课题学习 拼图与勾股定理

合集下载

八年级数学上册《探索勾股定理》教案

八年级数学上册《探索勾股定理》教案

八年级数学上册《探索勾股定理》教案八年级数学上册《探索勾股定理》教案一、教学目标:知识与技能目标:1 、了解勾股定理的文化背景,体验勾股定理的探索过程,学习利用拼图验证勾股定理的方法。

2 、会利用勾股定理解决生活当中的实际问题。

过程与方法目标:在勾股定理的探索过程中,培养合情推理能力,体会数形结合和从特殊到一般的思想。

1 、通过拼图活动,体验数学思维的严谨性,发展形象思维。

2 、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。

情感与态度目标:1 、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。

2 、在探索勾股定理的过程中,培养合作意识和探索精神,以及严谨的数学学习态度。

体会勾股定理的应用价值。

二、教学重、难点重点:了解勾股定理的演绎过程,掌握定理的应用。

难点:理解勾股定理的推导过程。

关键:通过网格拼图的办法来探索勾股定理的证明过程,理解其内涵。

三、教学准备:制作投影幻灯片,网格图,设计好拼图(用纸片制作)。

四、教学方法:本节课采用情境导入法,探究发现法教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。

五、教学程序一、创设情境,导入新课(显示投影片1、2)小明现在遇到难题:1 、大风将学校的一根木制旗杆吹裂,随时都可能倒下,十分危急。

(如图)现在决定从断裂处将旗杆折断,需要划出一个安全警戒区域,想请小明确定这个安全区域的半径至少是多少米,你能帮帮他吗?2 、小明妈妈买了一部29 英寸(约为74 厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58 厘米长和46 厘米宽,他觉得一定是售货员搞错了。

你同意他的想法吗?你能解释这是为什么吗?教师活动:引导学生观察,提出问题,我们怎样帮他解决呢?学生活动:听取老师讲述,观看情境。

设计意图; 这样引入可唤起学生的好奇心和求知欲,激发学生的兴趣,从而较自然的引入课题。

初中数学教学课例《勾股定理》教学设计及总结反思

初中数学教学课例《勾股定理》教学设计及总结反思

八年级学生好奇心强,学生对几何图形的观察,几 学生学习能
何图形的分析能力已初步形成。能够正确归纳所学知 力分析
识,通过学习小组讨论交流,探究直角三角形的三边关
系。但由于大部分学生几何学习有难学的心里,导致学 习信心不足,学习效果就达不到理想效果。)
教学设计比较符合学生学习的实际,实例引入,增 强了学生的求知欲,能很快让学生进入学习状态,带着 教学策略选 课前的问题,学生能更快的理解学习勾股定理的意义, 择与设计 体会数学来源于生活,为生活服务。懂得学习数学的重 要性和价值所在。
方案 1:如果学生能够说出勾股定理的相关知识, 则直接
进入下一环节的学习。 方案 2:如果学生有困难,则安排学生自学教材, 再发表意见。 学生发言,教师倾听。视学生回答的重点板书:勾 三股四弦五等 【设计意图】教师获得学生的知识储备以便以后的 教学定位。再次让学生感触勾股定理的存在、作用即勾 股定理是研究直角三角形边之间的关系的定理,明确学 习目标。 (二)观察演算,合作探究,初具概念 问题 3:介绍毕达哥拉斯发现勾股定理的故事。利 用 ppt 课件展示毕达哥拉斯的发现和他的探究的过程。 提问:这三个正方形之间的面积有什么关系?从中可以 转化得到等腰直角三角形三边在数量上有什么关系? (故事附后) 教师口述故事,ppt 课件同步演示;学生借助直观 的课件,学生个体或学生间观察交流探究得到结论。 【设计意图】首先,故事中代出问题既激发学生的 兴趣又降低了学生探究的难度,让每个学生都可做,可 得;其次得到三个正方形面积间的关系而得到等腰直角
上升到理论层面,以加强数学学习的严谨性。让学生学 懂面积法,再次加深对勾股定理的理解。感受我国数学 知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。
问题 8:学生用 4 个全等的直角三角形重新拼凑图 形并根据排放画出图形并用面积法进行论证。

勾股定理优秀教学设计

勾股定理优秀教学设计

勾股定理优秀教学设计勾股定理优秀教学设计(通用5篇)勾股定理优秀教学设计1一、教学目标1、让学生通过对的图形创造、观察、思考、猜想、验证等过程,体会勾股定理的产生过程。

2、通过介绍我国古代研究勾股定理的成就感培养民族自豪感,激发学生为祖国的复兴努力学习。

3、培养学生数学发现、数学分析和数学推理证明的能力。

二、教学重难点利用拼图证明勾股定理三、学具准备四个全等的直角三角形、方格纸、固体胶四、教学过程(一)趣味涂鸦,引入情景教师:很多同学都喜欢在纸上涂涂画画,今天想请大家帮老师完成一幅涂鸦,你能按要求完成吗?(1)在边长为1的方格纸上任意画一个顶点都在格点上的直角三角形。

(2)再分别以这个三角形的三边向三角形外作3个正方形。

学生活动:先独立完成,再在小组内互相交流画法,最后班级展示。

(二)小组探究,大胆猜想教师:观察自己所涂鸦的图形,回答下列问题:1、请求出三个正方形的面积,再说说这些面积之间具有怎样的数量关系?2、图中所画的直角三角形的边长分别是多少?请根据面积之间的关系写出边长之间存在的数量关系。

3、与小组成员交流探究结果?并猜想:如果直角三角形两直角边分别为a、b,斜边为c,那么a,b,c具有怎样的数量关系?4、方法提炼:这种利用面积相等得出直角三角形三边等量关系的方法叫做什么方法?学生活动:先独立思考,再在小组内互相交流探究结果,并猜想直角三角形的三边关系,最后班级展示。

(三)趣味拼图,验证猜想教师:请利用四个全等的直角三角形进行拼图。

1、你能拼出哪些图形?能拼出正方形和直角梯形吗?2、能否就你拼出的图形利用面积法说明a2+b2=c2的合理性?如果可以,请写下自己的推理过程。

学生活动:独立拼图,并思考如何利用图形写出相应的证明过程,再在组内交流算法,最后在班级展示。

(四)课堂训练巩固提升教师:请完成下列问题,并上台进行展示。

1、在Rt△ABC中,∠C=900,∠A,∠B,∠C的对边分别为a,b,c已知a=6,b=8、求c、已知c=25,b=15、求a、已知c=9,a=3、求b、(结果保留根号)学生活动:先独立完成问题,再组内交流解题心得,最后上台展示,其他小组帮助解决问题。

勾股定理拼图

勾股定理拼图

6.小结反思,课题拓展
学生反思:
我最大的收获; 我表现较好的方面; 我学会了哪些知识; 我还有哪些疑惑……
课题拓展:
( 1 )写数学日记并发挥你的聪明才智,去探索勾 股定理、去研究勾股定理,你能验证勾股定理吗?
评价表
评价 项目 做事有计划 查阅、整理资料 参 与 活 动 与人合作 提出问题并询问 大胆尝试并表达自己的看法 倾听别人的发言 讨论与发言 思 维 水 平 总评 有条理地表达自己的意见 解决问题的过程清楚 善于用不同的方法解决问题 独立思考 因 素 优 良 中 差

欧几里得的《几何原本
》是用公理方法建立演绎 数学体系的最早典范。

「证法四」就是取材自《
几何原本》第一卷的第 47 命题。
参考:.hk
证明
证明
证明
证明
证明
方法五
画家的证法

达· 芬奇(Leonardo Da Vinci 1452-1519 ).


1.课前自主探究活动 请各个学习小组从网络或书籍上,尽可 能多的寻找和了解验证勾股定理的方法。 探究报告
《勾股定理证明方法汇总》
验证定理的具体过 程 知识运用及思想方 法
方法种类及历史背 景
2. 探 究 成 果 的
交 流 与 展 示
方法一
三国时期吴国数学家赵爽在为《周髀算经》作注解时,创制了一幅 “勾股圆方图”,也称为“弦图”,这是我国对勾股定理最早的证 明。
c a
青朱入出图
拼 图 游 戏
拼图游戏
拼图游戏
c2
拼图游戏
拼图游戏
拼图游戏
a2 b2
a2 + b2 = c2
印度婆什迦羅的证明

勾股定理研究性学习

勾股定理研究性学习

研究性学习设计方案模板
三、参与者特征分析(重点分析学生有哪些共性、有哪些差异,尤其对开展研究性学习有影响的因素。


1.学生是乡镇学校中学生,活泼好动,对新鲜特别感兴趣
2.学生已有初步书面表达能力,但也有不少同学较差,发展极不平衡
3.学生动手能力强
四、研究的目标与内容(课题研究所要解决的主要问题是什么,通过哪些内容的研究来达成这一目标)
1.掌握勾股定理,了解利用拼图验证勾股定理的方法.
2.运用勾股解决一些实际问题.
五、研究的预期成果及其表现形式(研究的最终成果以什么样的形式展现出来,是论文、实验报告、实物、网站、多媒体还是其他形式)
每个专题都会出一份简单的调查报告,每个学生都会在不同时期的活动体会,每个学生都会得到一份来自自己、组长及老师评价形式的综合评价。

《勾股定理》优秀说课稿(精选5篇)

《勾股定理》优秀说课稿(精选5篇)

《勾股定理》优秀说课稿(精选5篇)《勾股定理》优秀说课稿篇1一、说教材勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。

2、能够灵活地运用勾股定理及其计算。

3、培养学生观察、比较、分析、推理的能力。

4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

教学重点:勾股定理的证明和应用。

教学难点:勾股定理的证明。

二、说教法和学法教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让同学们主动参与学习全过程。

2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

三、教学程序本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。

这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。

勾股定理的优秀教案5篇

勾股定理的优秀教案5篇

勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。

勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。

学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。

二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。

具体内容是运用勾股定理及其逆定理解决简单的实际问题。

当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。

三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。

2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。

四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。

2.课前准备教具:教材、电脑、多媒体课件。

学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。

第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题学习拼图与勾股定理
教学目标
1.经历综合运用已有知识解决问题的过程,在此过程中加深对勾股定理、整式运算、面积等的认识。

2.经历不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值。

3.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间的内在联系,每一部分知识并不是孤立的。

4.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流的方法与经验。

5.通过获得成功的体验和克服困难的经历,增进数学学习的信心。

通过丰富有趣拼的图活动增强对数学学习的兴趣。

教学重点
1.通过综合运用已有知识解决问题的过程,加深对勾股定理、整式运算、面积等的认识。

2.通过拼图验证勾股定理的过程,使学习获得一些研究问题与合作交流的方法与经验。

教学难点
1.利用“五巧板”拼出不同图形进行验证勾股定理。

2.利用数形结合的方法验证勾股定理。

教学准备
剪刀、双面胶、硬纸板、直尺(或三角板)、铅笔、多媒体课件。

课时安排:2课时。

教学过程
第一课时
一、了解已有的知识和经验
1.你都知道关于勾股定理的哪些历史故事?
2.你知道勾股定理的内容吗?说说看。

3.你已知道的关于验证勾股定理的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。

利用四个全等的直角三角形拼出的“弦图”和所示方法,并使之亲自验证勾股定理。

教师可利用课件介绍“弦图”的历史,及“弦图”被定为2002年世界数学大会的会标等小知识。


二、动手操作,合作探究
1.教师介绍“五巧板”的制作方法,学生拿出准备好的硬纸板制作“五巧板”。

步骤:做一个Rt△ABC,以斜边AB为边向内做正方形ABDE,并在正方形内画图,使DF⊥BI,CG=BC,HG⊥AC,这样就把正方形ABDE分成五部分①②③④⑤。

沿这些线剪开,就得了一幅五巧板。

2.取两幅五巧板,将其中的一幅拼成一个以C为边长的正方形,将另外一幅五巧板拼成两个边长分别为a、b的正方形,你能拼出来吗?(给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。


3.用上面的两幅五巧板,还可拼出其它图形。

你能验证勾股定理吗?(学生亲自实践,加深对五巧板拼图验证勾股定理的理解,在此,对以“a”为边的正方形在直角三角形的内侧不易理解,教师要适当地引导,不要限制学生思维。


4.利用五巧板还能通过怎样拼图来验证勾股定理?(这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过
程中进行交流合作。


三、相互交流,整理结论,加深理解
了解学生拼图的情况及利用自己的拼图验证勾股定理的情况。

教师在巡视过程中,相机指导,并让学生展示自己的拼图及让学生讲解验证勾股定理的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

四、课堂总结
从这节课中你有哪些收获?
(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。

最后,教师要对学生所说的进行全面的总结。


五、巩固
教科书第179页,习题第1题。

勾股定理的发现、验证过程蕴涵了丰富的文化价值,而它的验证方法非常之多,你想了解更多的勾股定理的验证方法吗?让我们下节课继续探讨“勾股定理”,一起走进神秘的勾股世界吧!
拼图与勾股定理第二课时
一、引入
回顾上节课所学习的勾股定理的验证方法。

二、动手操作,合作探究
1.利用五巧板拼“青朱出入图”(教师利用课件介绍“青朱出入图”的历史)。

你能利用“青朱出入图”验证勾股定理吗?(给学生提供充分实践、探索和交流的时间,鼓励他们积极思考解决问题的方法,并与他人进行合作与交流。


2.教师可以利用课件介绍一些国外的勾股定理验证方法,重点介绍意大利文艺复兴时代著名画家达·芬奇对勾股定理的验证方法。

步骤:
(1)在一张长方形的纸板上画两个边长分别为a、b的正方形,并连结BC、FE。

(2)沿ABCDEF剪下,得两个大小相同的纸板Ⅰ、Ⅱ。

(3)将纸板Ⅱ翻转后与Ⅰ拼成其它的图形。

(4)比较两个多边形ABCDEF和的面积,你能验证勾股定理吗?(给
学生充足的时间,进行独立思考,鼓励学生交流合作,教师巡视帮助,引导学习困难的学生。

最后,验证方法让学生进行讲解、板演、叙述,教师做简单的总结。


你还想了解其他的验证方法吗?
三、课堂总结
1.从两节课的课题学习中你有哪些收获?
2.你学到了哪些数学方法和数学思想?
(给出学生两个问题,让学生充分讨论、交流,得出结论,最后教师小结本课题。


四、巩固
教科书第179页,习题第2题。

勾股定理有着悠久的历史,古巴比伦人和中国人看出了这个关系,古希腊毕达哥拉斯学派首先验证了这个关系。

同学们,你们对勾股定理感兴趣吗?你想尝试自己验证勾股定理吗?请发挥你的才智,去探索勾股定理、去研究勾股定理吧!。

相关文档
最新文档