高分子化学与物理

合集下载

二级学科___高分子化学与物理_

二级学科___高分子化学与物理_

二级学科:___ 高分子化学与物理_____________英文名称:Polymer Chemistry & Physics代码:____ 070305____________一、学科简介高分子化学与物理是化学学科重要的组成部分,其与有机化学及海洋化学密切相关,在海洋资源的开发利用中作用巨大。

近几年高分子化学与物理得到了快速发展,高分子材料是最重要的材料之一。

在海洋功能材料与分离膜材料制备及其应用等其领域发展迅速,形成了鲜明特色,取得了丰硕得成果。

高分子化学与物理拥有实验室近千平米, 拥有扫描电镜、原子显微镜、元素分析、元素分析-同位素质谱仪、换红外光谱、中高压微型反应设备、电化学工作站、原子吸收分光光度计、差热-热重分析仪、等离子发射光谱仪、膜性能分析测试等基本仪器。

二、培养目标德、智、体、能全面发展,学风严谨、作风正派、具有可持续发展技能得的高分子化学与物理学科专门人才。

掌握高分子化学与物理基本理论知识、基本研究方法和基本技能,并能熟练地应用于本学科方向的研究,了解学科发展方向和研究前沿,具有一定的材料科学、海洋化学、生命科学、物理化学等相关学科的基本知识。

有较高外语水平,能熟练应用与工作及学术交流。

能较熟练地使用计算机和互联网。

毕业后,能在有关企业、科研机构、高校从事产品开发、科研、教学工作,也可以从事有关部门的科技管理工作。

四、修读年限2-3年五、培养体系(一)核心模块核心模块学分要求不低于16学分。

(二)拓展模块公共选修课公共选修课由学校统一组织,面向全校研究生开设,鼓励各学院对全校开设。

硕士研究生至少获得公共选修课2学分。

专业英语学术活动论文写作与学术规范实践训练跨校选修课程选修“211”院校与所学专业相关的课程,取得的相应学分予以承认,但不能超过5学分。

鼓励研究生在有条件的情况下,选修国外一定层次水平的相应高校或研究机构的课程,取得的相应学分予以承认。

具体修课计划由导师和研究生共同制订并报研究生教育中心审批。

高分子化学与物理基础

高分子化学与物理基础

单体:能够形成聚合物中结构单元的小分子化合物。

高分子:由许多结构相同的简单的单元通过共价键重复连接而成的相对分子质量很大的化合物。

由于对大多数高分子而言,其均由相同的化学结构重复连接而成,故也成为聚合物或高聚物。

缩聚物:通过缩聚反应得到的聚合物。

低聚物:相对分子质量在102-104的分子。

凝胶点:开始出现凝胶时的临界反应程度。

官能团:单体分子中能参见反应并能表征反应类型的原子或原子团。

官能度;一个分子上参加反应的官能团数。

(1) CH2=CH-Cl,氯原子的诱导效应和共轭效应作用相反,且均较弱,所以离子聚合困难,只能自由基聚合。

(2) CH2=C(Cl)2,结构不对称,同时比氯乙烯多一个氯原子,诱导作用加强,可进行阴离子和自由基聚合。

(3) CH2=CH-CN,氰基为吸电子基团,可降低双键的电子云密度,可进行阴离子和自由基聚合,在一定条件下还可进行陪位聚合。

(4) CH2=CH(CN)2,两个氰基的诱导吸电子作用过强,只能进行阴离子聚合。

(5) CH2=CHCH3,甲基可产生供电超共轭效应,但强度不大,同时聚合产生的烯丙基自由基稳定,不会增长为大分子,故不发生自由基和离子聚合,只在特殊的络合引发剂作用下进行配位聚合。

(6) CH2=C(CH3)2,两个甲基能产生较强的给电子效应,可进行阳离子聚合。

在一定条件下可发生配位聚合。

(7) CH2=CH-C6H5,共轭体系,π电子流动性大,易极化,可发生自由基、阴离子、阳离子聚合。

(8) CF2=CF2,四个氟原子均产生吸电子诱导作用,但结构对称,机化度小,同时氟原子体积小,可发生自由基聚合。

(9) 两个吸电子基产生很强的吸电子诱导作用,只可进行阴离子聚合。

(10) CH2=C(CH3)CH=CH2,共轭体系,π电子流动性大,发生自由基、阴离子、阳离子聚合。

1.什么是自由基聚合、阳离子聚合和阴离子聚合?解:自由基聚合:通过自由基引发进行链增长得到高聚物的聚合反应。

高分子化学与物理的一级学科

高分子化学与物理的一级学科

高分子化学与物理的一级学科
(最新版)
目录
1.高分子化学与物理的定义和背景
2.高分子化学与物理的研究领域
3.高分子化学与物理的发展前景
正文
高分子化学与物理是一级学科,涵盖了高分子材料的合成、性质、结构和应用等方面的研究。

高分子材料是现代科技领域中不可或缺的重要材料,其广泛的应用和优良的性能使其在工程、医疗、电子、能源等领域具有重要的地位。

高分子化学与物理的研究领域主要包括高分子材料的合成、结构、性能、应用等方面。

在高分子材料的合成方面,研究人员通过不同的聚合反应,可以合成出具有不同性质和功能的高分子材料。

在高分子材料的结构方面,研究人员通过各种表征手段,如 X 射线衍射、核磁共振、红外光谱等,研究高分子材料的微观结构,从而揭示其性能和功能的来源。

在高分子材料的性能方面,研究人员研究了高分子材料的力学性能、热学性能、电学性能等,从而为高分子材料的应用提供理论基础。

在高分子材料的应用方面,研究人员通过设计、改性和优化高分子材料,使其在各种应用领域中具有更好的性能和更广泛的应用。

随着科技的不断发展,高分子化学与物理学科的发展前景十分广阔。

在未来,高分子化学与物理将继续在高分子材料的合成、性能优化和应用方面进行深入研究,为高分子材料的发展和应用提供新的理论和方法。

第1页共1页。

高分子化学与物理

高分子化学与物理

高分子物理1.高聚物的球晶() *A.一定呈球状B.是多晶聚集体(正确答案)C.是在搅拌下生成的D.一般是由熔体冷却时形成的(正确答案)E.是在稀溶液中形成的2.聚合物熔体在高温高压下结晶,生成()晶体。

[单选题] *A.伸直链(正确答案)B.串晶C.片晶D.单晶3.浓溶液边搅拌边结晶生成() [单选题] *A.伸直链B.串晶(正确答案)C.片晶D.单晶4.高聚物在稀溶液中极缓慢冷却结晶时,可以成()这种结晶形态。

[单选题] * A.伸直链B.串晶C.单晶(正确答案)D.球晶5.从熔体冷却结晶时,倾向于生成()结构。

[单选题] *A.伸直链B.串晶C.单晶D.球晶(正确答案)6.熔体在应力作用下结晶时,通常形成()结构。

[单选题] *A.伸直链B.串晶(正确答案)C.单晶D.球晶7.高聚物熔体结晶的温度范围是从()到( B )之间,结晶过程包括( C )。

[单选题] *A.Tg(正确答案)B.TmC.晶核开线和晶粒生长8.高聚物的结晶度增加,则() [单选题] *A.抗冲击强度增加B.抗张强度增加(正确答案)C.取向度增加D.透明性增加9.增加高聚物结晶度xc可采取的有效措施有()( B )等。

[单选题] *A.Tmax下长期结晶(正确答案)B.退火处理C.加成检剂D.降低结晶温度10.欲减小环晶半径可采取()( D )等措施。

[单选题] *A.Tmax下长期结晶B.退火处理C.加成核剂(正确答案)D.降低结晶温度11.晶体中分子链不呈平面锯齿形构象的高聚物是()。

[单选题] * A.PVA(聚烯醇)B.PEC.PAD.聚四氟乙烯(正确答案)12.呈螺旋形构象的高聚物有() *A.等规聚丙烯(正确答案)B.PEC.PAD.聚四氟乙烯(正确答案)13.下列聚合物中柔顺性最好的是() [单选题] *A.聚乙烯(正确答案)B.聚丙烯C.聚氯乙烯D.聚苯乙烯14.下列聚合物中柔顺性最差的是() [单选题] *A.聚甲基丙烯酸甲酯B.聚甲基丙烯酸乙酯C.聚甲基丙烯酸丙酯D.聚甲基丙烯酸丁酯(正确答案)15.高分子显示出柔性,是由于具有运动单元()。

高分子化学与物理专业介绍

高分子化学与物理专业介绍

高分子化学与物理专业介绍作为一门综合性学科,高分子化学与物理专业致力于研究和应用高分子材料的结构、性质和制备技术。

它涉及了化学、物理、材料科学等多个学科的知识,是现代材料科学与工程领域的重要组成部分。

高分子化学与物理专业的研究对象是高分子材料,这些材料由大量重复单元构成,具有独特的物理和化学性质。

高分子材料广泛应用于塑料、橡胶、纤维等各个领域,如塑料袋、塑料瓶、橡胶制品、纤维材料等。

因此,高分子化学与物理专业的研究对于推动材料科学和工程的发展具有重要的意义。

在高分子化学与物理专业的学习过程中,学生将系统地学习高分子材料的基本原理、结构与性质、制备和改性技术等方面的知识。

他们将学习如何合成高分子材料,探索材料的结构与性能之间的关系,并研究如何改善材料的性能和应用。

同时,学生还将学习如何使用仪器设备进行材料分析和表征,以及如何进行材料的工艺设计和加工。

高分子化学与物理专业的毕业生可以在多个领域找到就业机会。

他们可以从事新材料的研发与创新工作,为各行各业提供高性能、环境友好的材料解决方案。

他们也可以投身于材料制备和加工领域,负责材料的生产和工艺控制。

此外,他们还可以从事材料分析和测试工作,评估材料的性能和质量。

在高分子化学与物理专业中,学生需要具备扎实的化学和物理基础知识,具有创新思维和实验技能。

此外,他们还需要具备团队合作和沟通能力,能够与不同领域的科学家和工程师合作,共同解决材料科学和工程中的问题。

高分子化学与物理专业是一个充满挑战和机遇的领域。

通过深入学习和研究,毕业生将能够在材料科学和工程领域做出重要贡献,推动人类社会的发展和进步。

让我们一起努力,为高分子化学与物理事业的发展贡献自己的力量。

高分子化学与物理学科

高分子化学与物理学科

高分子化学与物理学科
高分子化学与物理学科是研究高分子材料的性质、合成、加工和应用的学科,是化学
与物理学的交叉学科。

高分子化学与物理学科的发展对于新材料的开发和应用有着重要意义。

高分子是一类由大量重复单元组成的大分子化合物,一般分子量在万级以上。

高分子
材料具有独特的物理化学性质,如强度高、韧性好、绝缘性好、稳定性好等,同时也有很
多缺点,如易老化、耐候性差、容易燃烧等。

高分子化学研究的是高分子材料的合成过程及其反应机理、结构性能关系以及高分子
聚合物的化学性质。

高分子化学是高分子领域的基础学科,主要包括高分子基本理论、高
分子结构与合成、高分子物理化学、高分子分析化学等方面。

高分子物理学研究的是高分子材料的物理性质及其物理特性,包括力学性能、热学性能、光学性能、电学性能等,同时还包括高分子材料的加工工艺,如注塑成型、挤出成型、吹塑成型等。

高分子物理学是高分子材料应用领域的重要学科,主要包括高分子物理基础、加工工艺和应用等方面。

高分子材料在生活中应用广泛,如塑料、橡胶、涂料、纤维、粘合剂等,特别是在新
能源、新材料、环境保护等领域中的应用越来越广泛。

近年来,高分子材料的研究重心逐
渐转向了高性能、高功能和高附加值方向,如高性能聚合物、功能性高分子材料、纳米复
合材料、生物医用高分子材料等,这都需要高分子化学与物理学科的不断发展。

总之,高分子化学与物理学科是一门基础性学科,具有重要的理论和应用价值。

随着
科技的不断进步,高分子材料在工业和生活中的应用会越来越广泛,因此高分子化学与物
理学科的地位和作用也会越来越重要。

高分子化学和物理

高分子化学和物理

高分子化学和物理高分子化学是研究大分子化合物的化学、结构、性质和合成方法等方面的学科。

它是材料科学和工程领域中十分重要的一门学科,具有广泛的应用前景。

高分子物理是研究高分子材料的物理性质和现象的学科。

高分子物理对于理解高分子材料的结构和性质、控制高分子材料的结构和性质以及开发新的高分子材料等方面都有重要意义。

高分子化合物是由许多重复单元组成的大分子化合物。

高分子材料是由高分子化合物构成的材料。

高分子材料具有许多优良的性质,例如高强度、高韧性、耐磨性、耐化学腐蚀性等,被广泛地应用于汽车、电子、医疗、航空、建筑等领域。

高分子化学是研究高分子化合物的物理、化学和结构等方面的学科。

高分子化学的研究对象包括高分子的合成方法、结构、形态、性质、应用等方面。

高分子的分类方法有许多种,例如按链长分为超分子、超高分子、大分子等;按功能划分为物理性能、化学性质、热力学、动力学等。

高分子的结构也有许多种分类方法,例如按分子量、聚合度、极性等。

高分子的合成方法主要有四种:自由基聚合、阳离子聚合、阴离子聚合和羧酸聚合。

自由基聚合是最常用的一种,其反应机理是通过光、热或化学作用激发单体分子中的一个自由基,然后它就能够和另一个单体分子中的自由基发生反应,形成一个链长增大一个单体分子的高分子分子。

阳离子聚合和阴离子聚合是在带正离子或带负离子的引聚体存在下,通过捕获共轭共振偶极子或异极子与单体成立活泼质子化合物并释放出引聚学界、产生引聚反应的一种聚合方法。

羧酸聚合是在含有羧酸官能团的单体中,通过官能团的缩合作用发生聚合反应。

高分子的应用非常广泛,既包括常见的聚乙烯、聚丙烯等塑料材料,也包括更加高级的聚二甲基硅氧烷、聚酰亚胺、聚醚酮等高温材料。

这些高分子材料在汽车、电子、医疗、航空、建筑等领域中都有广泛的应用。

高分子材料的结构和形态与其性质有密切关系。

高分子材料的分子结构、平衡结晶结构和非平衡结构(例如玻璃态结构)对材料的力学性能、导电性能、光学性能等都具有重要影响。

高分子物理与化学

高分子物理与化学

高分子物理与化学高分子物理与化学是一门关于高分子材料的性质、结构、合成和应用的学科。

高分子材料是一类由长链分子构成的材料,具有独特的物理和化学性质,广泛应用于汽车、电子、医疗、建筑等领域。

本文将从高分子物理和化学两个方面介绍这一学科的基本概念和研究进展。

一、高分子物理高分子物理主要研究高分子材料的物理性质,如力学性能、热力学性质、流变学性质等。

其中,高分子材料的力学性能是其最为重要的性质之一,因为它们通常用于承受各种载荷,如拉伸、压缩、弯曲等。

高分子材料的力学性能与其分子结构和分子量密切相关。

分子量越大,高分子材料的强度和刚度就越高,但韧性和延展性就越低。

分子结构的改变也会影响高分子材料的力学性能。

例如,聚合物中的侧链结构可以影响其分子的排列方式,从而影响其力学性能。

高分子材料的热力学性质也是高分子物理的重要研究内容之一。

热力学性质包括热膨胀系数、热导率、热容等。

这些性质在高分子材料的加工和应用中起着重要的作用。

例如,在高分子材料的热成型过程中,需要考虑热膨胀系数的影响,以保证成型后的产品尺寸稳定。

高分子材料的流变学性质也是高分子物理的一个重要研究方向。

流变学性质研究的是高分子材料在外力作用下的变形和流动行为。

高分子材料的流变学性质与其分子结构、分子量、交联程度等因素密切相关。

例如,线性高分子材料的流变学性质通常表现为牛顿流体,而交联高分子材料则表现为非牛顿流体,具有更为复杂的流变学行为。

二、高分子化学高分子化学主要研究高分子材料的合成、结构和性质。

高分子材料的合成方法非常多样,包括聚合反应、缩合反应、交联反应等。

其中,聚合反应是最常用的高分子材料合成方法之一。

聚合反应可以分为自由基聚合、离子聚合、羰基聚合等不同类型,每种类型的聚合反应都有其特定的应用领域和优缺点。

高分子材料的结构也是高分子化学的重要研究内容。

高分子材料的结构通常由其分子量、分子量分布、分子结构等因素决定。

例如,线性高分子材料的分子结构简单,易于合成和加工,但其力学性能和热稳定性相对较差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国科学院大学硕士研究生入学考试《高分子化学与物理》考试大纲本《高分子化学与物理》考试大纲适用于中国科学院大学高分子化学与物理专业的硕士研究生入学考试。

高分子化学与物理是化学学科的基础理论课。

高分子化学内容主要包括连锁聚合反应、逐步聚合反应和聚合物的化学反应等聚合反应原理,要求考生熟悉相关高分子化学的基本概念,掌握常用高分子化合物的合成方法、合成机理及大分子化学反应,能够写出主要聚合物的结构式,熟悉其性能并且能够对给出的现象给以正确、合理的解释。

高分子物理内容主要包括高分子的链结构与聚集态结构,聚合物的分子运动,聚合物的溶液性质以及聚合物的流变性能、力学性能、介电性能、导电性能和热性能等,要求考生熟悉相关高分子物理的基本概念,掌握有关聚合物的多层次结构及主要物理、机械性能的基本理论和基本研究方法。

考生应具备运用高分子化学与物理的知识分析问题、解决问题的能力。

一、考试基本要求1.熟练掌握高分子化学与物理的基本概念和基础理论知识;2.能够灵活运用所学知识来分析问题、解决问题。

二、考试方式与时间硕士研究生入学《高分子化学与物理》考试为闭卷笔试,考试时间为180分钟,总分150分。

三、考试主要内容和要求高分子化学部分(一)绪论1、考试内容(1)高分子的基本概念;(2)聚合物的命名及分类;(3)分子量;(4)大分子微结构;(5)线形、支链形和体形大分子;(6)聚合物的物理状态;(6)聚合物材料与强度。

2、考试要求【掌握内容】(1)基本概念:单体、聚合物、聚合反应、结构单元、重复单元、单体单元、链节、聚合度、均聚物、共聚物。

(2)加成聚合与缩合聚合;连锁聚合与逐步聚合。

(3)从不同角度对聚合物进行分类。

(4)常用聚合物的命名、来源、结构特征。

(5)线性、支链形和体形大分子。

(6)聚合物相对分子质量及其分布。

(7)大分子微结构。

(8)聚合物的物理状态和主要性能。

【熟悉内容】(1)系统命名法。

(2)典型聚合物的名称、符号及重复单元。

(3)聚合物材料和机械强度。

【了解内容】高分子化学发展历史。

(二)逐步聚合反应1、考试内容(1)缩聚反应;(2)线形缩聚反应机理;(3)线形缩聚动力学;(4)影响线型缩聚物聚合度的因素及控制方法;(5)分子量的分布;(6)逐步缩合的实施方法;(7)重要线型逐步聚合物;(8)体型缩聚;(9)凝胶化作用和凝胶点。

2、考试要求【掌握内容】(1)逐步聚合的基本概念:官能团,平均官能度,线形缩聚,反应程度,当量系数,体型缩聚,无规预聚物,结构预聚物,凝胶化作用,凝胶点。

(2)缩聚反应的类型及典型聚合物的命名。

(3)逐步聚合反应的特点。

(4)逐步聚合官能团等活性理论。

(5)缩聚反应聚合物分子量的控制。

(6)典型线性和体型缩聚物的合成方法。

(7)Carothers法和统计法计算体型逐步聚合反应的凝胶点。

(8)线形逐步聚合与体型逐步聚合的比较。

(9)逐步聚合与连锁聚合的比较。

【熟悉内容】(1)线形逐步聚合动力学。

(2)缩聚物的分子量分布。

(3)影响聚合反应动力学方程的因素。

(三)自由基聚合1、考试内容(1)自由基聚合机理;(2)链引发反应;(3)聚合速率;(4)分子量和链转移反应;(5)分子量分布;(6)阻聚与缓聚;(7)聚合热力学;(8)可控/活性自由基聚合。

2、考试要求【掌握内容】(1)自由基聚合的单体。

(2)自由基基元反应每步反应特征;自由基聚合反应特征。

(3)常用引发剂的种类;引发剂分解动力学;引发剂效率;影响引发剂效率的因素;引发剂选择原则。

(4)聚合动力学研究方法;自由基聚合微观动力学方程推导;自由基聚合反应速率常数;自动加速现象。

(5)无链转移反应时的分子量;链转移反应对聚合度的影响。

(6)影响聚合反应速率和分子量的因素(温度、压力、单体、引发剂)。

(7)阻聚与缓聚。

(8)聚合热力学。

【熟悉内容】(1)热聚合、光引发聚合、辐射聚合、等离子体引发聚合、微波引发聚合。

(2)聚合过程中速率变化的类型。

(3)自由基聚合的相对分子质量分布。

(4)反应速率常数的测定。

【了解内容】热引发和光引发动力学。

(四)自由基共聚合1、考试内容(1)共聚物的类型和命名;(2)二元共聚物的组成;(3)竞聚率的测定和影响因素;(4)单体和自由基的活性;(5)Q-e概念。

2、考试要求(1)共聚合基本概念:无规共聚物,接枝共聚物,交替共聚物,嵌段共聚物,竞聚率,恒比点。

(2)共聚物的分类和命名。

(3)二元共聚组成微分方程推导。

(4)理想共聚、交替共聚、非理想共聚(有或无恒比点)的定义,根据竞聚率值判断两单体对的共聚类型及共聚组成曲线类型。

(5)共聚物组成控制方法。

(6)共聚物微观结构与链段分布。

(7)单体和自由基活性的表示方法,取代基的共轭效应、极性效应及位阻效应对单体和自由基活性的影响。

(8)Q-e值的物理意义,如何通过Q、e值判断两单体的共聚情况,Q-e方程的优点与不足。

【熟悉内容】(1)共聚合的意义及典型共聚物。

(2)影响竞聚率的因素和竞聚率测定方法。

(3)共聚物的组成与转化率的关系。

(4)多元共聚。

(5)共聚合速率。

(五)聚合方法1、考试内容(1)本体聚合;(2)溶液聚合;(3)悬浮聚合;(4)乳液聚合。

2、考试要求【掌握内容】(1)四种聚合实施方法的基本组成及优缺点。

(2)悬浮聚合与乳液聚合的机理及动力学。

【熟悉内容】(1)典型聚合物的聚合实施方法。

(2)聚合方法的选择。

(六)阴离子聚合1、考试内容(1)阴离子聚合的单体;(2)阴离子引发体系和引发;(3)阴离子聚合引发剂和单体的匹配;(4)活性阴离子聚合;(5)丁基锂的缔合现象和定向聚合作用。

2、考试要求【掌握内容】(1)阴离子聚合常见单体与引发剂。

(2) 阴离子聚合机理,聚合速率及聚合度。

(3)影响阴离子聚合因素。

(4)活性阴离子聚合原理、特点及应用。

(5) 阳离子聚合、阴离子聚合、自由基聚合的比较。

(6)离子共聚。

(七)阳离子聚合1、考试内容(1)阳离子聚合的单体;(2)阳离子引发体系;(3)阳离子聚合机理;(4)影响阳离子聚合的因素;(5)聚异丁烯和丁基橡胶。

2、考试要求【掌握内容】(1)阳离子聚合常见单体与引发剂。

(2)阳离子聚合机理。

(3)影响阳离子聚合因素。

(4)异丁烯的聚合和丁基橡胶。

阳离子聚合反应动力学。

(八)配位聚合1、考试内容(1)聚合物的立体异构现象;(2)配位聚合的基本概念;(3)Ziegler-Natta引发剂;(4)丙烯的配位聚合;(5)乙烯的配位聚合;(6)极性单体的配位聚合;(6)茂金属引发剂;(7)共轭二烯烃的配位聚合。

2、考试要求【掌握内容】(1)配位聚合基本概念:配位聚合,有规立构聚合,定向聚合,立构规整聚合物,立构规整度,等规度。

(2)Ziegler-Natta催化剂的组成及性质。

(3)α-烯烃配位聚合机理(单金属机理,双金属机理,终止反应)。

(4)二烯烃的配位聚合(丁二烯,异戊二烯)。

(5)茂金属催化剂的特点。

(6)配位聚合催化剂的发展。

【熟悉内容】(1)影响Ziegler-Natta催化剂活性的因素;(2)配位聚合的应用。

(九)开环聚合1、考试内容(1)环烷烃开环聚合热力学;(2)杂环开环聚合机理和动力学特征;(3)环氧化物的阴离子开环聚合;(4)其他环醚的阳离子开环聚合;(5)三聚甲醛(三氧六环)的阳离子开环聚合;(6)环酰胺开环聚合;(7)环硅氧烷的开环聚合;(8)聚磷氮烯;(9)羰基化合物的聚合。

2、考试要求【掌握内容】(1)环烷烃开环聚合热力学;(2)环氧化物、环醚、三聚甲醛(三氧六环)、环酰胺、环硅氧烷的开环聚合,聚磷氮烯的合成方法。

【熟悉内容】(1)聚合单体特征及动力学;(2)羰基化合物的聚合。

(十)聚合物的化学反应1、考试内容(1)聚合物的基团反应;(2)接枝聚合反应和嵌段聚合反应;(3)聚合物的降解与交联;(4)聚合物的老化与防老化。

2、考试要求【掌握内容】(1)聚合物化学反应的基本概念:几率效应,邻近基团效应。

(2)聚合物与小分子反应活性的比较及影响因素。

(3)典型的聚合物的化学反应。

(4)聚乙酸乙酯的反应。

(5)芳香烃的取代反应。

(6)制备嵌段聚合物及接枝聚合物常用的方法。

(7)聚合物交联反应:橡胶的硫化、聚烯烃的过氧化物交联。

(8)典型聚合物的热降解反应。

(1)纤维素的反应。

(2)光致交联固化。

(3)氧化降解、光降解和光氧化降解、聚合物老化机理及老化的防止与利用。

(4)功能高分子的定义及主要种类。

高分子物理部分(一)高分子的链结构1、考试内容(1)高分子链的构型;(2)高分子链的内旋转和高分子链的柔顺性;(3)分子链的构象统计;(4)高分子晶格中链的构象;(5)蠕虫状链。

2、考试要求【掌握内容】(1)化学组成:基团(极性与非极性),单体单元(均聚与共聚)及末端基。

(2)键接结构:头-头(尾-尾)及头-尾结构。

(3)构型(旋光异构,几何异构)。

(4)高分子链的支化与交联。

(5)基本概念:均方末端距,高斯链,构象。

(6)高分子链长、末端距的计算方法;高分子链的柔顺性及本质。

【熟悉内容】(1)高分子链构型的测定方法。

(2)高分子链的旋转及构象统计。

(二)高分子溶液1、考试内容(1)聚合物的溶解;(2)柔性高分子溶液热力学性质;(3)高分子溶液的相平衡;(4)聚电解质溶液;(5)聚合物的浓溶液。

2、考试要求【掌握内容】(1)基本概念:溶度参数,Huggins参数,θ温度,第二维利系数A2,聚合物增塑,凝胶,冻胶。

(2)高分子的溶解过程;溶剂对聚合物溶解能力判定原则;高分子溶液与理想溶液的偏差;Flory-Huggins高分子溶液理论;Flory-Krigbaum稀溶液理论。

(3)Huggins参数、θ温度及第二维利系数A2之间的关系;θ溶液与理想溶液。

(4)高分子浓溶液及应用。

【熟悉内容】(1)Flory-Huggins晶格理论的假定条件及局限性。

(2)第二维利系数的测定。

(三)高分子的分子量和分子量分布1、考试内容(1)聚合物分子量的统计意义;(2)聚合物分子量的测定方法;(3)聚合物分子量分布及测定方法。

【掌握内容】(1)基本概念:相对黏度,增比黏度,比浓黏度,比浓对数黏度,特性黏度,数均分子量、重均分子量、粘均分子量、Z均分子量。

(2)聚合物分子量的统计意义;常用的统计平均相对摩尔质量。

(3)相对摩尔质量分布宽度及表示方法。

(4)聚合物分子量的测定原理;不同测定方法的适用范围。

(5)特性黏度和相对摩尔质量的关系。

(6)高分子的分级方法。

【熟悉内容】(1)Ubbelohde(乌氏黏度计)的原理。

(2)Flory 黏度理论。

(四)高分子的聚集态结构1、考试内容(1)聚合物的非晶态;(2)聚合物的结晶态;(3)聚合物的取向结构;(4)高分子液晶;(5)高分子的多组份体系。

相关文档
最新文档