遥感上机实习报告遥感图像的几何校正
实习二 遥感图像的几何校正

Reproject
投影变换(转换调用多项式变换)
Rubber Sheeting
非线性变换、非均匀变换
Camera
航空影像正射校正
在本次试验中采用Polynomial(多项式变换)的模型,通过在遥感影像和参考影像上分别选取相应的控制点,求出二元二次多项式函数 得到变换后的图像坐标(x',y')与参考图像坐标的关系,从而对图像进行几何校正。
―――遥感数字图像处理试验报告二
(2011-2012第一学期)
题目:遥感图像的几何校正
班级:
姓名:
学号:
实习二遥感图像的几何校正
一、实验目的:
通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。
二、实验数据
美国Georgia州Atalanta的一景SPOT全色卫片;三幅哈萨克斯坦的LANDSAT(MSS和TM)影像wasial_mss.img、wasia2_mss.img、wasia3_mss.img;美国西雅图的影像seattl.img;美国加利福利亚州圣迭戈的一景Landsat TM影像dmtm.img
(6)定义输出图像:点击 / ,打开Output Image Options对话框:Define Output Map Area(定义输出地图区域):Union of All Inputs
(7)运行Mosaic工具:点击Process/Run Masaic,弹出的对话框设置输出图像区域:All
2.4图像重投影变换
图2-7图2-8
然后通过掩膜运算实现图像不规则裁剪
在ERDAS IMAGING图标面板菜单条中点击Main/Image Interpreter/Utilities/Mask,设置参数如图2-8,点击OK。
遥感实习报告(几何纠正)

目录遥感图像几何校正实习报告 21.实习内容 (2)1.1 实习目的 (2)1.2 流程设计 (2)1.3 实习原理 (5)2.实习过程与结果 (6)2.1 校区影像的几何校正 (6)2.2 遥感图像仿射变换 (8)3.试验结果分析 (10)遥感图像几何校正实习报告1. 实习内容1.1 实习目的1、理解并掌握遥感图像校正的原理和方法;2、掌握在ERDAS遥感图像处理系统中遥感图像校正的流程和操作;3、掌握检验校正结果的方法。
1.2 流程设计1、图像几何校正的一般流程如下:2、图像仿射变换的一般流程如下:3、在ERDAS IMAGINE系统中进行图像几何校正,通常有两种方式启动几何校正模块:数据预处理途径在ERDAS图标面板菜单条单击Main/Data Preparation/Image Geometric Correction命令,打开Set Geo Correction Input File 对话框。
或在ERDAS 图标面板工具条单击Data Prep图标/Image Geometric Correction,打开Set Geo Correction Input File 对话框。
在Set Geo Correction Input File 对话框中,需要确定校正图像,有两种选择情况:选择From V iewer单选按钮,然后单击Select V iewer按钮选择显示图像窗口。
(1)打开Set Geometric Model 对话框;(2)选择几何校正计算模型(Select Geometric Model);(3)单击OK按钮;(4)打开校正模型参数与投影参数设置对话框;(5)定义校正模型参数与投影参数;(6)单击Apply 按钮应用或单击Close按钮关闭;(7)打开GCP Tool Reference Setup对话框。
●首先确定来自文件(From Image File),然后选择输入图像(Input Image File)。
中国地质大学遥感图像处理上机实习报告

遥感图像处理课程实习报告学生姓名:王蜀越班学号:学号:指导教师:王红平、许凯中国地质大学信息工程学院2017年7月1日目录目录 ............................................................................................................................................... - 1 - 实习一:影像融合........................................................................................................................ - 2 -1.1【实习目的】 (2)1.2【实习步骤】 (2)1.3【实习过程】 (2)实习二:几何校正........................................................................................................................ - 6 -2.1【实习内容】 (6)2.2【实习步骤】 (6)2.3【实习过程】 (6)实习三:影像分类(一).......................................................................................................... - 10 -3.1【实习内容】 (10)3.2【实习步骤】 (10)3.3【实习过程】 (10)实习四:影像分类(二).......................................................................................................... - 14 -4.1【实习内容】 (14)4.2【实习步骤】 (14)4.3【实习过程】 (14)心得与感想 ................................................................................................................................. - 18 -实习一:影像融合1.1 【实习目的】1.掌握遥感影像融合的基本原理、内容和要点;2.掌握在ENVI中遥感影像融合的操作方法、步骤;3.进一步熟悉ENVI软件的操作。
遥感图像几何精校正实验报告

遥感图像几何精校正实验名称:遥感图像的几何精校正。
实验目的:1.了解和熟悉envi软件的几何校正的原理2.熟悉和掌握envi软件的几何校正的功能和使用方法;3.对自己的图像先找到投影,再另存一幅图像,去掉投影,在其它软件中旋转一角度,用原先的图像作为参考对旋转后的图像进行几何校正,使得其比较精确。
实验原理:几何校正,主要方法是采用多项式法,机理是通过若干控制点,建立不同图像间的多项式控件变换和像元插值运算,实现遥感图像与实际地理图件间的配准,达到消减以及消除遥感图像的几何畸变。
多项式几何校正激励实现的两大步:1. 图像坐标的空间变换:有几何畸变的遥感图像与没有几何畸变的遥感图像,其对应的像元的坐标是不一样的,如下图1右边为无几何畸变的图像像元分布图,像元是均匀且不等距的分布。
为了在有几何畸变的图像上获取无几何畸变的像元坐标,需要进行两图像坐标系统的空间装换。
图1:图像几何校正示意图在数学方法上,对于不同二维笛卡儿坐标系统间的空间转换,通常采用的是二元n次多项式,表达式如下:其中x, y为变换前图像坐标, u, v为变换后图像坐标, aij , bij为多项式系数, n = 1, 2,3, ⋯。
二元n次多项式将不同坐标系统下的对应点坐标联系起来, ( x, y )和( u, v )分别应不同坐标系统中的像元坐标。
这是一种多项式数字模拟坐标变换的方法,一旦有了该多项式,就可以从一个坐标系统推算出另一个坐标系统中的对应点坐标。
如何获取和建立二元n次多项式,即二元n次多项式系数中a和b的求解,是几何校正成败的关键。
数学上有一套完善的计算方法,核心是通过已知若干存在于不同图像上的同名点坐标,建立求解n次多项式系数的方程组,采用最小二乘法,得出二元n次多项式系数。
不同的二元n次多项式,反映了几何畸变的遥感图像与无几何畸变的遥感图像间的像元坐标的对应关系, 其中哪种多项式是最佳的空间变换模拟式,能达到图像间坐标的完全配准,是需要考虑和分析的。
遥感几何校正实验报告

遥感几何校正实验报告遥感几何校正实验报告一、引言遥感技术在地球科学和环境研究中起着至关重要的作用。
遥感图像的几何校正是确保图像的准确性和可用性的关键步骤之一。
本实验旨在通过对遥感图像进行几何校正,探索校正过程中的方法和技术。
二、实验目的1. 了解遥感图像的几何校正原理和意义;2. 掌握几何校正的基本步骤和技术;3. 分析几何校正对遥感图像质量的影响。
三、实验材料与方法1. 实验材料:- 遥感图像数据集;- 几何校正软件。
2. 实验方法:- 导入遥感图像数据集;- 对图像进行几何校正;- 分析校正前后图像的差异。
四、实验过程与结果1. 数据导入:在几何校正软件中导入遥感图像数据集,确保图像能够正确显示。
2. 几何校正:根据几何校正软件的操作指南,按照以下步骤进行几何校正:a) 选择合适的控制点:根据图像中的特征选择控制点,以确保校正的准确性;b) 校正图像:通过对控制点进行配准,对图像进行几何校正;c) 评估校正结果:查看校正后的图像,与原始图像进行对比,评估校正的效果。
3. 结果分析:a) 观察校正后的图像:比较校正前后图像的差异,注意观察图像的形状、位置和尺度是否发生变化;b) 分析校正效果:根据观察结果,评估几何校正的效果。
若图像形状、位置和尺度变化较小,说明校正效果较好;c) 讨论校正结果:讨论校正结果对后续遥感分析的影响,如地物提取、变化检测等。
五、讨论与总结几何校正是遥感图像处理的重要步骤,能够提高图像的准确性和可用性。
本实验通过对遥感图像进行几何校正,探索了校正过程中的方法和技术。
校正后的图像形状、位置和尺度变化较小,说明校正效果较好。
几何校正结果对后续遥感分析有重要影响,能够提高地物提取和变化检测的精度。
然而,几何校正过程中仍存在一些挑战和限制。
例如,控制点的选择和配准的准确性对校正结果至关重要。
此外,校正过程中可能出现图像畸变和信息丢失的情况,需要在校正结果的评估中进行综合考虑。
实验二遥感图像的几何校正与镶嵌实验报告

实验二遥感图像的几何校正与镶嵌实验报告实验目的:通过本实验熟练操作遥感图像处理的专业软件进行基础图像处理,包括图像几何校正、镶嵌等。
实验容:1、熟悉图像几何校正、镶嵌的基本原理;2、学习图像几何校正具体操作;3、学习图像镶嵌正具体操作。
本实验的图像几何校正是通过“像图配准”的方式获取地面控制点的方里网坐标的,并对传统的从纸质地形图上量算坐标的方法进行改进,利用Auto CAD或Photoshop等软件从扫描后的电子地形图上直接量算坐标。
实验步骤:第一步、熟悉图像几何校正、镶嵌的基本原理第二步、图像几何校正运行PCI,选择GCPWorks模块,在Source of GCPs选择User Entered Coordinates(用户输入投影坐标系统),点击Accept后,弹出校正模块:选择第一项加载需要校正的图像(由实验一方法导出的125-42.pix)->点击Default->Load & Close->得到下图:选择第二项,选择Other确定投影系统:注意输入6度带的中央经度与向东平移500公里(500000米):点击Earth Model确定地球模型:点击Accept:选择第三项采集地面控制点。
在采集地面控制点之前,利用Photoshop软件打开扫描后的电子地形图。
分别在遥感图像和地形图中找到一个同名点,如下图(可以用放大遥感图)。
然后在地形图中量算出该点的坐标,精确到米,X坐标为6位(要去掉2位6度带的带号),Y坐标7位(运用测出)。
再将坐标输入到GCP编辑窗口中,并点击Accept as GCP接受为一个控制点。
用同样的方法采集更多的地面控制点。
注意:前三个点不显示误差,从第四个点开始才出现误差。
一般要求选择15个以上控制点,并且各点的误差<1个像元,将误差过大的点删除,直到误差<1个像元为止。
最后,关闭GCP编辑窗口,选择第五项(如果对整个图像进行几何校正,则第四项可以省略),执行几何校正。
遥感数据图像处理实验三、遥感图像的几何校正与裁剪

实验三、遥感图像的几何校正与裁剪实验内容:1.图像分幅裁剪(Subset Image)2.图像几何校正(Geometric Correction)3.图像拼接处理(Mosaic Imgaes)4.生成三维地形表面(3D Surfacing)1.图像分幅裁剪在实际工作中,经常需要根据研究工作范围对图像进行分幅裁剪,按照ERDAS IMAGINE 8.4实现图像分幅裁剪的过程,可以将图像分幅裁剪为两类型:规则分幅裁剪,不规则分幅裁剪。
1.1规则分幅裁剪(以c:\Program File\ IMAGINE 8.4\examples\lanier.img为例)规则分幅裁剪是指裁剪图像的范围是一个矩形,通过左上角和右上角两点的坐标可以确定图像的裁剪位置,过程如下:方法一:→ERDAS IMAGINE 8.4 图标面板菜单条:Main→Data Preparation(或单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标)→打开Data Preparation 对话框→单击Subset Image按钮,打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→裁剪范围(Subset Definition):ULX、ULY、LRX、LRY(注:ULX,ULY是指左上角的坐标,LRX,LRY是指右上角的坐标,缺省状态为整个图像范围)→输出数据类型(Output Data Type):Unsigned 8 Bit→输出文件类型(Output Layer Type):Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers):2,3,4→OK(关闭Subset对话框,执行图像裁剪)方法二:→ERDAS IMAGINE 8.4图标面板菜单条:Main→Start IMAGINE Viewer(或单击RDAS IMAGINE 8.4图标面板工具条“Viewer”图标)→打开一个二维视窗→单击视窗工具条最左端的“打开文件”图标→打开Select Layer To Add对话框在Select Layer To Add对话框完成以下设置:→Look In:examples→File Name:lanier.img→Files of type:IMAGINE Image→双击OK按钮→在二维视窗中打开lanier.img文件→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标 →打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→输出数据类型(Output Data Type):Unsigned 8 Bit →输出文件类型(Output Layer Type):Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers):2,3,4→单击From Inquire Box按钮→打开Invalid Coordinate Type对话框→单击Continue→在显示图像文件lanier.img视窗中单击工具条的“+”按钮,打开Inquire Cursor 对话框,在视窗中移动十字光标,确定裁剪范围左上角和右下角,读取其坐标分别填入Subset Image对话框的ULX,ULY中和LRX,LRY中→单击OK按钮(关闭Subset对话框,执行图像裁剪)方法三:首先在视窗中打开lanier.img文件→AOI→Tools打开AOI工具面板→单击矩形框确定裁剪范围→File→Save→AOI Layer As→打开Save AOI As对话框,输入文件名:2→单击OK(退出Save AOI As对话框)→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标 →打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→输出数据类型(Output Data Type):Unsigned 8 Bit→输出文件类型(Output Layer Type):Continuous →输出统计忽略零值:Ignore Zero In Output Stats →输出像元波段(Select Layers):2,3,4→单击AOI按钮→打开Choose AOI对话框→在Choose AOI对话框作如下设置:→AOI Source:File→AOI File:2→单击OK(退出Choose AOI对话框)→单击OK(退出Subset对话框,执行图像裁剪)→单击OK(退出Modeler对话框,完成图像裁剪)1.2不规则分幅裁剪不规则分幅裁剪是指裁剪图像的边界范围是个任意多边形,无法通过左上角和右下角两点的坐标确定图像的裁剪位置,而必须事先生成一个完整的闭合多边形区域,可以是一个AOI多边形,也可以是ArcInfo的一个Polygon Coverage,针对不同的情况采用不同的裁剪过程。
几何校正实验报告(Image to Image方法和Image to Map方法)

遥感图像的几何校正姓名:学号:日期:2020.5.151.实验目的和内容目的:通过实习操作,掌握遥感图像几何校正的基本原理和和方法,理解遥感图像几何校正的意义。
内容:在ENVI软件中利用两种几何校正方法进行遥感图像的几何校正。
(1)Image to Image:用base.img作为基准影像,选择控制点来校正uncorrected.img。
(2)Image to Map:根据地形图上的信息选择控制点来校正地形图。
2.图像处理方法和流程Image to Image(用base.img作为基准影像,选择控制点来校正uncorrected.img)1、加载影像(1)点击主菜单>>File>>Open Image File。
(2)打开base.img和uncorrected.img。
(3)显示这两个图像:2、启动几何校正模块(1)点击主菜单的Map>>Registration>>Select GCPs:Image to Image。
(2)选择显示base.img文件的Display为基准影像(Base Image),显示uncorrected.img文件的Display为待校正影像(Warp Image),点击OK。
(3)点击OK后出现Ground Control Points Selection界面,点击Show List 可打开控制点列表窗口(Image to Image GCP List窗口)。
3、采集地面控制点(1)在两个Display中找到相同区域,在Zoom窗口中,将十字光标定位到两个图像的相同位置上。
(2)点击Ground Control Points Selection上的Add Point按钮,将当前找到的点加入控制点列表。
(3)添加好了第一个控制点。
(4)同上诉操作,可以添加好第二个、第三个控制点。
(5)在Base Image上面用十字光标定位一个点,点击Ground Control Points Selection上的Predict按钮,Warp Image上会自动预测相同位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西师范大学科技学院
实习报告
实习名称遥感数据的预处理——图像的几何校正
实习课程遥感导论姓名余静班级08
学号0807079064
实习时间2010、11、24
得分
一、实习目的
1、掌握遥感图像几何校正的基本方法和步骤
2、理解遥感图像几何校正的意义
二、实习内容
1、图像的几何校正
2、重采样
3、检验校正结果
三、实习方法
在赖老师的指导下,根据基本理论知识,利用ERDAS IMAGING 软件进行图像校正。
四、实习步骤(应附上不同过程中的实习结果,如图形、图像、
数字等)
1、分别打开两个视窗口,tmAtlanta.img和panAtlanta.img
2、点击Image Geometric Correction
3、点击Set Geo correction Input File
4、选择From Viewer ,点击Select Vieewer ,然后单击panAtlanta.img的视窗口。
采用影像—影像的校正模式。
校正算法选择多项式Polynomial .
点击OK
5、在Polynomial Order中填2.
6、点击Aply,点击Image Layer,点击SetProjection GCP Tool ,设置投影参数类型。
7、点击Existing Viewer
8、点击OK。
9、在左图任意一点点击,形成控制点,然后在右图找出与左图对应的点。
在两幅图中选取10个以上相同的采集点。
10、最后的结果
五、实习小结
1、选控制点时,要注意选特征明显的点作为控制点。
2、选控制点时,控制点不能集中分布,这样容易变形。
3、做任何事都要细心!
4、感受到遥感应用软件太神奇、太好玩了!以后应该多上机操作,这样才能更好地掌握图像的校正。
既能学到点知识,又能获得快乐。