ccd图像传感器基础知识

合集下载

CCD常用知识总结

CCD常用知识总结

CCD 常用知识总结随着CCD的不断发展,尤其典型的是当微光CCD向低照度方向发展时,噪声已经成为阻碍CCD进一步发展的障碍。

噪声是CCD的一个重要参数,它是决定信噪比S/N (Singal/Noise)的重要因素,而同时信噪比又是各种数据参数中最重要的指标之一。

随着CCD器件向小型化、集成化的不断发展,CCD光敏元数的增加势必减小光敏元的面积,从而降低了CCD的输出饱和信号。

为扩大CCD的动态范围,就必须降低CCD的噪声(动态范围与噪声间的联系)。

CCD工作时,在输入结构、输出结构、信号电荷存储和转移过程中都会产生噪声。

噪声叠加在信号电荷上,形成对信号的干扰,降低了信号电荷包所代表的信息复原后的精度,并且限制了信号电荷包的最小值。

CCD图像传感器的输出信号是空间采样的离散模拟信号,其中夹杂着各种噪声和干扰。

CCD输出信号处理的目的是在不损失图像细节并保证在CCD 动态范围内,图像信号随目标亮度线形变化是尽可能消除这些噪声和干扰。

(选自《CCD降噪技术的研究》燕山大学工学硕士学位论文)CCD的发展现状CCD最初是1969年由美国贝尔实验室的两名科学家W.S.Boyle与G.E.Smith提出,1970年在贝尔实验室制造成功。

它一问世,就显示出灵敏度高、光谱响应范围大、操作容易、维护方便、成本低、易推广等一系列优点,因而受到人们的普遍重视,现已取代摄像管,成为一种最常见的图像传感器。

自CCD问世以来,特别是近几年来,一直为美、日、英、法、德、荷兰等工业发达国家所瞩目,其中美、日两国的研制与生产能力居于世界领先地位。

国外主要的CCD研制与生产单位有日本的电气、东芝、索尼、夏普、日立,美国德州仪器,荷兰飞利浦等。

二十年来,CCD向着高集成度、高灵敏度、高分辨率、宽光谱响应的方向迅速发展,不断完善。

目前国外已研制出了像素数目为9K×9K的CCD芯片,像素尺寸最小已达到2.4μm×2.4μm;像素数目为4K×4K的CCD芯片已达到商业化水平。

CCD图像传感器

CCD图像传感器

CCD图像传感器激光位移计-CCD的工作原理与应用(初稿)CCD,Charge Coupled Devices,电荷耦合器件~是70年代初发展起来的新型半导体器件。

它由美国贝尔实验室的W. S. Boyle和G. E. Smith于1970年首先提出~在经历了一段时间的研究之后~建立了以一维势阱模型为基础的非稳态CCD基本理论。

几十年来~CCD的研究取得了惊人的进展~特别是在像感器应用方面发展迅速~已成为现代光电子学和现代测试技术中最活跃~最富有成果的新兴领域之一。

实验目的1、了解二相线阵CCD的基本工作原理2、了解二相线阵CCD驱动信号时序3、了解线阵CCD在位移测量中的应用方法实验仪器1. CCD激光位移计2. 数字示波器准备好坐标纸、铅笔和直尺~也可用相机。

实验原理1( CCD的基本结构电荷耦合器件的突出特点是以电荷作为信号~而不同于其它大多pseudonym Ding Bingcheng), to Jiangsu and Zhejiang in Taihu Lake area opened work, towards armed, carried out guerrilla race. 4 people such as Ding Bingcheng took Zhang Yan, Zhou Fen, from Shanghai, Zhao Anmin troopsstationed at the border of Jiangsu and Zhejiang. Ding Bingcheng reach dual-COR, and "anti-" established contact of Communist Party members, when the Kuomintang military Committee in Jiangsu, Zhejiang and Deputy Commander of the Brigade in Taihu Lake and Qian Kangmin, Director of the Department of the Commission (CPC) accompanied by consultations with Commander Zhao Anmin placement I was personnel related issues. Qian Kangmin efforts, Zhao Anmin also agreed to subordinate Gong Shengxiang Brigade guns to form a band in Taihu Lake. Qian Kangmin hired a boat to bring Gong Shengxiang, together with Zhang Yan start, boats to crossnear the fan, was seized by Cheng Wanjun. After Cheng Buzheng Jin Lu Wang, Director of training helps releasing personnel, but the weapon lost. Is autumn, Ding Bingcheng Wujiang was ordered to open up again,its task is: towards reconstruction guerrillas, Communist-led team.Along with Liu Zirong (Liu), Zhang Yan (Liu), huada busy (Chen Zhengzhi), Yu Zhe (Zhou Fen), Ye Chu Xiao (Lu Qiusheng), Henry (nandeqin), "anti-" players. Flat looking men Shen Yuezhen as a guide. Shen Yuezhen Ding Bingcheng single leader, Shen Yuezhen specializing in intelligence work, in September, through Mao Xiaocen served as the KMT's County Clerk, Shen Yuezhen after entering the County, deftly juggling between elites, was Chang Shen Liqun, who appreciated, has created favorable conditions for gathering intelligence. Meanwhile, Shen Yuezhen introduce jindapeng (Kanewaka Wang), xiaoxin was joined the "resistance", also activelydoing the standing political instructor Yu Qingzhi Shen Wenchao, Secretary of Justice and County Government数器件是以电流或者电压为信号。

ccd图像传感器基础知识精讲【可编辑的PPT文档】

ccd图像传感器基础知识精讲【可编辑的PPT文档】

★LK-G系列CCD激光位移传感器
❖ 产品特性
全新开发的Li-CCD (直线性CCD)高精度 Ernostar 物镜以及其它独一无二的先进技术。 KEYENCE 进一步改进了成熟的LK系列的CCD传感 器工艺并开发了包括Li-CCD 和高精度Ernostar 物 镜在内的全新技术。
如图所示
Li-CCD减少了像素边缘错误,精确度是传统型号
CCD传感器有以下优点:
❖ 1. 高解析度(High Resolution):像点的大小为 μm级,可感测及识别精细物体,提高影像品质。从 早期1寸、1/2寸、2/3寸、1/4寸到最近推出的1/9寸, 像素数目从初期的10多万增加到现在的400~500万 像素;
❖ 2. 低杂讯(Low Noise)高敏感度:CCD具有很 低的读出杂讯和暗电流杂讯,因此提高了信噪比 (SNR),同时又具高敏感度,很低光度的入射光 也能侦测到,其讯号不会被掩盖,使CCD的应用 较不受天候拘束;
IL-PI4096具体应用
❖ IL-P1-4096的精度高、感光响应快,在工业控制 和测量领域(如流水线产品检测、分类,文字与图 像的识别,机械产品尺寸非接触测量等),该器件 具有很强的实用性。
❖ IL-PI4096的工作频率要求很高、相位关系复杂, 使用高速CPLD作为CCD的基本时序发生器。推荐 设计时可使用Lattic公司的 ispMACH4000C/B/V系 列芯片,该芯片的工作时钟可以达到400MHz,完 全可以满足此CCD的工作时序要求。
需要注意的是,IL -P1-4096传感器是两路输出, 奇像素和偶像素分别从不同的输出通道输出,是一 种双排的线列阵CCD,光敏单元在中间,奇、偶单 元的信号电荷分别传到上下两列移位寄存器后分两 路串行输出。这种CCD的优点是具有较高的封装密 度,转移次数减少一半,因而可提高转移效率,改 善图像传感器的信号质量。

ccd图像传感器的工作原理

ccd图像传感器的工作原理

ccd图像传感器的工作原理
CCD(Charged Coupled Device)图像传感器是一种将光信号
转换为电信号的电子器件。

它具有由一系列电荷耦合转移器件组成的阵列。

其工作原理如下:
1. 光感受:图像传感器的表面涂有光敏材料,例如硅或硒化铟。

当光照射到传感器上时,光子会激发光敏材料中的电子。

2. 电荷耦合:在CCD传感器中,光激发的电子通过电场力被
引导至特定位置。

在传感器的一侧,存在着电荷耦合器件(CCD)的阵列。

这些器件由一系列电容构成,能将移动的
电子推入下一个电容。

3. 移位寄存:一旦电子被推入下一个电容,电荷耦合器件会以逐行或逐列的方式将电子移动到存储区域。

这些存储区域称为移位寄存器,在这里,电荷可以被暂时存储和传输。

4. 电荷读出:当所有行或列的电荷都被移动到相应的移位寄存器时,电子的集合就可以被读出。

通过将电荷转换为电压信号,其可以被进一步处理和转换为数字信号。

总结:CCD图像传感器的工作原理可以分为光感受、电荷耦合、移位寄存和电荷读出四个步骤。

通过光激发、电荷移动和存储,最终将光信号转换为电信号,并进一步处理为数字信号。

CCD图像传感器

CCD图像传感器
2019/4/21 14
CCD用于图像记录
2019/4/21
15
数码相机的外形
2019/4/21
16
CCD数码照相机的结构
三基色分离原理
2019/4/21
17
数码相机的结构解剖
(索尼F828)
CCD
2019/4/21
18
CCD数码显微镜拍摄的金属表面显微照片
2019/4/21
19
CCD数码摄像机
CCD图像传感器
CCD全称电荷耦合器件,它具备光
电转换、信息存贮和传输等功能,具有
集成度高、功耗小、分辨力高、动态范
围大等优点。 CCD图像传感器被广泛应 用于生活、天文、医疗、电视、传真、 通信以及工业检测和自动控制系统。
2019/4/21 1
(一)CCD的基本工作原理
一个完整的CCD器件由光敏元、转移栅、 移位寄存器及一些辅助输入、输出电路组成。 CCD工作时,在设定的积分时间内,光敏元对 光信号进行取样,将光的强弱转换为各光敏元 的电荷量。取样结束后,各光敏元的电荷在转 移栅信号驱动下,转移到CCD内部的移位寄存 器相应单元中。移位寄存器在驱动时钟的作用 下,将信号电荷顺次转移到输出端。输出信号 可接到示波器、图象显示器或其他信号存储、 处理设备中,可对信号再现或进行存储处理。
2019/4/21
6
面阵CCD外形(续)
200万和1600万像素的面阵CCD
2019/4/21
7
面阵CCD外形(续)
2019/4/21
8
面阵CCD外形(续)
2019/4/21
9
(三)CCD的基本特性参数
CCD的基本特性参数有: 光谱响应、动态范围、信噪比、CCD 芯片尺寸等。在CCD像素数目相同的条件

第五章 CCD 图像传感器

第五章  CCD 图像传感器

5.4 线阵CCD在线测量棒状物尺寸
图中,平行光源、棒 状物参比端及CCD 图像传感器必须置于 同一基准面上。棒状 物被测端、平行光中 心轴线和CCD的中 心点要大致位于同一 直线上。
平行光源的作用是产 生一束高平行度的光 线,以使棒状物经平 行光垂直照射后在 CCD上形成1:1的 高精度像。
7-5-16 棒状物成像系统及CCD输出波形
电荷存储

在栅极加正偏压之前,P型半导体中的空穴(多子)的分布是均匀的。 加正偏压后,空穴被排斥而产生耗尽区,偏压增加,耗尽区向内延伸。

当UG> Uth时,半导体与绝缘体界面上的电势变得非常高,以致于将半导
体内的电子(少子)吸引到表面,形成一层极薄但电荷浓度很高的反型层。

反型层电荷的存在表明了MOS结构存储电荷的功能。

CCD的类型

CCD按电荷存储的位置分有两种基本类 型 1、电荷包存储在半导体与绝缘体之间的 界面,并沿界面传输 ——表面沟道CCD(简称SCCD)。 2、电荷包存储在离半导体表面一定深度 的体内,并在半导体体内沿一定方向传 输, ——体沟道或埋沟道器件(简称BCCD)。
CCD的类型

线阵CCD:光敏元排列为一行的称为线阵, 象元数从128位至5000位以至7000位不等,由 于生产厂家象元数的不同,市场上有数十种型 号的器件可供选用。
5.3 CCD玻管尺寸测控仪
图7-5-14 系统结构框图
系统结构框图
5.3 CCD玻管尺寸测控仪
图7-5-13 CCD视频信号
CCD视频信号
5.3 CCD玻管尺寸测控仪 把视频信号中的外径尺寸部分和壁厚部分进行二 值化处理,填入标准时钟脉冲,该时钟脉冲对应 CCD空间分辨率,由计算机采集这两个尺寸对应 的脉冲数,经数据处理后可得到被测玻管的尺寸。 本系统被测玻管的直径尺寸为20mm,光学系统的 放大率为0.8倍,则玻管像的大小为16mm,被测 玻管的测量精度要求达到±0.05mm,他在像面上 对应精度为±0.04mm。根据CCD测量灵敏度的要 求, 0.04mm要大于2个CCD像素的空间尺寸。选 择TCD102C型号CCD可满足上述测量范围和精度 的要求。该器件的技术指标为: 2048感光像素元,14微米相邻像素中心距, 工作时钟1MHz,两相驱动, 同步脉冲宽度128微秒,同步周期:7.5ms。

典型线阵CCD图像传感器

典型线阵CCD图像传感器

三、具有积分时间调整功能(电子快门)的线阵CCD-如何实现?
在光照度较低/较强时的情况下,可以通过增长/缩短光积 分时间的方式使输出信号达到所希望的幅度;
积分时间的调整功能对于CCD的应用是非常重要的。 TCD1205D为具有积分时间调整功能的线阵CCD器件。
广泛应用在条码扫描识别等光电输入设备。
2、TCD1205D的基本工作原理 ——方案一
在一个转移脉冲SH周期中,只有在光积分电极ICG为高电平期间光积分栅 才能建立起深势阱,也才能进行光积分。
2、TCD1205D的基本工作原理 ——改变积分时间方案二
一个行周期中两次转移
一个行读出周期中设置两个转移脉冲SH: 第1个转移脉冲的高电平对应于移位寄存器驱动脉冲CR1的
3、TCD1205D的特性参数
动态范围 DR 偏 低 , 一般只适用 于光电数字 扫描输入, 不适用于分 辨率要求较 高的图像扫 描输入。
四、并行输出的线阵CCD
并行输出的线阵CCD在相同频率驱动脉冲的作用下可以获得 更高的信号输出速率,这在用线阵CCD检测高速运动物体图像 的应用中具有非常重要的作用。
光电二极管的数量为:2160+(74-12)=2222。 存储栅:存储光生电荷的MOS电容存储阵列。
1118
2、 TCD1206SUP的工作原理
四路驱动脉冲:SH、CR1、CR2、RS; 驱动电路的产生可仿照TCD1209D实现;
TCD1206SUP与1209D的不同点:
OS端总共输出2236个信号,由于两列并行传输。所以一个 SH周期至少要有2236/2=1118个 驱动脉冲CR1的周期
低电平,使移位寄存器CR1电极不形成深势阱,光积分电极下 积累的信号电荷无法倒入CR1电极,即无法将信号电荷转移到 移位寄存器中,从而之前积累的信号电荷白白地倒掉。

《CCD基础知识》PPT课件

《CCD基础知识》PPT课件

然后,光敏区开始进行第二帧的光积分,而暂存区则利用这个时间,将电荷包一 次一行地转移给CCD移位寄存器,变为串行信号输出。当CCD移位寄存器将其 中的电荷包输出完了以后,暂存区里的电荷包再向下移动一行给CCD移位寄存器。 当暂存区中的电荷包全部转移完毕后,再进行第二帧转移。
整理ppt
32
CCD的应用
三相CCD的时钟波形刚好互相错开T/3周期,因此时钟电压波形每变化T/3周期,电荷
包就要转移过一个极板,每变化一个周期整理,p即pt 转移过三个极板。
22
输出装置:在靠近最右电极的一侧扩散一个N区作为收集区,它与衬底
之间形成一个PN结。电源E通过R加在该结的两端,使它处于反偏状态。
该收集区收集最后一个电极cn下的电子,在电阻R上就有电流流过,并 转换成电压的变化,输出一个脉冲。注意输出是串行的。
整理ppt
29
CCD以电荷作为信号,所以电荷信号的转移效率就成为 其最重要的性能之一。把一次转移之后,到达下一个势阱中 的电荷与原来势阱中的电荷之比称为电荷转移效率(CTE)
好的CCD具有极高的电荷转移效率,一般可达0.999995[3],所 以电荷在多次转移过程中的损失可以忽略不计。
整理ppt
30
从而电荷包就要沿着表面从电势能高的地方向电势能低的地 方流动。
整理ppt
21
对于多电极,如图在二氧化硅表面排
列多个金属电极a1、b1、c1;﹍an、 bn、cn等,每三个电极如a1、b1、c1 组成一个传输单元,在三个电极上分
别加上三相脉冲电压Ua、Ub、Uc, 它们的波形如图。
金属电极上所加正电压越大.金属 电极下的电场越强,多数载流子空 穴被排斥的耗尽层越厚,对少数载 流子电子则势阱越深
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由于CCD有数字输出每个像素的特点, 因此在像素边缘产生的渐进输出所造成的错 误会影响精确度的进一步提高。KEYENCE 开发了一种Li-CCD 作为对策,这种CCD能 够以一个像素输出反射光的位置,在精确性 方面极为出色,是传统型号的两倍。此外, 传感器还使用了专门的设计,速度和灵敏度 分别是传统型号的25倍和10倍 * Li-CCD= 直线性CCD
功耗
在初期研制的CCD摄像机有+24V、+22V、 +17V和+5V等,目前通用的为+12V。为配合 PC摄像机和网络图像传输的应用,逐步以 +12V和+5V两种工作电压为主。
提高CCD摄像机的制造效率
为了降低CCD摄像机的制造成本,实现高速自动 化生产,制造厂家追求紧密性结构,致力于CCD摄 像机的小型化,即由Dip On Board(DOB)过锡板 工艺改进为Chip On Board(COB)板上连接IC芯 片的贴片方式。到目前为止,已实现多层板的Multi Chip Module(MCM)多芯片集成模组化制造技术。
IL-P1-4096 原理及组成
◇原理 根据传感器光敏单元(像素)上的感光 变化,将对象图像的感光变化转化为电荷包。 电荷包中电子的个数是由感光强度和CCD器 件的光积分时间决定的。电荷包被收集到独 立的存储井中,然后用像素复位时钟来控制 CCD器件的积分和曝光时间。
◇组成
IL-PI系列传感器内部由三大主要功能块组成: 光电二极管、 CCD读出移位寄存器和输出放大器。 其中光电二极管用来生成信号电荷包,输出放大器 用来将电荷转化为电压脉冲。 需要注意的是,IL -P1-4096传感器是两路输出, 奇像素和偶像素分别从不同的输出通道输出,是一 种双排的线列阵CCD,光敏单元在中间,奇、偶单 元的信号电荷分别传到上下两列移位寄存器后分两 路串行输出。这种CCD的优点是具有较高的封装密 度,转移次数减少一半,因而可提高转移效率,改 善图像传感器的信号质量。
CCD传感器技术 发展的五个趋势
CCD传感器的像面尺寸向集
成化各轻量化方向的发展:
由于制造CCD传感器的硅片和加工成 本都很高,所以很希望一片6.5英寸的硅片上 光刻出更多的CCD传感器芯片;以由于光刻 机的进步,所以在仍保持具有很高灵敏度的 特性下,CCD传感器的尺寸向1/2英寸、1/3 英寸、1/4英寸、1/5英寸的方向发展在1993 年,1/2英寸的CCD传感器占总产量的5%;1/4 英寸的CCD传感器占总产量的10%;1/3英寸 的CCD传感器占总产量的85%。。
5.
大面积感光(Large Field of View):利 用半导体技术已可制造大面积的CCDD晶 片,目前与传统底片尺寸相当的35mm的C CD已经开始应用在数码相机中,成为取代 专业有利光学相机的关键元件;光谱响应广 (Broad Spectral Response):能检测很宽 波长范围的光,增加系统使用弹性,扩大系 统应用领域;
测量原理
高精度测量的Li-CCD
的原理 使用了三角形测量法。反射光在Li-CCD 上的位置随着目标物位置的改变而改变,通 过检测该变化就可以测量物体的位移量。 如图所示
超精度
- LK-G10/G15 系列 超精度传感器,解析度高达0.01µm 如图所示
高精度
- LK-G30/G35 系列 可准确测量透明物体,塑料和金属制品。 如图所示
IL-PI4096具体应用
IL-P1-4096的精度高、感光响应快,在工业控制 和测量领域(如流水线产品检测、分类,文字与图 像的识别,机械产品尺寸非接触测量等),该器件 具有很强的实用性。 IL-PI4096的工作频率要求很高、相位关系复杂, 使用高速CPLD作为CCD的基本时序发生器。推荐 设计时可使用Lattic公司的 ispMACH4000C/B/V系 列芯片,该芯片的工作时钟可以达到400MHz,完 全可以满足此CCD的工作时序要求。
CCD传感器向高素数、多制式发展
各种CCD传感器的像面尺寸在减少,但 其像素数在增加,已由早期的512(H) ×596(V)向795(H)×596(V)发展,甚至 出现超过百万像素的CCD传感器。为提高水 平方向和垂直方向的分辨能力,已从通常的 隔行扫描向逐行扫描格式发展。
降低CCD传感器的工作电压、减少
1. 高解析度(High Resolution):像点的大小为 μm级,可感测及识别精细物体,提高影像品质。从 早期1寸、1/2寸、2/3寸、1/4寸到最近推出的1/9寸, 像素数目从初期的10多万增加到现在的400~500万 像素; 2. 低杂讯(Low Noise)高敏感度:CCD具有很 低的读出杂讯和暗电流杂讯,因此提高了信噪比 (SNR),同时又具高敏感度,很低光度的入射光 也能侦测到,其讯号不会被掩盖,使CCD的应用 较不受天候拘束;

CCD传感器是一种特殊的半导体材料,由大量独 立的感光二极管组成,一般按照矩阵形式排列,相当
于传统相中面阵型CCD是主要 应用在数码相机中。它是由许多单个感光二极管组成 的阵列,整体呈正方形,然后像砌砖一样将这些感光 二极管砌成阵列来组成可以输出一定解析度图像的 CCD传感器。
10.
CCD传感器的应用
★高速线阵CCD IL-P1-4096
主要特点 高速线阵CCD IL-P1-4096是加拿DALSA 公司生产的IL-P1系列图像传感器中的一种。 该器件的像素尺寸是10μm×μm、像素线阵 长度为41mm、相邻像素间距也是10μm。线 阵列的像素共有4096个,分两路输出。
IL-P1-4096的主要性能参数如下:


· 双相输出,每相输出数据频率为25MHz; · 线扫描速率为87kHz; · 可使用低压时序信号,时序信号电压小于5V; · 像素尺寸为10μm×10μm; · 每行4096个像素点; · 动态响应范围大于3200:1; · 灵敏度高,响应可达到12V(uJ/cm2); · 采用15V电压供电; · 每行孤立像素为14个; · 每行屏蔽像素为32个。
6.
低影像失真(Low Image Distortion): 使用CCD感测器,其影像处理不会有失真的 情形,使原物体资讯忠实地反应出
体积小、重量轻:CCD具备体积小且重 量轻的特性,因此,可容易地装置在人造卫 星及各式导航系统上;
7.
8.
9.
低秏电力,不受强电磁场影响;
电荷传输效率佳:该效率系数影响信噪 比、解像率,若电荷传输效率不佳,影像将 变较模糊; 可大批量生产,品质稳定,坚固,不易 老化,使用方便及保养容易。
CCD摄像机的数字化
在制造CCD摄像机时,从以往的Analog 模拟系统逐步实现DSP数位化处理,可以借 助电子计算机和专门软件系统实现对CCD摄 像机,特别是对彩色CCD摄像机的各种参数 的量化调整,可以确保CCD摄像机性能指标 的优化一致性以及在特殊使用条件下的参数 量化修改。
CCD传感器有以下优点:
CCD传感器的成像原理是使用感光二极 管将光线转换为电荷,当拍摄者对焦完毕按 下快门的时候,光线通过打开的快门(目前 消费级数码相机基本都是采用电子快门)透 过马赛克色块射入在CCD图像传感器上,感 光二极管在接受光子的撞击后释放电子,所 产生电子的数目与该感光二极管感应到的光 成正比。
当本次曝光结束之后,每个感光二极管上含 有不同数量的电子,而我们在显示器上面看 到的数码图像就是通过电子数量的多与少来 进行表示和储存,然后控制电路从CCD中读 取图像,进行红R、绿G和蓝B三原色合成, 并且放大和将其数字化,这些数字信号被存 入数码相机的缓存内,最后写入相机的移动 存储介质完成数码相片的拍摄 。
★LK-G系列CCD激光位移传感器
产品特性
全新开发的Li-CCD (直线性CCD)高精度 Ernostar 物镜以及其它独一无二的先进技术。 KEYENCE 进一步改进了成熟的LK系列的CCD传感 器工艺并开发了包括Li-CCD 和高精度Ernostar 物 镜在内的全新技术。 如图所示
Li-CCD减少了像素边缘错误,精确度是传统型号 的两倍之多
超长距离
- LK-G500/G505 系列 高精度、高速、超大范围。传统型号之 1.5倍大范围量测:最远达1000mm 如图所示
50 kHz的超高采样速度

[所有类型: LKG10/15/30/35/80/85/150/155/400/405/500/505]


如图所示是IL-P1-4096的具体应用电路。 从CPLD发送过来的基本时时钟信号可通过简 单电路进行相位校正并提供驱动电流,然后 再送入CCD芯片。在Osn的输出端。电路可 通过几个三极管组成的恒流源来提供CCD所 需要的8mA驱动电流。 CPLD和IL-P1-4096要尽可能靠近,直流 电源的纹波最好不要超过10mV。选用比较低 的频率来控制IL-P1-4096的工作,然后渐升 高工作频率。


3. 动态范围广(High Dynamic Range):同时侦 测及分办强光和弱光,提高系统环境的使用范围, 不因亮度差异大而造成信号反差现象。

4. 良好的线性特性曲线(Linearity):入射光源 强度和输出讯号大小成良好的正比关系,物体资讯 不致损失,降低信号补偿处理成本;高光子转换效 率(High Quantum Efficiency ):很微弱的入射光 照射都能被记录下来,若配合影像增强管及投光器, 即使在暗夜远处的景物仍然还可以侦测得到;
高稳定性
- LK-G80/G85系列 (多种用途 ) 新技术在需要长距离测量的情况下为高 精度的应用提供了更好的稳定性 如图所示
长距离
- LK-G150/G155 系列 集高精度、长距离和最快的采样速度于 一身测量范围∶150 ±40 mm 如图所示
高速、长距离
- LK-G400/G405 系列 集高精度、长距离和最快的采样速度于 一身测量范围∶400 ±100 mm 如图所示
相关文档
最新文档