复杂。

电路补偿是指在测量电路中采取一定的措施来消除温度变化的影响。

具体方法有差动电路法和热敏电阻法两种。

差动电路法是将相同温度系数的两片或四片电阻应变片接成双臂或四臂工作的差动电路。

这种方法最简单实用,但对应变片的自身性能和贴片工艺要求较高;热敏电阻法是利用热敏电阻随温度而改变的值来抵消应变片随温度变化而改变的电阻值,从而达到补偿的方法。

其原理电路图如图3.2 所示。

只要合理选择分流电阻R5 和热敏电阻RT 的阻值,就能补偿由于温度的改变而引起的输出误差,达到保证测量精度的要求。

电容式传感器把被测的机械量,如位移、压力等转换为电容量变化的传感器。

它的敏感部分就是具有可变参数的电容器。

其最常用的形式是由两个平行电极组成、极间以空气为介质的电容器(见图)。

若忽略边缘效应,平板电容器的电容为ε S/d,式中ε为极间介质的介电常数,S 为两极板互相覆盖的有效面积,d 为两电极之间的距离。

d、s、ε三个参数中任一个的变化都将引起电容量变化,并可用于测量。

因此电容式传感器可分为极距变化型、面积变化型、介质变化型三类。

极距变化型一般用来测量微小的线位移或由于力、压力、振动等引起的极距变化(见电容式压力传感器)。

面积变化型一般用于测量角位移或较大的线位移。

介质变化型常用于物位测量和各种介质的温度、密度、湿度的测定。

温度对电容式传感器的结构和ε有影响(寄生电容)。

C=ε*S/d=Q/U=I*t/U.压电传感器压电效应:某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。

当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。

当作用力的方向改变时,电荷的极性也随之改变。

相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。

石英晶体:Z 光轴:不产生压电效应;X 电轴:纵向压电效应;Y机械轴:横向压电效应。

磁敏传感器形状效应:由于磁敏元件的几何尺寸变化而引起的磁阻大小变化的现象。

霍尔效应:在导体上外加与电流方向垂直的磁场,会使得导线中的电子受到洛伦兹力而聚集,从而在电子聚集的方向上产生一个电场,此一电场将会使后来的电子受到电力作用而平衡掉磁场造成的洛伦兹力,使得后来的电子能顺利通过不会偏移,此称为霍尔效应。

而产生的内建电压称为霍尔电压。

一个霍尔元件一般有四个引出端子,其中两根是霍尔元件的偏置电流IC 的输入端,另两根是霍尔电压的输出端。

如果两输出端构成外回路,就会产生霍尔电流。

一般地说,偏置电流的设定通常由外部的基准电压源给出;若精度要求高,则基准电压源均用恒流源取代。

为了达到高的灵敏度,有的霍尔元件的传感面上装有高导磁系数的坡莫合金;这类传感器的霍尔电势较大,但在0.05T 左右出现饱和,仅适用在低量限、小量程下使用。

U H=K H**B*I超声波传感器超声波传感器是利用超声波的特性研制而成的传感器。

超声波是指频率高于20kHz 的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。

相关文档
最新文档