(完整版)信号与系统复习题
信号与系统复习题

信号与系统试题库一、填空题绪论:1.离散系统的激励与响应都是____离散信号 __。
2.请写出“LTI ”的英文全称___线性非时变系统 ____。
3.单位冲激函数是__阶跃函数_____的导数。
4.题3图所示波形可用单位阶跃函数表示为()(1)(2)3(3)t t t t εεεε+-+---。
5.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为____02()t t δ-_________。
6. 线性性质包含两个容:__齐次性和叠加性___。
7. 积分⎰∞∞-ω--δ-δdt )]t t ()t ([e 0t j =___01j t e ω--_______。
8.已知一线性时不变系统,当激励信号为f(t)时,其完全响应为(3sint-2cost )ε(t);当激励信号为2f(t)时,其完全响应为(5sint+cost)ε(t),则当激励信号为3f(t)时,其完全响应为___7sint+4cost _____。
9. 根据线性时不变系统的微分特性,若:f(t)−−→−系统y f (t) 则有:f ′(t)−−→−系统_____ y ′f (t)_______。
10. 信号f(n)=ε(n)·(δ(n)+δ(n-2))可_____δ(n)+δ(n-2)_______信号。
11、图1所示信号的时域表达式()f t =()(1)(1)tu t t u t --- 。
12、图2所示信号的时域表达式()f t =()(5)[(2)(5)]u t t u t u t +----。
13、已知()()()2f t t t t εε=--⎡⎤⎣⎦,则()f t '=()(2)2(2)u t u t t δ----。
14、[]2cos32td ττδτ-∞⎛⎫+ ⎪⎝⎭⎰=8()u t 。
15、[]()1td τδττ-∞'-⎰=()()u t t δ+。
信号与系统复习试题(含答案)

76.某二阶LTI系统的频率响应H (j)
A.y2y3y
B。y3y2yf2
D。y3y2yf
H(s)的共轭极点在虚轴上,则它的
2,-1,H ()1,则系统函数H(s)为(
C。(s1)(s2)
(t)的傅氏变换是(
B。j(
D。j(2
A.系统在(t)作用下的全响应
C.系统单位阶跃响应的导数
6。对于一个三阶常系数线性微分方程描述的连续时间系统进行系统的时域模拟时,所需积
分器数目最少是__3个_____个。
7。一线性时不变连续因果系统是稳定系统的充分且必要条件是系统函数的极点位于S平面
的___左半平面_______。
8.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为
其中x(0)是初始状态,
f(t)为激励,y(t)为全响应,试回答该系统是否是线性的?[答案:非线性]
2.y'(t)sinty(t)f(t)试判断该微分方程表示的系统是线性的还是非线性的,
是时变的还是非时变的?[答案:线性时变的]
3.已知有限频带信号f(t)的最高频率为100Hz,若对f(2t)*f(3t)进行时域取样,
B。f(t)f(t8)
12
C.f(t)f(t8)
D。f(t3)f(t1)
69.已知一连续系统在输入f(t)的作用下的零状态响应为yzs(t)f(4t),则该系统为()
70.已知f(t)是周期为T的函数,f(t)-f (t
T)的傅里叶级数中,只可能有(
71.一个线性时不变的连续时间系统,其在某激励信号作用下的自由响应为(e
h(t)=(1et)(t),则其系统函数
15.已知一信号f(t)的频谱F(j)的带宽为,则f(2t)的频谱的带宽为
(完整word版)信号与系统专题练习题及答案

信号与系统专题练习题一、选择题1.设当t 〈3时,x(t)=0,则使)2()1(t x t x -+-=0的t 值为 C 。
A t>-2或t>-1 B t=1和t=2 C t>—1 D t 〉-22.设当t 〈3时,x (t)=0,则使)2()1(t x t x -⋅-=0的t 值为 D 。
A t>2或t 〉-1 B t=1和t=2 C t>—1 D t>—23.设当t<3时,x(t )=0,则使x (t/3)=0的t 值为 C 。
A t>3 B t=0 C t<9 D t=34.信号)3/4cos(3)(π+=t t x 的周期是 C 。
A π2 B π C 2/π D π/2 5.下列各表达式中正确的是 BA. )()2(t t δδ= B 。
)(21)2(t t δδ= C. )(2)2(t t δδ= D 。
)2(21)(2t t δδ=6. 已知系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B . A 线性时不变系统 B 线性时变系统 C 非线性时不变系统 D 非线性时变系统 7。
已知 系统的激励e(t )与响应r (t)的关系为:)()(2t e t r = 则该系统为 C .A 线性时不变系统B 线性时变系统C 非线性时不变系统D 非线性时变系统8。
⎰∞-=t d ττττδ2sin )( A 。
A 2u (t ) B )(4t δ C 4 D 4u (t) 10. dt t t )2(2cos 33+⋅⎰-δπ等于 B 。
A 0 B —1 C 2 D —211.线性时不变系统输出中的自由响应的形式由 A 决定A 系统函数极点的位置;B 激励信号的形式;C 系统起始状态;D 以上均不对。
12.若系统的起始状态为0,在x (t)的激励下,所得的响应为 D . A 强迫响应;B 稳态响应;C 暂态响应;D 零状态响应。
信号与系统复习题

一、选择题 1.积分(cos )(1)d t t t t t t π∞∞-∞-∞+δ-=0δ-=⎰⎰的值为 .. A. )(3t etδ-B.1C.)1(-t δD.02.积分⎰∞∞-+dtt t )()1(δ的值为A.4B.3C.2D.1 3.()()[]=*-t t e dtd tεε2 A.()t δ B.()t e tε2- C.()t δ2- D.t e 22-- 4、信号)()(2t e t f tε=的拉氏变换及收敛域为 ..B.2]Re[,21)(-<-=s s s FC. 2]Re[,21)(->+=s s s F D.2]Re[,21)(<+=s s s F 5. 信号ft=εt*δt -δt -4的单边拉氏变换Fs= .. A.s1B.4s 1s 1+-D.se -4s6.某一因果线性时不变系统;其初始状态为零;当输入信号为εt 时;其输出rt 的拉氏变换为Rs;问当输入r 1t=εt -1-εt -2时;响应r 1t 的拉氏变换R 1s= .. A.e-s-e-2sRs B.Rs-1-Rs-2 C.2-s 11-s 1-Rs D.Rs s )e -(e -2s -s 7.已知信号ft 的波形如下图所示;则ft 的表达式为 ..A.)1()()(--=t u t u t fB.)1()()(-+=t u t u t fC.)1()()(+-=t u t u t fD.)()1()(t u t u t f -+= 8.求信号)()52(t u etj +-的傅里叶变换 ..A.ωω521j e j +C.)5(21-+-ωj D.ωω251j e j +t9.)2)(1()2(2)(-++=s s s s s H ;属于其极点的是 ..A.1B.2C.0D.-210.已知信号ft 的频带宽度为Δω;则f 3t -2的频带宽度为 .. A.3Δω B.13Δω C.13Δω-2 D.13Δω-6 11. 系统的线性性质是指系统要同时具有 .. A 、叠加性和时延性B 、齐次性和时延性C 、叠加性和因果性D 、叠加性和齐次性12.已知G τt ↔Y jω=τSa 2ωτ;则ft=G 2t-1↔Fjω为 .. A.Fjω=Saωe jωB.Fj ω=Sa ωe-j ωC.Fjω=2Saωe jωD.Fjω=2Saωe -jω13.已知某一线性时不变系统;当激励信号为xt 时;对应的零状态响应为4dtt dx )2(-;则该系统函数H jw= .. A.4)(ωF B.4ωωj ej 2- C.4ωj e2-/ω D.4ωωj e X 2)(-14.下列叙述正确的是 ..A. ft 为周期奇函数;则其傅里叶级数只有正弦分量..B.ft 为周期偶函数;则其傅里叶级数只有余弦偶次谐波分量..C.ft 为周期奇函数;则其傅里叶级数只有奇次谐波..D. ft 为周期偶函数;则其傅里叶级数只有偶次谐波.. 15.若矩形脉冲信号的宽度加宽;则它的频谱带宽 .. A.不变B. 变窄C. 变宽D. 与脉冲宽度无关16.设信号ft 为包含0~10Hz 的频带有限信号;则f2t 的奈奎斯特频率..A.20HzB.40HzC.10HzD.30Hz 17.理想低通滤波器的传输函数)(ωj H 是 .. A.0t j Keω- B.)]()([0C C t j u u Keωωωωω--+- C.)]()([0C C tj u u Ke ωωωωω--+-18.离散信号f 1k 和f 2k 的如下图所示;设yk =f 1k *f 2k ;则y 2等于 .. A.1 B.2 C.3 D.5(k)f 1k-1-2-121231(k)f 1k-1-2-12123219.下图所示信号中; 是非因果信号..A. B.C. D.20.下图所示信号中; 是抽样信号..A. B.C. D.21.下列表达式错误的是 .. A.()()dt t t u ⎰+∞∞-=δB.()()t u t ,=δC.()()t g t h ,=D.()()t t δδ=-22.设:ft ↔F ω=ωωj 2e 0t j +;则ft 为 ..A.ft=e )(20t t +-ut B.ft=e)(20t t --ut+t 0C.ft=e)(20t t --ut-t 0 D.ft=e)(20t t +-ut+t 023.36.信号 f5-3t 是 .. A . f3t 右移 5B. f3t 左移 C . f-3t 左移 5D. f-3t 右移 5/324.下列说法不正确的是 ..A.H s 在左半平面的极点所对应的响应函数为衰减的..即当t →∞时;响应均趋于0..B. H s 在虚轴上的一阶极点所对应的响应函数为稳态分量..C. H s 在虚轴上的高阶极点或右半平面上的极点;其所对应的响应函数都是递增的..D.H s 的零点在左半平面所对应的响应函数为衰减的..即当t →∞时;响应均趋于0.. 25.()()[]='*-t u t u et2 .. A -2()t u et2- B ()t u C ()t u e t 2- D ()()t t u e t δ+-226.一非周期连续信号被理想冲激取样后;取样信号的频谱F s jω是 ..A.离散频谱B.连续周期频谱C. 连续频谱D.不确定;要依赖于信号而变化 27.下列叙述正确的是 ..A. ft 为周期奇函数;则其傅里叶级数只有正弦分量..B.ft 为周期偶函数;则其傅里叶级数只有余弦偶次谐波分量..C.ft 为周期奇函数;则其傅里叶级数只有奇次谐波..D. ft 为周期偶函数;则其傅里叶级数只有偶次谐波.. 28.周期奇函数的傅里叶级数中;只可能含有 ..A.正弦项B.直流项和余弦项C.直流项和正弦项D.余弦项 29.)1()1()2(2)(22+++=s s s s H ;属于其零点的是 ..A. -1B. -2C. -jD. j30.若使信号经过线性系统不产生失真;则系统函数)(ωj H 为 .. A.0t j Ke ω- B.tj Ke0ω- C.00t j Keω-D.)]()([0c c t j u u Keωωωωω--+- 为常数、、、w 00K t c ωω31. 连续时间信号ft 的最高频率ωm =104π rad/s ;若对其取样;并从取样后的信号中恢复原信号ft ;则奈奎斯特间隔和所需低通滤波器的截止频率分别为 ..A.10-4s;104HzB.10-4s;5×103HzC.5×10-3s;5×103HzD.5×10-3s; 104Hz 32.以下是一些系统函数的收敛域;则其中稳定的是 .. A .|z| > 2 B .|z| < 0.5 C .0.5 < |z| < 2D .|z| < 0.933.已知某序列Z 变换的收敛域为∞>|z |>0;则该序列为 A.有限长序列 B.右边序列 C.左边序列 D.双边序列 34.已知某序列xn 的z 变换为z +z 2;则xn -2的z 变换为A. 45z z +B. 222---z zC. z z +2D. 11+-z35. 若对ft 进行理想取样;其奈奎斯特取样频率为f s ;则对)3(t f 进行取样;其奈奎斯特取样频率为 .. A 、3f s B 、s f 31 C 、3f s -2 D 、)2(31-s f 36.函数ft 的图像如图所示;ft 为 ..A.偶函数B.奇函数C.奇谐函数D.都不是37. 欲使信号通过线性系统不产生失真;则该系统应具有 .. A.幅频特性为线性;相频特性也为线性; B. 幅频特性为常数;相频特性为线性; C. 幅频特性为线性;相频特性为常数;38. 已知某一线性时不变系统;当激励信号为xt 时;对应的零状态响应为4dtt dx )2(-;则该系统函数H jw= ..A.4)(ωFB.4ωωj e j 2-C.4ωj e 2-/ωD.4ωωj e X 2)(- 39. δn 的Z 变换是 ..A. 1B.δωC.2πδωD.2π40. 一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包含 .. A .单位圆B .原点C .实轴D .虚轴二、填空题 1、 2,2)(>-=z z zz X 的逆Z 变换=)(n x .. 2、 按信号是否可以用确定的时间函数来表示;可以分为 和 .. 3、 系统对信号进行无失真传输时应满足的条件之一是系统的幅频特性在整个频率范围内应为 ..4、 如果系统在激励信号作用之前不产生响应;称这样的系统具有 性..5、 如图系统;已知)()(),1()(21t u t h t t h =-=δ;系统的冲激响应h t =..6、 设有周期方波信号f t ;其脉冲宽度τ = 1ms;该信号的频带宽度带宽为________ ;若τ压缩为0.2ms;其带宽又为________..7、 若已知f 1t 的拉氏变换F 1s=s1 ;则ft=f 1t* f 1t 的拉氏变换Fs= _________________. 8、 冲激信号与阶跃信号之间的关系是 ..9、 如果一线性时不变系统的输入为ft;零状态响应为yt=2ft-t 0;则该系统的单位冲激响应ht 为_________________.10、 周期信号的频谱具有离散性、 和 .. 11、 将高频信号频谱搬移到低频0=ω附近;这一过程称为 .. 12、 )()(21t f t f 、波形如下图所示;则)()(21t f t f *的波形为______ __..13、如果一线性时不变系统的单位阶跃响应为st;则该系统的单位冲激响应h t 为_________. 14、函数)5)(2()6(+++s s s 的拉普拉斯反变换的初值与终值分别为_____和 ..15、如果一线性时不变系统的单位冲激响应h t= u t;则当该系统的输入信号f t=u t-2时;其零状态响应为________ _________..16、按信号是否在所有时间点上连续;可以分为_______和________..17、函数()3-t δ 的单边拉氏变换Fs 等于 .. 18、将低频信号频谱搬移到高频附近;这一过程称为 .. 19、系统函数)1)(1()2(2)(2+++=s s s s H ;其极点为 .. 20、利用信号的各种对称性;下图所示信号的傅里叶级数所包含的分量形式分别为 ..21、信号)1(2)1(5---t u e t 的拉普拉斯变换为 ..22、离散信号)6()2()(---=n u n u n f 的波形为..23、设有周期方波信号f t ;其脉冲宽度τ = 1ms;该信号的频带宽度带宽为________ ;若τ压缩为0.2ms;其带宽又为________.. 24、函数)5)(2()6(+++s s s 的拉普拉斯反变换的初值与终值分别为_____和 ..25、)(2n u n的Z 变换为 ;收敛域为 .. 三、判断题1、 非周期信号的频谱是离散谱 ..2、 单位冲激样值函数)(n δ 在n=0时;值为无穷大..3、 信号绝对可积;该信号一定存在傅氏变换..4、 周期脉冲的脉冲宽度与带宽成正比..5、 信号周期 T 0越大;w 0就越小;则谱线越密..6、 两个周期信号之和一定是周期信号..7、Xz 的表达式可以唯一确定原函数xn..8、单位冲激响应是由单位冲激信号引起的全响应..9、提高信号的传输速率以牺牲信号带宽为代价.. 10、抽样信号是数字信号.. 11、任何信号都可以分解为偶分量与奇分量之和..12、连续周期信号的频谱是离散谱.. 13、两个周期信号之和一定是周期信号.. 14、任意周期信号的傅里叶级数都存在.. 15、)(s H 极点在s 平面的左半平面;该系统稳定.. 16、信号在时域内压缩;则对应的频域压缩;时域展宽;则频域展宽.. 17、左边序列的收敛域为圆外.. 18、差分方程的特解只与自由项有关.. 19、系统函数Hs 是系统的零输入响应的拉氏变换与输入信号的拉氏变换之比.. 20、冲激偶函数是偶函数.. 四、计算题1、 知一线性时不变连续时间系统的单位冲激响应)()(0t t t h -=δ;若)(t f 的傅里叶变换为ωωj F +=32)( ;用频域分析法求当输入为)1()(-+t f t f 时系统的零状态响应)(t y ..2、 已知⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧===↑↑1,2,3)(,1,2,3,4)(0021n n n x n x ;试用不进位相乘法求)(*)()(21n x n x n y =..3、离散信号fk 如下图所示;求yk = f 2k * fk ;并绘出的yk 图形..(k)f 0.5k2113465(2k )f 0.5k21134图J3.7-1图J3.7-24、设有序列f 1 n 和f 2 n ;如下图所示;计算这两个序列的卷积..5、已知某离散系统由下面的差分方程描述)1()()2(4)1(4)(--=-+-+n x n x n y n y n y若给定)()(n u n x =及y0=1、y1=2;试求yn..6、设系统差分方程为)()2(6)1(5)(n f n y n y n y =-+-- 起始状态y -1 = 3;y -2 = 2;当f n = 2u n 时;求系统的响应y n ..7、已知一因果LTI 系统如图 a 所示;求:1描述系统的微分方程;2系统函数Hs 和单位冲激响应ht ;8、如下图所示系统;()()()ωωωj H j H F 21、、均给定;试画出()()()ωωω21Y Y Y 、、的频谱图..9、如下图所示系统;()()ωωjH F 、均给定;写出y 1t 、y 2t 的频谱函数 ()()ωω21Y Y 和;并画出它们的频谱图..10、描述某一线性时不变系统的微分方程为()()()()t f t y t y t y '=+'+''65;当()10='-y ;y 0-=2;ft =u t 时;试用拉式变换法求系统的全响应..。
信号与系统题库(完整版)

信号与系统题目部分,(卷面共有200题,0.0分,各大题标有题量和总分) 一、选择题(7小题,共0.0分)[1]题图中,若h '(0)=1,且该系统为稳定的因果系统,则该系统的冲激响应()h t 为。
A 、231()(3)()5tt h t e e t ε-=+- B 、32()()()tt h t e e t ε--=+C 、3232()()55tt e t e t εε--+D 、3232()()55tt e t e t εε--+-[2]已知信号x[n]如下图所示,则x[n]的偶分量[]e x n 是。
[3]波形如图示,通过一截止角频率为50rad sπ,通带内传输值为1,相移为零的理想低通滤波器,则输出的频率分量为() A 、012cos 20cos 40C C t C t ππ++ B 、012sin 20sin 40C C t C t ππ++ C 、01cos 20C C t π+ D 、01sin 20C C t π+[4]已知周期性冲激序列()()T k t t kT δδ+∞=-∞=-∑的傅里叶变换为()δωΩΩ,其中2TπΩ=;又知111()2(),()()2T T f t t f t f t f t δ⎛⎫==++⎪⎝⎭;则()f t 的傅里叶变换为________。
A 、2()δωΩΩ B 、24()δωΩΩ C 、2()δωΩΩ D 、22()δωΩΩ[5]某线性时不变离散时间系统的单位函数响应为()3(1)2()kkh k k k εε-=--+,则该系统是________系统。
A 、因果稳定B 、因果不稳定C 、非因果稳定D 、非因果不稳定 [6]一线性系统的零输入响应为(23kk --+)u(k), 零状态响应为(1)2()k k u k -+,则该系统的阶数A 、肯定是二阶B 、肯定是三阶C 、至少是二阶D 、至少是三阶 [7]已知某系统的冲激响应如图所示则当系统的阶跃响应为。
信号与系统复习题

信号与系统期末复习题一、填空题1.描述线性非时变连续系统的数学模型是_微分方程______________________________。
2.离散系统的激励与响应都是___离散时间信号_____。
4.请写出“LTI ”的英文全称___线性时不变____。
5.若信号f(t)的FT 存在,则它满足条件是_____________________。
8、周期信号的频谱是离散的,频谱中各谱线的高度,随着谐波次数的增高而逐渐减小,当谐波次数无限增多时,谐波分量的振幅趋向于无穷小,该性质称为__收敛性____ 9、若某信号)(t f 的最高频率为3kHz ,则)3(t f 的奈奎斯特取样频率为 18 kHz 。
10、某系统的频率特性为23)(3)(2+++=ωωωωj j j j H ,则其冲激响应为h(t)= )()3(2t e e tt ε--- 。
11、=*)(3)(2n n n n εε )()23(11n n n ε++- 。
12、已知1)(2-=z z z F ,则f(n)= )(])1(1[21n nε-- 。
13、某LTI 连续系统的输入信号为)()(2t e t f t ε-=,其冲激响应)()(t t h ε=,则该系统的零状态响应为)(n y zs 为)(]1[212t e t ε-- 。
14.(4分)()()u t u t *= t u (t )[][]u n u n *= (n +1)u [n +1]=(n +1) u [n ]15.(4分)已知信号f (t )= Sa (100t )* Sa (200t ),其最高频率分量为f m = 50/π Hz ,奈奎斯特取样率f s = 100/π Hz 16.(4分)已知F )()]([ωj F t f =,则F 3[()]j tf t e = [(3)]F j ω-F()(2)n f t t n δ∞=-∞⎡⎤-⎢⎥⎣⎦∑= 1[()]2n F j n ωπ∞=-∞-∑17.(2分)设某因果离散系统的系统函数为az zz H +=)(,要使系统稳定,则a 应满足 | a | < 118.(2分)已知某系统的频率响应为3()4j H j e ωω-=,则该系统的单位阶跃响应为 4 u (t -3)19.(3分)已知某系统的系统函数为2()1H s s =+,激励信号为()3cos 2x t t =,则该系统的稳态响应为()2(arctan 2)y t t =- 20.(3分)已知)2)(21()(--=z z z z X ,收敛域为221<<z ,其逆变换为 21()[]2[1]32n n u n u n ⎡⎤-+--⎢⎥⎣⎦二、选择题1.连续信号)(t f 与)(0t t -δ的卷积,即=-*)()(0t t t f δ(a) )(t f (b) )(0t t f - (c) )(t δ (d) )(0t t -δ 2.连续信号)(t f 与)(0t t -δ的乘积,即=-)()(0t t t f δ(a) )()(0t t f δ (b) )(0t t f - (c) )(t δ (d) )()(00t t t f -δ 3.线性时不变系统的数学模型是(a) 线性微分方程 (b) 微分方程 (c) 线性常系数微分方程 (d) 常系数微分方程4.若收敛坐标落于原点,S 平面有半平面为收敛区,则(a) 该信号是有始有终信号 (b) 该信号是按指数规律增长的信号 (c) 该信号是按指数规律衰减的信号(d) 该信号的幅度既不增长也不衰减而等于稳定值,或随时间n t t ,成比例增长的信号 5.若对连续时间信号进行频域分析,则需对该信号进行 (a) LT (b) FT (c) Z 变换 (d) 希尔伯特变换 6.无失真传输的条件是(a) 幅频特性等于常数 (b) 相位特性是一通过原点的直线 (c) 幅频特性等于常数,相位特性是一通过原点的直线(d) 幅频特性是一通过原点的直线,相位特性等于常数 7.描述离散时间系统的数学模型是(a) 差分方程 (b) 代数方程 (c) 微分方程 (d) 状态方程 8.若Z 变换的收敛域是 1||x R z > 则该序列是(a) 左边序列 (b)右边序列 (c)双边序列 (d) 有限长序列 9.若以信号流图建立连续时间系统的状态方程,则应选(a) 微分器的输出作为状态变量 (b) 延时单元的输出作为状态变量 (c) 输出节点作为状态变量 (d)积分器的输出作为状态变量 10.若离散时间系统是稳定因果的,则它的系统函数的极点 (a) 全部落于单位圆外 (b) 全部落于单位圆上 (c) 全部落于单位圆内 (d) 上述三种情况都不对11、某LTI 系统的微分方程为)()(2)(t f t y t y =+',在f(t)作用下其零状态响应为t e -+1,则当输入为)()(2t f t f '+时,其零状态响应为: (a) t e -+2 (b) t e --2 (c) t e -+32 (d)1 12、某3阶系统的系统函数为ks s s ks s H ++++=32)(23,则k 取何值时系统稳定。
信号与系统复习题含答案完整版

信号与系统复习题含答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】(C ))(t δ+(-6e -t +8e -2t)u(t) (D )3)(t δ +(-9e -t +12e -2t)u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A) 1 (B )2 (C )3 (D ) 48、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于10、信号()()23-=-t u te t f t的单边拉氏变换()s F 等于二、填空题(共9小题,每空3分,共30分) 1、 卷积和[()k+1u(k+1)]*)1(k -δ=________________________2、 单边z 变换F(z)= 12-z z的原序列f(k)=______________________ 3、 已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、 频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、 单边拉普拉斯变换s s s s s F +++=2213)(的原函数 f(t)=__________________________6、 已知某离散系统的差分方程为)1(2)()2()1()(2-+=----kf k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、 已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dxx f t y 的单边拉氏变换Y(s)=______________________________ 8、描述某连续系统方程为 该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三(8分)已知信号()()()⎪⎩⎪⎨⎧><==↔./1,0,/1,1s rad s rad jw F j F t f ωωω设有函数()(),dtt df t s =求⎪⎭⎫ ⎝⎛2ωs 的傅里叶逆变换。
信号与系统复习题

一、填空题(3*10=30′)1、信号e -2t ε(t)的傅里叶变换为 。
2、已知信号f 1(t ),f 2(t )的拉普拉斯变换为F 1(s), F 2(s)。
如果y(t)= f 1(t )* f 2(t ),则Y(s)= 。
3、若信号f(t)的傅里叶变换为F (jw),则f(3t-2) 傅里叶变换为 。
4、已知F(jω)=[δ(ω+ω0)-δ(ω-ω0)],则f (t )=_________。
5、已知f (t )=δ(t ),则其傅立叶变换F(jω)=_________。
6、已知f (t )的象函数32)(2-+=S S S S F ,则f(0+)=_______,f(∞)=________.7、f (t )=ε(t)的拉普拉斯变换为_________。
8、某系统差分方程为y(k-2)-5/6y(k-1)+ 1/6y(k)=f(k-1)+2f(k),则该系统函数为H(z)=_________,系统的频率响应函数H (jw e )=_______,9、信号()cos 2f t t π=是否是周期信号 (是或不是),周期= 。
10、已知信号f(t), 则()*()f t t δ = ; ()*(2)f t t δ-= 。
11、从信号频谱的连续性和离散性来考虑,周期信号的频谱是_______________。
12、有限频带信号f(t)的最高频率为100HZ,如果对信号f (2t)进行时域抽样,则最小抽样频率f s 等于13、若信号f (t )的拉普拉斯变换为F (s),则f(2t-3) 拉普拉斯变换为 。
14、已知f (t )的象函数F(S)=2232s s s +++,则f(0+)=_______,f(∞)=________.15、某LTI 的系统微分方程为y ″(t)+5y ′(t)+ 6y(t)=f ′(t)+2 f(t),则该系统的系统函数为H(s )=_________,频率响应函数H (jω)=_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统试题库一、填空题绪论:1。
离散系统的激励与响应都是____离散信号 __。
2.请写出“LTI ”的英文全称___线性非时变系统 ____。
3.单位冲激函数是__阶跃函数_____的导数. 4.题3图所示波形可用单位阶跃函数表示为()(1)(2)3(3)t t t t εεεε+-+---。
5.如果一线性时不变系统的输入为f(t ),零状态响应为y f (t )=2f (t —t 0),则该系统的单位冲激响应h (t )为____02()t t δ-_________。
6。
线性性质包含两个内容:__齐次性和叠加性___。
7。
积分⎰∞∞-ω--δ-δdt )]t t ()t ([e 0t j =___01j t e ω--_______。
8。
已知一线性时不变系统,当激励信号为f (t)时,其完全响应为(3sint-2cost )ε(t );当激励信号为2f (t )时,其完全响应为(5sint+cost )ε(t),则当激励信号为3f(t )时,其完全响应为___7sint+4cost _____。
9。
根据线性时不变系统的微分特性,若:f (t)−−→−系统y f (t)则有:f ′(t)−−→−系统_____ y ′f (t )_______。
10。
信号f (n )=ε(n )·(δ(n)+δ(n-2))可_____δ(n)+δ(n —2)_______信号。
11、图1所示信号的时域表达式()f t =()(1)(1)tu t t u t --- 。
12、图2所示信号的时域表达式()f t =()(5)[(2)(5)]u t t u t u t +----。
13、已知()()()2f t t t t εε=--⎡⎤⎣⎦,则()f t '=()(2)2(2)u t u t t δ----.14、[]2cos32t d ττδτ-∞⎛⎫+ ⎪⎝⎭⎰=8()u t 。
15、[]()1td τδττ-∞'-⎰=()()u t t δ+.16、[]()2sin 2t t t dt δ∞-∞'+⎰= —4 .17、已知()()3f t t δ=-,则(32)f t -的表达式为1()2t δ .18、='+⎰∞∞-dt t t )]()4cos([δπ_ _ __ _ ______.19、=-'+-+⎰∞∞-)1()122(23t t t t δ _ _ __ _ ______。
20。
计算=---)3()()2(t t u e t δ 。
21.=⎰∞∞-(t)dt 2sin 2δtt。
22。
信号)(t x 到)(at x 的运算中,若a >1,则信号)(t x 的时间尺度缩小a 倍,其结果是将信号)(t x 的波形沿时间轴 a 倍。
(放大或缩小)23。
信号时移只改变信号的 ;不改变信号的 。
24。
单位冲激序列][n δ与单位阶跃序列][n ε的关系为 . 25、)5.0cos()(n n x π=的基本周期是26。
将序列x (n)={1,-1,0,1,2},n=0,1,2,3,4表示为单位阶跃序列u (n )及u (n )延迟的和的形式x (n)= 。
27。
序列x (n )=3sin (0。
8πn)-2cos(0.1πn)周期为 。
28、已知系统输出为y (t ),输入为f (t ),y(t)= f (2t ),则该系统为 (时变或非时变)和 (因果或非因果)系统29、信号(36)f t +是(3)f t (左移或右移) 个时间单位运算的结果。
30、)2.0sin()(n n x π=的基本周期是 。
31、某线性移不变系统当输入x (n) =δ(n-1)时输出y (n) =δ(n —2) + δ(n -3),则该系统的单位冲激响应h (n) =__________。
连续信号与系统时域:1.描述线性非时变连续系统的数学模型是_ ____线性常系数微分方程_______。
2、某LTI 连续系统的输入信号为)()(2t e t f t ε-=,其冲激响应)()(t t h ε=,则该系统的零状态响应为)(n y zs 为211()()22t t e t εε--。
3. ()()u t u t *= t u (t ) 4.f (t-t 1)*δ(t —t 2)=__ f(t-t 1—t 2)_____。
5.如果一线性时不变系统的单位冲激响应为h (t),则该系统的阶跃响应g(t) ()th d ττ-∞=⎰。
6.如果一线性时不变系统的单位冲激响应h(t )=ε(t),则当该系统的输入信号f (t )=t ε(t )时,其零状态响应为2()2t u t 。
7。
矩形脉冲信号[ε(t)-ε(t —1)]经过一线性时不变系统的零状态响应为[g(t)-g(t-1)],则该系统的单位冲激响应h(t)为__ h (t )—h (t —1)______。
8。
卷积式[e -2t ε(t)]*ε(t )21[1]()2t e u t -=-. 9。
设:y(t)=f 1(t )*f 2(t )写出:y ′(t)=____ f ′1(t ) _____*_______ f 2(t)_____。
10. 稳定连续线性时不变系统的冲激响应h(t )满足___绝对可积___。
11、已知系统微分方程和初始条件为()2()()()y t y t y t f t '''++=,(0)0,(0)2y y '-=-=,则系统的零输入响应为2()t te t ε-.12、激励()f t ,响应为()y t 的线性非时变因果系统描述为()2()3()()y t y t f t f t ''+=+,则系统的冲激函数响应()h t 是23()5()t t e t δε--。
13、卷积积分[]()(2)(2)t t t εεδ'--*-=(2)(4)t t δδ---.14、已知系统微分方程为)()()(2)(t f t f t y t y -'=+',则该系统的单位冲激响应h (t )为__ __ _ ___。
15、卷积积分=-'--+)1(*)]8()6([t t f t f δ . 16。
单位阶跃响应)(t g 是指系统对输入为 的零状态响应。
17。
给定两个连续时间信号)(t x 和)(t h , 而)(t x 与)(t h 的卷积表示为)(t y ,则)1(-t x 与)1(+t h 的卷积为 。
18。
卷积积分=+-)(*)(21t t t t x δ 。
19。
单位冲激响应)(t h 是指系统对输入为 的零状态响应. 20。
连续LTI 系统的单位冲激响应)(t h 满足 ,则系统稳定。
21.单位冲激响应)(t h 与单位阶跃响应)(t s 的关系为 。
22。
设两子系统的单位冲激响应分别为)(1t h 和)(2t h ,则由其并联组成的复合系统的单位冲激响应)(t h = 。
23。
如果某连续时间系统同时满足 和 ,则称该系统为线性系统. 24。
连续时间LTI 系统的完全响应可以表示为零状态响应和 之和。
25。
已知某连续时间LTI 系统的输入信号为)(t x ,单位冲激响应为)(t h ,则系统的零状态响应=)(t y .26.连续时间系统的单位冲激响应)(t h __ ______(是或不是)随系统的输入信号的变化而变化的。
连续信号与系统频域:1。
若信号f(t)的FT 存在,则它满足条件是_____狄里赫利条件________。
2、周期信号的频谱是离散的,频谱中各谱线的高度,随着谐波次数的增高而逐渐减小,当谐波次数无限增多时,谐波分量的振幅趋向于无穷小,该性质称为__收敛性____3、若某信号)(t f 的最高频率为3kHz,则)3(t f 的奈奎斯特取样频率为 18 kHz 。
4、某系统的频率特性为23)(3)(2+++=ωωωωj j j j H ,则其冲激响应为h (t )=22()()t te t e t εε---。
5、已知信号f (t )= Sa (100t )* Sa(200t ),其最高频率分量为f m = 50/ Hz ,奈奎斯特取样率f s = 100/ Hz6、已知F )()]([ωj F t f =,则F 3[()]j t f t e = [(3)]F j ω-F ()(2)n f t t n δ∞=-∞⎡⎤-⎢⎥⎣⎦∑= 1[()]2n F j n ωπ∞=-∞-∑7、已知某系统的频率响应为3()4j H j e ωω-=,则该系统的单位阶跃响应为 4 u (t 3) 8.从信号频谱的连续性和离散性来考虑,周期信号的频谱是_周期性__。
9。
符号函数Sgn (2t —4)的频谱函数F (j ω)=22j e j ωω-。
10.如题18图所示周期脉冲信号的傅里叶级数的余弦项系数a n 为___0_________.11.已知x (t )的傅里叶变换为X (j ω),那么x (t —t 0)的傅里叶变换为0()j t X j e ωω-。
12.已知x 1(t )=δ(t-t 0),x 2(t)的频谱为π[δ(ω+ω0)+δ(ω-ω0)],且y (t)=x 1(t )*x 2(t),那么y (t 0)= ____1____。
13。
连续周期信号的频谱特点有:___离散性____、谐波性和____周期性______。
14。
若:希望用频域分析法分析系统,f(t )和h(t )必须满足的条件是:_狄里赫利条件和线性系统的条件 。
16。
傅里叶变换的时移性质是:当f (t )↔F(j ω),则f(t ±t 0)↔0()j t F j e ωω±.17、已知1()f t ,2()f t 波形如图4所示,且已知1()f t 的傅立叶变换1()F j ω,则2()f t 的频谱为21()T jF j eωω- 。
18、应用频域卷积定理,则信号00()cos sin f t t t ωω=⋅的傅立叶变换()F j ω=001[(2)(2)]2jδωωδωωπ--+ 。
19、利用对称性质,傅立叶变换()0()F j ωδωω=-的时间函数为012j teωπ- 。
20、已知2sin ()cos5F j ωωωω=,则()F j ω的傅立叶反变换()f t 为22(5)(5)g t g t ++-.21、信号()sgn(32)jtf t e t =-的傅立叶变换()F j ω=3(1)22(1)j e j ωω----。
22、已知信号()f t 的傅立叶变换为()F j ω,则(3)(3)t f t --的傅立叶变换为33[()]3()j j j F j e F j e ωωωω--'- 。