碳纳米管参数说明
CNT结构、性能、现状解读

CNT研究背景和意义自从1991年日本NEC的电镜专家Iijima首先用高分辨透射电镜(HRTEM)发现了具有纳米尺寸的多壁碳纳米管(MWNT)]1[,这种结构由长约1 um、直径4-30 nm的多层石墨管构成。
1993年又发现了单臂碳纳米管(SWNT)]2[以来,碳纳米管(CNT)作为一种新型的纳米材料,以其独特的物理、化学特征,重要的基础研究意义及在分子电子器件和复合材料等众多领域的潜在应用价值,而引起了世界各国科学家的极大关注,成为纳米材料领域研究的一个新热点。
对它的应用研究主要集中在复合材料、氢气存储、电子器件、电池、超级电容器、场发射显示器、量子导线模板、电子枪及传感器和显微镜探头等领域,已经取得许多重要进展]53[ 。
1、结构碳纳米管(carbon nanotubes,CNTs),又称巴基管(buckytube),属于富勒碳系,是一维量子材料,是在C60不断深入研究中发现的。
碳纳米管是由单层或多层石墨片围绕同一中心轴按一定的螺旋角卷曲而成的无缝纳米级管结构,两端通常被由五元环和七元环参与形成的半球形大富勒烯分子封住,每层纳米管的管壁是一个由碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形网络平面所围成的圆]6[。
碳纳米管根据碳管壁中碳原子层的数目可以分为单壁碳纳米管和多壁碳纳米管两大类。
Iijima]7[和IBM公司的Bethune]8[等分别采用Fe和Co作为催化剂掺杂在石墨电极中,用电弧放电法各自独立合成出单壁碳纳米管(SWNT),它由单层石墨卷成柱状无缝管而形成(见图1),是结构完美的单分子材料,因合成条件的不同碳纳米管的管径可控制在0.7-3nm,长度可达1-50um]9[;多壁碳纳米管(MWNT)是由多个不同直径的单壁碳纳米管同轴卷曲而成,层数从2-50不等,层间距一般为0.34 nm且层与层之间排列无序,通常多壁管直径为2-30 nm,长度为0.1-50um]10[。
碳纳米管的性质与应用

研究碳纳米管的发光性质从其发光位置着手 研究。单壁纳米碳管的发光是从支撑纳米碳管的 金针顶附近发射的,并且发光强度随发射电流的 增大而增强;多壁纳米碳管的发光位置主要限制 在面对着电极的薄膜部分,发光位置是非均匀的, 发光强度也是随着发射电流的增大而增强。碳纳 米管的发光是由电子在与场发射有关的两个能级 上的跃迁而导致的。研究表明单壁纳米碳管的光 吸收随压力的增大而减弱,其原因在于压力的变 化会导致纳米碳管对称性的改变。
碳纳米管的性质与应用
应化0804 报告人:赵 开
主要内容
碳纳米管的简介
碳纳米管的性质
碳纳米管的应用 碳纳米管的展望
碳纳米管的简介
碳纳米管(CNT)是碳的同素异形体 之一,是由六元碳环构成的类石墨平面卷 曲而成的纳米级中空管,其中每个碳原子 通过SP2杂化与周围3个碳原子发生完全键合。 碳纳米管是由一层或多层石墨按照一定方 式卷曲而成的具有管状结构的纳米材料。 由单层石墨平面卷曲形成单壁碳纳米管 (SWNT),多层石墨平面卷曲形成多壁碳 纳米管(MWNT)。
碳纳米管的展望
由于碳纳米管具有非常好的性能,其 尺寸又处于纳米级,因而具有很好的应用 前景,受到了多个领域研究者的广泛关注。 随着其应用研究的进展,势必引起一场科 技革命的新突破,并带动一系列相关高科 技产业的兴起与发展。在不久的将来,基 于碳纳米管的多种现代化产品将会真正进 入我们的生活,对社会的发展势必将起到 极大的推动作用。
碳纳米管在电磁学领域的应用:
碳纳米管具有良好的导电性,是一种可用于制备修饰 电极和电化学传感器的优良材料。将碳纳米管对传统电极 进行修饰可以降低氧化过电势,增加峰电流,从而改善分 析性能,提高方法选择性和灵敏度。因此,碳纳米管作为 修饰电极材料已广泛应用于分析化学领域。利用碳纳米管 的场致电子发射性能可用于制作平面显示装置,使之更薄、 更省电,从而取代笨重和低效的电视和计算机显示器。碳 纳米管的优异场发射性能还可使其应用于微波放大器、真 空电源开关和制版技术上,可用于大规模集成电路、超导 线材、超电容器,也可用于电池电极和半导体器件。碳纳 米管的直径比以往用的针尖小得多,用碳纳米管作为扫描 探针能大大提高其分辨率。利用碳纳米管的金属导电性和 半导体性能,碳纳米管还被用于制作分子级开关、半导体 器件等。
碳纳米管

3.热学性能
由于碳管具有非常大的长径比,因而大量热是沿着长 度方向传递的,通过合适的取向,这种管子可以合成高各 向异性材料。 即在管轴平行方向的热交换性能很高,但在其垂直方 向的热交换性能较低。适当排列碳纳米管可得到非常高的 各向异性热传导材料。
四、碳纳米管的制备
CNTs的制备方法有多种,主要有电弧法,激光 蒸发法,化学气象沉积法等方法。这些方法分别在 不同的实验条件下可以得到MWNT和SWNT。
基本原理: 电弧室充惰性气体保护, 两石墨棒电极靠近,拉起 电弧,再拉开,以保持电 弧稳定。放电过程中阳极 温度相对阴极较高,所以 阳极石墨棒不断被消耗, 同时在石墨阴极上沉积出 含有碳纳米管的产物。 理想的工艺条件:氦气为载气,气压 60—50Pa,电 流60A~100A,电压19V~25 V,电极间距1 mm~4mm, 产率50%。Iijima等生产出了半径约1 nm的单层碳管。
五、纳米管结构的表征:
扫描隧道显微镜 X射线衍射
电子显微镜
拉曼光谱
1.电子显微术
利用不同的电子显微术,可以非常详细地研究碳 纳米管结构,确定其生长机制,反过来又可以帮助人 们改进碳管的生长过程,或者去修饰他们的结构。 利用扫描电子显微镜(SEM)可以获得单壁碳纳 米管管束的图像。透射电子显微镜(TEM)对于碳纳 米管结构的研究更为有用。TEM是一种强有力的技术, 可以确定碳纳米管管壁的层数,还可以准确测量管径 和确定碳管结构中的缺陷。
饭岛澄男 S.Iijima
将这些针状产物在高分辨电子显微镜下观察, 发现该针状物是直径为4~30纳米,长约1微米,由 2个到50个同心管构成,相邻同心管之间平均距离 为0.34纳米。
单壁碳纳米管
多壁碳纳米管
进一步实验研究表明,这些纳米量级的微小管状结构是由碳 原子六边形网格按照一定方式排列而形成,或者可以将其想象成 是由一个六边形碳原子形成的平面卷成的中空管体,而在这些管 体的两端可能是由富勒烯形成帽子。这就是多壁纳米碳管。 在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的 纳米碳管,即单壁碳纳米管产物。
碳纳米管简介

缺陷,石墨化程度较低,常发生弯曲和变形,管端和管壁上包有催化剂颗粒
拓宽碳管的新应用领域,进一步提高其科技附加值
•
感 谢 阅 读
感 谢 阅 读
2023最新整理收集 do
碳纳米管简介
something
Presentation
工程试验1班
主讲:#### 组员:#######
碳纳米管
▪ 简介 ▪ 在1991年日本NEC公司基础
研究实验室的电子显微镜 专家饭岛(Iijima)在高分辨透 射电子显微镜下检验石墨 电弧设备中产生的球状碳 分子时,意外发现了由管 状的同轴纳米管组成的碳 分子,这就是碳纳米管 ▪ 现在被称作的“Carbon nanotube”,即碳纳米管,又 名巴基管
可用于制备高性能化和多功能性兼备的纳米复合材料 小尺寸特点决定了其聚合物复合材料可通过通用型聚合物加工设备进行生产
➢ 生物、医药领域
利用其高强度和柔韧性制备人造肌肉、人造骨骼等 药物输运(drug delivery)
应用前景
应用前景
碳纳米制造“太空电梯”
或许有一天我们会沿着超轻超强的碳纳米管 电缆,搭乘太空电梯上太空观光旅行。
无论采用何种生产工艺,所得产物均为碳管与杂质的混合物,分离与提纯是必要工艺 采用目前生产技术制备的碳纳米管无一例外的都是金属型和半导体型的混合物,合成
选择性较差 优化目前的生产、分离和提纯工艺同时开发新的合成技术以解决上述问题 优化和发展新的催化体系以实现碳管的选择性合成,不仅能提高碳管的品质而且有望
CNTs-碳纳米管简介

简介
碳纳米管(carbon nanotubes, CNTs) 于1991年由NEC(日本电气)筑波研 究所的饭岛澄男(Sumio Iijima)首次 以论文的形式报道出来的
文献一
单壁碳纳米管的首次介绍
文献二
图示
图片来源:刘剑洪,吴双泉,碳纳 米管结构及其应用,深圳大学理工 学报,2013
分析
1 、 碳纳米管可看成是由石墨片层绕管轴 ( tube axis )卷曲而成 , 不同的卷曲方式所 得的结构不同,其性质也会不同。 2 、卷曲时石墨片层中保持不变的六边形网 格与碳纳米管轴向之间可能会出现夹角即螺 旋角。 3 、螺旋角不同代表其旋转程度的不同,一 个纳米管的旋转由管轴和螺旋角两者决定。 4 、碳纳米管的封口通常有曲面、多边形或 锥型面所完成。(一般为五边形与七边形的 组合)
图9 展开的碳纳米管
分析
1、作者不认为是蛋卷型结构,理由如下: 如果是这种蛋卷结构,那么这种细管会有覆盖边缘存在(edge overlaps on their surfaces),但实验中并没有观察到)。 2、在不同的管形貌观察中,作者提出了一个纳米管生长的模型,即:每个纳米 管在根部开始各自独立的螺旋生长,但其具体的生长机理是未知的,但可肯定的 是它与传统的螺旋位错是不一样的,因为它有圆柱状的点阵。 3、目前也还无法得到具有清晰横截面的多壁碳纳米管试样。
分析
图9 通过电子显微镜看到的图像 (图中黑色为Fe3C等杂质) 由图可知纳米管通常聚集一起呈捆状(由于范德华力的作用),但孤立、单独的 纳米管同样存在。
分析
图10 纳米管直径大小统计
1 、在电子显微镜下挑选了 60 根纳米管,对他们的直径进行了了统计,发现在 0.8nm和1.05nm周围的数量较多; 2、右图对一根直径为1.37nm的纳米管进行电子衍射。
碳纳米管的性能及其在海水淡化中的应用

碳纳米管的性能及其在海水淡化中的应用摘要碳纳米管是近年来国内外广泛关注的一类纳米材料,具有一维特征孔道结构,能够有效促进液体分子的传输速率,是理想的海水淡化膜分离材料。
通过将其引入到常用的海水淡化膜基质中,借以提高膜的分离性能,逐渐成为膜分离领域的一个研究热点。
结了碳纳米管在反渗透、正渗透、膜蒸馏中的应用研究现状并分析了碳纳米管在反渗透、正渗透、膜蒸馏应用中的挑战,探讨了碳纳米管在海水淡化膜分离材料中的应用潜力。
1碳纳米管的结构与功能Kroto和Smalley于1985年首次发现了碳纳米管,直到1991年,由Iijima首次成功制备了碳纳米管。
碳纳米管是一种由单层或多层石墨烯同轴缠绕而成的柱状或层套状的管状物,碳原子以sp2杂化为主并混有sp3杂化。
碳纳米管性能优异,在微电子、生物医药和聚合物复合材料加固等方面应用潜力巨大。
碳纳米管具有独特的本征空腔结构,输水能力超强,水分子在碳纳米管中的传输速度比理论计算的高出几个数量级。
Hummer等采用分子动力学模拟水分子在碳纳米管中的流动行为,并提出了水分子在碳纳米管中的快速输送机理:首先,水分子在碳纳米管内部形成强力、规则的氢键,利于水分子快速通过;其次,碳纳米管内腔疏水、无极性,与水分子之间的相互作用非常弱,水分子能够无摩擦地通过碳纳米管。
Thomas等通过研究水分子在不同直径和长度的碳纳米管内的传输动力学,证明碳纳米管的内径对水分子的传输速度起决定作用。
随着内径的增大,水分子在碳纳米管中的构型逐渐由线性链变为堆叠五边形和六边形,最后成为无规则水流(见图1)。
当碳纳米管内径为0.83nm时,水分子成线性链,流速达到最大。
脱盐效果优异是碳纳米管在膜分离技术应用中的另一个重要性能。
碳纳米管的内径和尺寸排阻效应与毛细管行为的临界尺寸相当,能够在内壁形成能垒,只允许水分子通过,而水合离子则需要克服能垒后通过。
碳纳米管的内径对离子截留率的影响至关重要,当内径由0.66nm增大到0.93nm时,脱盐率由100%降低到95%。
碳纳米管简介

加强基础研究和创新能力
深入研究结构与性能关系
进一步揭示碳纳米管的微观结构和性 能之间的关联,为新应用提供理论支 持。
探索新的合成方法
加强跨学科合作
与化学、物理、生物等学科进行交叉 合作,拓展碳纳米管的应用领域。
开展新合成方法的研究,实现碳纳米 管的绿色合成和可控合成。
建立产业联盟和创新平台
促进产学研合作
导电材料
碳纳米管具有优异的导电性能,可作为复合材料的导电填料,提高材料的导电性能。
半导体领域
晶体管
碳纳米管具有优异的半导体性能,可 用于制造高性能晶体管,提高集成电 路的性能和集成度。
传感器
碳纳米管具有较高的化学敏感性和光 电响应性,可用于制造高性能传感器 ,用于环境监测、生物医学等领域。
纳米电子领域
碳纳米管的应用领域
电池领域
电池电极材料
碳纳米管具有优异的导电性能和比表 面积,可作为高性能电池电极材料, 提高电池的能量密度和充放电效率。
电池隔膜材料
碳纳米管具有较高的机械强度和化学 稳定性,可用于制造高性能电池隔膜 ,提高电池的安全性和稳定性。
复合材料领域
增强材料
碳纳米管具有优异的力学性能和化学稳定性,可作为复合材料的增强剂,提高材料的强度和韧性。
化学反应性
碳纳米管具有较高的化学反应性,可以在高温下与多种氧化剂反应,也可以在催化剂的作 用下进行加氢反应。此外,碳纳米管还可以通过表面修饰改性来提高其化学反应性和相容 性。
表面基团
碳纳米管的表面可以含有多种基团,如羧基、羟基、羰基和环氧基等。这些基团的存在会 影响碳纳米管的化学反应性和相容性。
稳定性
碳纳米管简介
汇报人: 2023-12-15
多壁碳纳米管表面基团_理论说明

多壁碳纳米管表面基团理论说明1. 引言1.1 概述多壁碳纳米管(Multi-Walled Carbon Nanotubes,简称MWCNTs)是一种具有特殊结构和优异性能的纳米材料。
它们由许多同心圆形套筒状的碳纳米管层级组成,其外径和内径可以在纳米尺度范围内调控。
MWCNTs因其高比表面积、优良导电性、机械强度和化学稳定性等特点,在各个领域引起了广泛的关注和研究。
1.2 文章结构本文主要围绕多壁碳纳米管表面基团展开详细讨论。
首先介绍了多壁碳纳米管及其相关概念,进而对表面基团及其意义进行阐述。
接下来,对多壁碳纳米管表面基团的分类与特性进行了系统总结。
然后,对多壁碳纳米管表面基团的制备方法进行了综述,包括化学修饰方法、物理修饰方法和生物修饰方法。
最后,对多壁碳纳米管表面基团在催化剂载体应用、电化学传感器应用和药物传递系统应用等方面的研究进展进行了综合评述。
通过对这些内容的分析和总结,旨在揭示多壁碳纳米管表面基团的重要性以及其在各个应用领域的潜力。
1.3 目的本文旨在从理论角度对多壁碳纳米管表面基团进行深入解析,并综述其制备方法以及在不同应用领域的研究进展。
通过对相关文献的综合分析和整理,为读者提供一个全面了解多壁碳纳米管表面基团特点和应用价值的参考资料。
同时,本文也可为后续研究提供一定的指导,促进学术界对于多壁碳纳米管表面基团领域的深入探索与发展。
2. 多壁碳纳米管表面基团的定义和特性2.1 多壁碳纳米管的基本介绍多壁碳纳米管是由多层同心圆筒结构组成的纳米材料,每个同心圆筒都是一个独立的单壁碳纳米管。
它们具有较大的比表面积、优异的机械性能和独特的电学特性,在多个领域具有广泛应用潜力。
2.2 表面基团的概念及其意义表面基团指附着在材料表面上的化学官能团或小分子,可以通过与周围环境相互作用来调控材料的性质和功能。
对于多壁碳纳米管而言,表面基团可以改变其电荷状态、增强其稳定性、调节其溶解度以及改善其与其他物质之间的相互作用等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳纳米管产品简介
碳米碳管(Carbon nanotube)是1991年才被发现的一种碳结构。
理
想纳米碳管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体。
石
墨烯的片层一般可以从一层到上百层,含有一层石墨烯片层的称为单壁
纳米碳管,多于一层的则称为多壁纳米碳。
由于巨大的长径比(径向尺
寸在纳米量级,轴向尺寸在微米量级),碳纳米管表现为典型的一维量
子材料,碳纳米管具有超常的强度、热导率、磁阻,且性质会随结构的
变化而变化。
碳纳米管的结构为完整的石墨烯网格,是已知最硬的分子材料,并
具有良好的柔韧性。
杨式模量超过1Tpa (铝只有70GPa 碳纤维为700 GPa),强度重量比
是铝的500倍。
理论预计其强度为钢的100倍,密度只有钢的1/6 。
期望失效拉伸率为20-30%,抗拉强度高于100Gpa。
最大拉伸率比任何金属都高10%。
此外,碳纳米管还拥有优越的导热、导电性能,在轴向热导率可达3000 W/mK,电导率比铜高6个数量级,而且具有很高的电流负载量。
其纳米级发射尖端、大长径比、高强度、高韧性、良好的热稳定性和导电性,是理想的场致发射材料。
由此可见,碳纳米管的应用前景,特别是在微电子、复合材料方面的巨大潜力是难以估量的。
正如诺贝尔奖获得者Smalley所说:“碳纳米管将是价格便宜、环境友好并为人类创造奇迹的新材料”。
总之,碳纳米管本身所拥有的潜在的优越性,决定了它无论在化学还是在材料科学领域都将具有广阔的应用前景。
公司利用高效纳米催化的专利技术,已开发出高纯度高品质的碳纳米管产品,领业界风骚,并致力于纳米材料在各方面的应用开发。
单壁碳纳米管产品说明
产品名称:
单壁碳纳米管
单壁碳纳米管是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。
它主要由呈六边形排列的碳原子构成一层圆管。
基本物性:
项目指标
管径1~2nm
长度10~20μm
纯度>90wt%
外观黑色粉末
比表面积>450m2/g
电导率>10-2s/cm
热导率各向异型:轴向2800W/mK
应用领域:
应用尺
度
应用领域具体用途
微观纳米制造技术扫描探针、纳米钳、纳米称、纳米机电纳电子学纳米晶体管、纳米导线、纳米开关生物工程生物传感器
医药纳米胶囊
化学纳米反应器、化学传感器
宏观复合材料增强塑胶、金属、陶瓷;导电复合材料储能锂离子电池、储氢材料
电子源X射线源、场发射电子源
电子屏蔽EMC材料、雷达吸波材料涂层耐磨涂层、生物涂层
磁性材料存储器
散热介质换热器
测试图片:
STM
Raman TGA
安全注意事項:
参考物质安全资料表。
以上资料经查具有适当的正确性,但是本公司不担负保证责任,不负责引用资料所造成的损害。
多壁碳纳米管产品说明
产品名称:
多壁碳纳米管是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。
它主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。
层与层之间保持固定的距离,约0.34nm。
应用领域:
应用尺
度
应用领域具体用途
微观纳米制造技术扫描探针、纳米钳、纳米称、纳米机电纳电子学纳米晶体管、纳米导线、纳米开关生物工程生物传感器
医药纳米胶囊
化学纳米反应器、化学传感器
宏观复合材料增强塑胶、金属、陶瓷;导电复合材料储能锂离子电池、储氢材料
电子源X射线源、场发射电子源
电子屏蔽EMC材料、雷达吸波材料涂层耐磨涂层、生物涂层
磁性材料存储器
散热介质换热器
20~40nm多壁碳纳米管
基本物性:
项目指标
管径20~40nm
长度10~20μm
纯度>95wt%(未提纯)
外观黑色粉末
比表面积>230m2/g
>360m2/g(气流磨处理)
电导率>10-2s/cm
热导率各向异型:轴向2800W/mK
测试图片:
TEM STM
1000
1200140016001800
50100
150
200
250
300
I n t e n s i t y
Raman Shift(cm -1
)
TGA
Raman
20406080
50100150200250
300350I n t e n s i t y
2Theta(o
)
XRD
10~20nm多壁碳纳米管
基本物性:
项目指标
管径10~20nm
长度10~20μm
纯度>95wt%
外观黑色粉末
比表面积>300m2/g
电导率>10-2s/cm
热导率各向异型:轴向2800W/mK 测试图片:
TEM
8~15nm多壁碳纳米管
基本物性:
项目指标
管径8~15nm
长度5~10μm
纯度>90wt%
外观黑色粉末
比表面积>400m2/g
电导率>10-2s/cm
热导率各向异型:轴向2800W/mK
测试图片:
TEM Raman
SEM
小管径多壁碳纳米管
基本物性:
项目指标
管径<8nm
长度5~10μm
纯度>90wt%
外观黑色粉末
比表面积>500m2/g
电导率>10-2s/cm
热导率各向异型:轴向2800W/mK
测试图片:
TEM
安全注意事項:
参考物质安全资料表。
以上资料经查具有适当的正确性,不负责引用资料所造成的损害。