传感器基础知识

合集下载

传感器基础知识单选题100道及答案解析

传感器基础知识单选题100道及答案解析

传感器基础知识单选题100道及答案解析1. 传感器能感知的输入量的最小变化量称为()A. 分辨率B. 灵敏度C. 精度D. 线性度答案:A解析:分辨率是指传感器能感知的输入量的最小变化量。

2. 下列不属于传感器静态特性指标的是()A. 重复性B. 固有频率C. 线性度D. 迟滞答案:B解析:固有频率属于传感器的动态特性指标。

3. 传感器的输出量与输入量之间的实际关系曲线偏离拟合直线的程度称为()A. 线性度B. 灵敏度C. 重复性D. 分辨率答案:A解析:线性度描述的是实际关系曲线偏离拟合直线的程度。

4. 传感器在正、反行程中输出输入曲线不重合的现象称为()A. 线性度B. 重复性C. 迟滞D. 灵敏度误差答案:C解析:迟滞指传感器在正、反行程中输出输入曲线不重合。

5. 衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间不一致的程度的指标是()A. 线性度B. 迟滞C. 重复性D. 灵敏度答案:C解析:重复性是衡量同一工作条件下,特性曲线不一致的程度。

6. 以下哪种传感器属于物性型传感器()A. 电容式传感器B. 电感式传感器C. 压电式传感器D. 电阻应变式传感器答案:C解析:压电式传感器是利用某些物质的压电效应制成,属于物性型传感器。

7. 属于结构型传感器的是()A. 光电式传感器B. 霍尔式传感器C. 压电式传感器D. 热敏电阻答案:B解析:霍尔式传感器是基于霍尔效应,属于结构型传感器。

8. 传感器的线性范围越宽,则其量程()A. 越小B. 越大C. 不变D. 不确定答案:B解析:线性范围宽,意味着能测量的输入量的范围大,即量程越大。

9. 下列对传感器的动态特性描述正确的是()A. 输入量随时间变化缓慢时的特性B. 输入量为常量时的特性C. 输入量随时间快速变化时的特性D. 以上都不对答案:C解析:动态特性是指输入量随时间快速变化时传感器的特性。

10. 传感器的频率响应特性是指()A. 传感器对不同频率正弦输入信号的响应特性B. 传感器在单位时间内的响应特性C. 传感器在不同温度下的响应特性D. 传感器在不同压力下的响应特性答案:A解析:频率响应特性指传感器对不同频率正弦输入信号的响应特性。

第一章 传感器的基本知识

第一章 传感器的基本知识

第一章传感器的基本知识复习思考题1. 简述传感器的概念、作用及组成。

2. 传感器的分类有哪几种?各有什么优缺点?3. 传感器是如何命名的?其代号包括哪几部分?在各种文件中如何应用?4. 传感器的静态性能指标有哪些?其含义是什么?5. 传感器的动态特性主要从哪两方面来描述?采用什么样的激励信号?其含义是什么?1.1 传感器的作用与地位◆世界是由物质组成的,各种事物都是物质的不同形态。

人们为了从外界获得信息,必须借助于感觉器官。

◆人的“五官”——眼、耳、鼻、舌、皮肤分别具有视、听、嗅、味、触觉等直接感受周围事物变化的功能,人的大脑对“五官”感受到的信息进行加工、处理,从而调节人的行为活动。

◆人们在研究自然现象、规律以及生产活动中,有时需要对某一事物的存在与否作定性了解,有时需要进行大量的实验测量以确定对象的量值的确切数据,所以单靠人的自身感觉器官的功能是远远不够的,需要借助于某种仪器设备来完成,这种仪器设备就是传感器。

传感器是人类“五官”的延伸,是信息采集系统的首要部件。

电量和非电量◆表征物质特性及运动形式的参数很多,根据物质的电特性,可分为电量和非电量两类。

◆电量——一般是指物理学中的电学量,例如电压、电流、电阻、电容及电感等;◆非电量——则是指除电量之外的一些参数,例如压力、流量、尺寸、位移量、重量、力、速度、加速度、转速、温度、浓度及酸碱度等等。

◆人类为了认识物质及事物的本质,需要对物质特性进行测量,其中大多数是对非电量的测量。

传感器的作用◆非电量不能直接使用一般的电工仪表和电子仪器进行测量,因为一般的电工仪表和电子仪器只能测量电量,要求输入的信号为电信号。

◆非电量需要转化成与其有一定关系的电量,再进行测量,实现这种转换技术的器件就是传感器。

◆传感器是获取自然或生产中信息的关键器件,是现代信息系统和各种装备不可缺少的信息采集工具。

采用传感器技术的非电量电测方法,就是目前应用最广泛的测量技术。

传感器的地位◆随着科学技术的发展,传感器技术、通信技术和计算机技术构成了现代信息产业的三大支柱产业,分别充当信息系统的“感官”、“神经”和“大脑”,他们构成了一个完整的自动检测系统。

传感器基础知识点整理

传感器基础知识点整理

传感器基础知识点整理
本文档旨在梳理传感器的基础知识点,帮助读者了解传感器的工作原理和常见类型。

1. 传感器简介
传感器是一种用于检测和测量物理量的器件,可以将各种物理量(如温度、压力、力、光等)转换为可读取的电信号。

2. 传感器的工作原理
传感器工作原理根据不同的物理量而异,但通常包括以下几个步骤:
- 接收:传感器接收待测物理量的信号。

- 转换:传感器将接收到的信号转换成可读取的电信号。

- 输出:传感器将转换后的电信号输出给其他设备或系统。

3. 传感器的常见类型
3.1 温度传感器
温度传感器用于测量环境或物体的温度。

常见的温度传感器有:
- 热电偶:基于热电效应,利用两种不同金属的接触产生电势
差来测量温度。

- 热敏电阻:利用材料电阻与温度的关系来测量温度。

3.2 压力传感器
压力传感器用于测量气体或液体的压力。

常见的压力传感器有:
- 压阻式传感器:利用应变片的变形来测量压力。

- 电容式传感器:利用电容的变化来测量压力。

- 压力膜片传感器:利用薄膜片的弯曲来测量压力。

3.3 光传感器
光传感器用于检测光的存在、光的强度或光的颜色。

常见的光传感器有:
- 光敏电阻:利用光照射产生的光电效应来测量光的强度。

- 光电二极管:基于光电效应来测量光的强度。

- 光电三极管:在光电二极管的基础上增加了一个控制端口,用于增强灵敏度。

4. 总结
本文档简要介绍了传感器的基础知识点,包括传感器的工作原理和常见类型。

通过了解这些知识,读者可以更好地理解传感器的应用场景和原理。

传感器基础知识讲解

传感器基础知识讲解

传感器基础知识讲解传感器,在现代科技中扮演着重要的角色。

它们是将物理量或化学量转化为可测量、可感知的电信号或其他形式的能量输出的装置。

本文将为您详细介绍传感器的基础知识,包括其工作原理、分类和应用领域等。

一、传感器的概念及工作原理传感器是指能够将所测量的物理量或化学量转换成可读的电信号或其他形式的能量输出的装置。

传感器的工作原理主要分为以下几种:1. 电阻式传感器:电阻式传感器利用物理量改变电阻值的特性,通过测量电阻值的变化来获取目标物理量的值。

例如,温度传感器就是一种电阻式传感器,它根据温度的变化来改变电阻值。

2. 压阻式传感器:压阻式传感器利用物理量改变电阻值的原理,通过测量电阻值的变化来间接获取目标物理量的值。

比如,压力传感器利用介质压力的变化引起电阻值的变化,从而测量介质的压力大小。

3. 电容式传感器:电容式传感器利用物理量改变电容值的特性,通过测量电容值的变化来获得目标物理量的值。

例如,湿度传感器就是一种电容式传感器,它根据湿度的变化引起电容值的变化来测量湿度。

4. 磁敏式传感器:磁敏式传感器利用物理量改变磁场强度的原理,通过测量磁场强度的变化来获得目标物理量的值。

例如,磁力传感器可以根据磁场强度的变化来测量磁力大小。

二、传感器的分类根据应用领域和测量原理的不同,传感器可以分为多个类别。

以下是一些常见的传感器分类:1. 温度传感器:用于测量环境或物体的温度,常见的有热敏电阻、热电偶和红外温度传感器等。

2. 压力传感器:用于测量气体或液体的压力,常见的有压电传感器、压阻传感器和压电式绝对压力传感器等。

3. 湿度传感器:用于测量空气或物体的湿度,常见的有电容式湿度传感器和表面声波湿度传感器等。

4. 光电传感器:用于检测光源、物体的透明度或反射光强度,常见的有光电开关和光电二极管等。

5. 位移传感器:用于测量物体的位移或位置,常见的有电感位移传感器和光电编码器等。

6. 加速度传感器:用于测量物体的加速度或振动,常见的有压电加速度传感器和微机械加速度传感器等。

高二传感器知识点总结

高二传感器知识点总结

高二传感器知识点总结一、传感器的基本概念传感器是一种能够感知周围环境并将感知到的信息转化为电信号或其他形式信号的器件。

传感器在工业自动化、智能家居、医疗设备、汽车工业等领域都有广泛的应用,对于提高生产效率、改善生活质量有着重要的作用。

二、传感器的分类1. 按照测量物理量分类传感器根据其测量的物理量不同可以分为温度传感器、压力传感器、光敏传感器、湿度传感器、力传感器、位移传感器等多种类型。

2. 按照传感原理分类传感器还可以按照其传感原理不同进行分类,常见的传感原理包括电阻传感器、电容传感器、电感传感器、霍尔传感器、红外线传感器、激光传感器等。

3. 按照传感器的工作原理分类按照传感器的工作原理可以分为接触式传感器和非接触式传感器两种。

接触式传感器需要直接接触被测物体,而非接触式传感器可以通过无线、光学或者声波等方式进行测量。

三、传感器的特点1. 灵敏度高传感器能够感知到微小的变化,具有高的灵敏度。

2. 可靠性高传感器具有良好的稳定性和可靠性,能够长时间稳定工作。

3. 多功能性强传感器可以感知多种物理量,具有多功能性。

4. 体积小、重量轻传感器通常体积小、重量轻,便于安装和携带。

5. 自动化程度高传感器可以实现自动检测和自动控制,有助于提高生产效率。

四、传感器的应用1. 工业自动化传感器在工业自动化领域有着广泛的应用,可以用于测量温度、压力、液位、流量等参数,实现设备的自动化控制。

2. 智能家居在智能家居领域,传感器可以应用于智能灯光控制、温湿度监测、门窗开关检测等方面,提高生活的便利性和舒适性。

3. 医疗设备在医疗设备领域,传感器可以用于心率监测、血压监测、血糖监测等,为医疗人员提供重要的生理参数。

4. 汽车工业在汽车工业中,传感器可以用于车速测量、车重检测、发动机温度检测等,提高车辆的性能和安全性。

五、传感器的未来发展趋势1. 多功能集成传感器未来发展趋势是实现多功能集成,将多种传感功能整合在一个器件中,提高传感器的智能化和多功能性。

传感器与检测技术基础知识-下载[1]重点

传感器与检测技术基础知识-下载[1]重点

(1)直接测量与间接测量 Ⅰ.直接测量 用事先分度或标定好的测量仪表, 直接读取被测量测量结果的方法称为直接测量。直接 测量是工程技术中大量采用的方法,其优点是直观、 简便、迅速,但不易达到很高的测量精度。 Ⅱ.间接测量 首先,对和被测量有确定函数关系 的几个量进行测量,然后,再将测量值代入函数关系 式,经过计算得到所需结果。这种测量方法,属于间 接测量。测量结果y和直接测量值xi(i=1,2,3…)之 间的关系式为: y=f(x1x2x3…) 。间接测量手续多, 花费时间长,当被测量不便于直接测量或没有相应直 接测量的仪表时才采用。
量程点, 可以得到端基线性度。
4. 迟滞
迟滞特性表明检测系统在正向和反向行程期间,
输入—输出特性曲线不一致的程度。也就是说,对
同样大小的输入量,检测系统在正、反行程中,往
往对应两个大小不同的输出量,如右下图所示。通
过实验,找出输出量的
y
这种最大差值,并以满量程 ymax
输出YFS的百分数表示,
1
ΔH max
1.2.3 检测技术的发展趋势 检测技术的发展趋势主要有以下两个方面: 第一,新原理、新材料和新工艺将产生更多品质优
良的新型传感器。例如光纤传感器、液晶传感器、以高分 子有机材料为敏感元件的压敏传感器、微生物传感器等。
第二,检测系统或检测装置目前正迅速地由模拟式、 数字式向智能化方向发展。带有微处理机的各种智能化仪 表已经出现,这类仪表选用微处理机做控制单元,利用计 算机可编程的特点,使仪表内的各个环节自动地协调工作, 并且具有数据处理和故障诊断功能,成为一代崭新仪表, 把检测技术自动化推进到一个新水平。
指示仪
被测量 传感器
测量 电路
记录仪
电源

第一章传感器技术基础知识

频带:传感器增益保持在一定值内的频率范围为传感器频带 或通频带,对应有上、下截止频率。
时间常数:用时间常数τ来表征一阶传感器的动态特性。τ越小, 频带越宽。
固有频率:二阶传感器的固有频率ωn表征了其动态特性。
传感器的选用原则
与测量条件有关的因素 (1)测量的目的 (2)被测试量的选择 (3)测量范围 (4)输入信号的幅值,频带宽度 (5)精度要求 (6)测量所需要的时间
相应的响应曲线 :
传感器存在惯性,它的输出不能立即复现输入信号,而是从零开 始,按指数规律上升,最终达到稳态值。 理论上传感器的响应只在t趋于无穷大时才达到稳态值,但实际上 当t=4τ时其输出达到稳态值的98.2%,可以认为已达到稳态。 τ越小,响应曲线越接近于输入阶跃曲线, 因此,τ值是一阶传感器重要的性能参数。
测量
测量是指人们用实验的方法,借助于一定的仪器或 设备,将被测量与同性质的单位标准量进行比较,
并确定被测量对标准量的倍数,从而获得关于被测
量的定量信息。
xnu或
x——被测量值;
n x u
u——标准量,即测量单位;
n——比值,含有测量误差。
测量过程
传感器从被测对象获取被测量的信息,建立起 测量信号,经过变换、传输、处理,从而获得 被测量量值的过程。
线性传感器
S y x
灵敏度是它的静态特性的斜率,即S为常数。
非线性传感器
它的灵敏度S为一变量,用下式表示。
S dy dx
传感器的灵敏度如图1-3所示。
Y
Y
S y - y0
Yo
x
X O
a)线形传感器
Байду номын сангаас
Y dy
dx S dy dx X

公共基础知识传感器技术基础知识概述

《传感器技术基础知识概述》一、引言在当今科技飞速发展的时代,传感器技术作为现代信息技术的三大支柱之一,正发挥着越来越重要的作用。

传感器犹如人类的感官,能够感知周围环境的各种物理量、化学量和生物量,并将其转化为电信号或其他易于处理和传输的信号,为人们提供了了解和控制世界的重要手段。

从智能手机中的各种传感器到工业自动化中的精密传感器,从医疗诊断中的生物传感器到环境监测中的智能传感器,传感器技术已经广泛应用于各个领域,深刻改变了人们的生活和工作方式。

本文将对传感器技术的基础知识进行全面的概述,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。

二、传感器的基本概念(一)定义传感器是一种能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。

敏感元件是指传感器中直接感受被测量的部分,它能将被测量转化为另一种物理量;转换元件则将敏感元件输出的物理量转换为电信号或其他易于处理和传输的信号。

(二)分类传感器的分类方法有很多种,常见的分类方式有以下几种:1. 按被测量分类:可分为物理量传感器、化学量传感器和生物量传感器。

物理量传感器包括温度传感器、压力传感器、位移传感器、速度传感器等;化学量传感器包括气体传感器、湿度传感器等;生物量传感器包括生物传感器、免疫传感器等。

2. 按工作原理分类:可分为电阻式传感器、电容式传感器、电感式传感器、压电式传感器、磁电式传感器、光电式传感器等。

3. 按输出信号分类:可分为模拟式传感器和数字式传感器。

模拟式传感器输出的是连续变化的电信号,数字式传感器输出的是离散的数字信号。

(三)主要性能指标1. 灵敏度:指传感器在稳态下输出变化量与输入变化量之比,它反映了传感器对被测量的敏感程度。

2. 线性度:指传感器的输出与输入之间的线性关系程度,通常用非线性误差来表示。

3. 精度:指传感器的测量结果与真实值之间的接近程度,它包括准确度和精密度两个方面。

传感器基础知识


直接感受被测量的变化,并输出与被测量成确 定关系的某一物理量的元件。
敏感元件是传感器的核心
2024/9/29
3
转换元件: 将敏感元件输出的物理量转换成 适于传输或测量电信号的元件。
2024/9/29
4
测量电路: 将转换元件输出的电信号进行进 一步转换和处理的部分,如放大、滤波、线性 化、补偿等,以获得更好的品质特性,便于后 续电路实现显示、记录、处理及控制等功能。
y
ΔLmax
x
②过零旋转拟合
曲线过零的传感器。拟合时,使
y
ΔL1 = ΔL2 = ΔLMax
ΔL1 ΔL2
x
③端点连线拟合
把输出曲线两端点的连线作为拟合直线
y
ΔLmax x
④端点连线平移拟合
在端点连线拟合基础上使直线平移,移动距离为
原先的一半 y
ΔL2 = ΔL1 = ΔL3 = ΔLMax
ΔL3
6
2.传感器的分类
(3)按照其结构分:
传感器可分为结构型、物性型和复合型传 感器。
A、物性型传感器是依靠敏感元件材料本身物理性 质的变化来实现信号变换,如:水银温度计。
B、结构型传感器是依靠传感器结构参数的变化实 现信号变换,如:电容式传感器。
2024/9/29
7
1.1.3 传感器基本特性
传感器的基本特性是指系统的输入与输出关系特性, 即传感器系统的输出信号y(t)和输入信号(被测量) x(t)之间的关系,
2024/9/29
41
1.2 检测技术理论基础
1.2.1 检测技术
检测技术主要研究被测量的测量原理、测量方
法、检测系统和数据处理等方面的内容。
不同性质的被测量要采用不同的原理去测量, 测量同一性质的被测量也可采用不同测量原 理。

传感器基础知识

专业知识部分泰钦的主要产品是测力传感器及测控仪表(一)首先了解什么叫传感器传感器就是能感知外界信息并能按一定规律将这些信息转换成可用信号的装置;简单说传感器是将外界信号转换为电信号的装置。

所以它由敏感元器件(感知元件)和转换器件两部分组成。

外界信号一般为非电物理量如:力、压力、重量、力矩位移、速度、温度、角度、高度。

电信号一般为易于精确处理的电量或电参量,如电流、电压、电阻、电感、频率。

我公司生产的传感器叫测力传感器,用专业术语统称应变式负荷传感器、称重传感器等。

应变式负荷传感器就是由电阻应变片,弹性体和检测电路三大重要部分组成。

1.电阻应变片。

电阻应变片分金属箔式应变片----(做出来的传感器又叫箔式传感器),另一个分为半导体应变片(做成的传感器叫半导体应变片)。

金属箔式应变片---用金属箔为敏感栅,能把被测试件的应变量转换成电阻变化量的敏感元件。

我公司常用阻值有:350Ω,650Ω,1KΩ等。

半导体应变计具有灵敏系数大、横向效益小,阻值范围宽等特性,广泛用于各种力敏传感器的线性补偿及传感器的力电转换元件。

它的缺点是系数大,长期稳定性较差。

2.弹性体---弹性体是一个有特殊形状的结构件。

它的功能有两个,首先是它承受称重传感器所受的外力,对外力产生反作用力,达到相对静平衡;其次,它要产生一个高品质的应变场(区),使粘贴在此区的电阻应变片比较理想的完成应变区电信号的转换任务。

3.检测电路检测电路的功能是把电阻应变片的电阻变化转变为电压输出。

应变式负荷传感器采用惠斯登电桥原理。

因为惠斯登电桥具有很多优点,如可以抑制温度变化的影响,可以抑制侧向力干扰,可以比较方便的解决称重传感器的补偿问题等,所以惠斯登电桥在称重传感器中得到了广泛的应用。

从以上三个部分我们总结一下,传感器的工作原理:当有力沿应变计丝栅方向产生时,因为弹性体的形变导致应变计丝栅长度变化,根据欧姆定律,应变计阻值发生变化,结合惠斯登电桥原理,于是产生了与受力大小相对应的电压变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=
b0
x

a1 dy + y = b0 x
a0 dt
a0
即 对(1-27)式进行拉氏变换,得
τ dy + y = Kx dt
(τs +1)Y (s) = KX (s)
则传递函数为
H (s)
=
Y (s) X (s)
=
K τs + 1
频率响应函数为
H ( jω) =
Y ( jω) X ( jω)
=
K jωτ + 1
a0 dt 2 a0 dt
a0
两边取拉氏变换,将上式写成算符 S 的代数式,得
( s 2 + 2ξ s + 1)Y(t)= KX ( t )
ω
2 0
ω0
由(1-38)式可得二阶系统的传递函数为
H (S )
=
Y (S ) X (s)
=
s2
+

2 0
2ξsω0
+
ω
2 0
频率响应特性 幅频特性
H(

)
a0Y (t) = b0 X (t)
(1-23)

Y (t) = b0 X (t) = KX (t)
a0
零阶传感器的传递函数和频率特性为
(1-24)
5
H (S ) =
Y (S ) X (S )
=
Y ( jω) X ( jω)
=
b0 a0
=
K
由(1-2)式,一阶系统的微分方程为
a1
dy dt
+
a0
y
=
(
jω )2
+

2 0
2ξjωω0
+
ω
2 0
A(ω) =
k
⎡ ⎢1 ⎣
−( ω ω0
)2 ⎥⎤ 2 ⎦
+
4ξ(2 ω ω0
)2
相频特性
ϕ(ω ) = arctan 2ξωω0
ω2

ω
2 0
1.5 传感器的标定与校准
(1-37)
(1-38) (1-39) (1-40) (1-41) (1-42)
1.5.1 传感器的标定
时,其输出特性称为阶跃响应特性。
① 最大超调量 σp: 响应曲线偏离阶跃曲线的最大值。
若稳态值为 1,则最大百分比超调 y(∞
y(∞)
)
×100
0
0
(1-18)
② 延滞时间 td:阶跃响应达到稳态值 50%所需要的时间。 ③ 上升时间 tr:上升时间有几种定义 A.响应曲线从稳态值的 10%上升到 90%所需要的时间。
H
(S ) =
Y (S) X (S)
=
bm s m an s n
+ bm−1s m−1 + ⋅⋅⋅ + b0 + an−1s n−1 + ⋅⋅⋅ + a0
若传感器由 r 个环节串联而成,其等效传递函数为
H (S ) = H1(S )× H2(S )×⋅⋅⋅× Hr (S )
若传感器由 p 个环节并联而成,其等效传递函数为
提高传感器性能的方法主要有非线性校正、温度补偿、零位法、微差法、闭环技术、平 均技术、差动技术、采用屏蔽、隔离与抑制干扰措施等。
7
定?
8
幅频特性为
A(ω) = K (ωτ )2 + 1
相频特性为
ϕ(ω) = arctan(− ωτ )
若输入为阶跃函数
则(1-27)式的解为
x (t
)
=
⎧0 ⎩⎨ A
t ≤0 t >0
( ) y = KA 1 − e−t / τ
暂态响应是一个指数函数,当 t =τ 时
( ) y(τ ) = KA 1− e−1 = 0.632KA
5. 其他分类法 除以上几种常用的分类法外,还有按其用途分类、科目分类、功能分类、输出信号的性
质分类等方法。
1.3 传感器的数学模型概述
1.3.1 静态模型 传感器的静态模型一般可用下面的多项式来表示:
y = a0 + a1 x + a2 x2 + ⋅⋅⋅ + an xn
(1-1)
1.3.2 动态模型
∫ Y ( jω) = ( ) ∞ y t e − jωt dt 0
同样有:
∫ X ( jω) = ( ) ∞ x t e − jωt dt 0

H(
jω) =
Y ( jω) X ( jω)
=
bm ( jω)s m an ( jω)s n
+ +
( ) bm−1 jω s m−1 + ⋅ ⋅ ⋅ + b0 ( ) an−1 jω s n−1 + ⋅ ⋅ ⋅ + a0
漂移是指在一定时间间隔内,传感器的输出存在着与被测输入量无关的、不需要的变化。 漂移常包括零点漂移和灵敏度漂移。
零点漂移或灵敏度漂移又可分为时间漂移和温度漂移,又称时漂和温漂。 8. 静态误差(精度)
静态误差也可用相对误差表示,即
γ = ±(2 ~ 3)σ ×100% y FS
(1-15)
静态误差也可以由几个单项误差综合而得,即
γL
=
±
ΔLmax y FS
×100%
(1-7)
式中 ΔLmax——输出量和输入量实际曲线与拟合直线之间的最大偏差;
yFS——输出满量程值。
传感器的静态模型(1-1)式有三种
有用的特殊形式,如图 1-2 所示。
(1) 理想的线性特性
y=a1x
(1-8) (2) 仅有偶次非线性项 y =a0 + a2x2+ a4x4+…
(1)
(2)
图 1-2 三种形式的特性曲线
(3) 仅有奇次非线性项 y =a1x + a3x3 + a5x5 +…
2. 灵敏度
k = Δy Δx
对线性传感器而言
(3)
(1-9) (1-10) (1-11)
3. 重复性
k= y x
(1-12)
4. 迟滞(回差滞环)
γR
= ± ΔRmax y FS
×100%
(1-25) (1-26)
(1-27) (1-28) (1-29) (1-30) (1-31) (1-32) (1-33) (1-34) (1-35)
6
3)二阶传感器的数学模型 由(1-2)式,二阶系统的微分方程为
a2
d2y dt 2
+
a1
dy dt
+
a0
y
=
b0 x

a2 d 2 y + a1 dy + y = b0 x
B.响应曲线从稳态值的 5%上升到 95%所需要的时间。
C.响应曲线从零到第一次到达稳态值所需要的时间。
④ 峰值时间 tp:响应曲线到第一个峰值所需要的时间。 ⑤ 响应时间 ts:响应曲线衰减到与稳态值之差不超过±5%或±2%时所需要的时间。
4
2)频率响应 在定常线性系统中,拉氏变换是广义的傅氏变换,取 S=σ+jω 中的 σ=0(1-3)式变为:
第一章 传感器基础知识
主要知识点:传感器的发展和作用,传感器的组成和分类,传感器的性能与评价, 系统输入和输出关系的传递函数表示方法,零阶系统、一阶系统、二阶系统的状 态方程。 重点: 传感器的组成,传感器的静态指标。 难点: 传感器的动态指标。
1.1 学习传感器的重要性
人类处于信息时代,信息技术的三大支柱是测控技术、通信技术和计算机技术,而传感 器技术是测控技术的基础。“没有传感器技术就没有现代科学技术”的观点已为全世界公认。 传感器技术是等众多学科相互交叉的综合性高新技术密集型前沿技术,应用十分广泛。传感 器处于自动检测与控制系统之首,是感知、获取与检测信息的窗口。科学研究和生产过程要 获取的信息,都要通过传感器转换成容易传输和处理的电信号或光信号等。科学技术越发达, 其自动化程度愈高,对传感器的依赖就愈大。
=
⎪ arctan⎪⎨
⎪ ⎪⎩
Im⎢ ⎣ ⎡
Re⎢ ⎣
X Y X
(
( (
jω )⎥⎦ jω) ⎤ jω )⎥⎦
⎪ ⎪ ⎬ ⎪ ⎪⎭
(1-22)
φ(ω)表示称为传感器的相频特性。 3. 典型环节传感器系统的动态响应分析
1)零阶传感器系统 由(1-2)式,由于零阶传感器的系数只有 a0、b0,故零阶系统的微分方程为
传感器的标定是指在明确传感器的输出与输入关系的前提下,利用某种标准器具对传感 器进行标度。
标定的基本方法是:利用标准仪器产生已知的非电量(如标准力、压力、位移等),作为 输入量,输入到待标定的传感器中,然后将传感器的输出量与输入的标准量进行比较,获得 一系列校准数据或曲线。
1.5.2 提高传感器性能的方法
1. 微分方程 用线性常系数微分方程表示,其通式如下:
an
n
dy dt n
+
an−1
d n−1 y dt n−1
+⋅⋅⋅+
a1
dy dt
+
a0 y
=
bm
dmx dt m
+ bm−1
d m−1 x dt m−1
+ ⋅ ⋅ ⋅ + b1
dx dt
+
b0 x
2. 传递函数 如果在 t≤0 时,y(t)=0,则 y(t)的拉氏变换可定义为
∫ Y (S ) = ∞ y (t ) e−st dt 0
相关文档
最新文档