高中数学统计与概率

合集下载

高中数学统计与概率知识点

高中数学统计与概率知识点

高中数学统计与概率知识点一、统计学基础1. 数据收集- 普查与抽样调查- 数据的类型(定量数据与定性数据)2. 数据整理与展示- 频数分布表- 直方图- 饼图- 条形图3. 中心趋势的度量- 平均数(算术平均数)- 中位数- 众数4. 离散程度的度量- 极差- 四分位距- 方差与标准差5. 相关性分析- 相关系数- 散点图二、概率论基础1. 随机事件- 事件的定义- 必然事件与不可能事件- 互斥事件与独立事件2. 概率的计算- 单次试验的概率- 多次试验的概率- 条件概率- 贝叶斯定理3. 随机变量- 离散随机变量与连续随机变量 - 概率分布- 概率密度函数与概率分布函数4. 期望值与方差- 随机变量的期望值- 随机变量的方差5. 常见概率分布- 二项分布- 泊松分布- 正态分布三、统计与概率的应用1. 假设检验- 零假设与备择假设- 显著性水平- 第一类错误与第二类错误 - t检验与卡方检验2. 回归分析- 线性回归- 相关系数与决定系数3. 抽样与估计- 抽样误差- 置信区间- 最大似然估计四、综合练习题1. 选择题- 统计图表解读- 概率计算- 假设检验2. 填空题- 计算平均数、中位数、众数 - 计算方差、标准差- 概率分布的应用3. 解答题- 解释统计概念- 概率问题的求解- 应用统计方法解决实际问题五、附录1. 公式汇总- 统计学公式- 概率论公式2. 重要概念索引- 术语解释- 概念间的关系3. 参考资料- 推荐阅读书籍- 在线资源链接请根据需要对上述内容进行编辑和调整。

这篇文章是为了提供一个关于高中数学统计与概率的知识点概览,适用于教育目的。

每个部分都包含了关键的子标题和简短的描述,以便于理解和使用。

高中数学概率与统计

高中数学概率与统计

/ 教育,我们只做精品高中数学概率与统计I. 基础知识要点 一、概率.1. 概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2. 等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个,那么事件A 的概率nm P(A)=.3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率和,即P(A+B)=P(A)+P(B),推广:)P(A )P(A )P(A )A A P(A n 21n 21+++=+++ .②对立事件:两个事件必有一个发生的互斥事件...............叫对立事件. 例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌”与抽到黑色牌“互为对立事件,因为其中一个必发生.注意:i.对立事件的概率和等于1:1)A P(A )A P(P(A)=+=+. ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B). 由此,当两个事件同时发生的概率P (AB )等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A :“抽到老K”;B :“抽到红牌”则 A 应与B 互为独立事件[看上去A 与B 有关系很有可能不是独立事件,但261P(B)P(A),215226P(B),131524P(A)=⋅====.又事件AB 表示“既抽到老K 对抽到红牌”即“抽到红桃老K 或方块老K”有261522B)P(A==⋅,因此有)B P(A P(B)P(A)⋅=⋅.推广:若事件n 21,A ,,A A 相互独立,则)P(A )P(A )P(A )A A P(A n 21n 21 ⋅=⋅. 注意:i. 一般地,如果事件A 与B 相互独立,那么A 与A B ,与B ,A与B 也都相互独立.ii. 必然事件与任何事件都是相互独立的.iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件. ④独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的. 如果在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:kn kkn n P)(1P C (k)P --=.4. 对任何两个事件都有)()()()(B A P B P A P B A P ⋅-+=+二、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;互斥对立/ 教育,我们只做精品哪一个结果.它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列.,2,1,01=≥i p 121=++++ i p p p 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:k n k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B(n·p ),其中n ,p 为参数,并记p)n b(k;qp C k n k k n ⋅=-.⑵二项分布的判断与应用. ①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布. ②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1==-k p qk 于是得到随机变量ξ的概率分布列.我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中 3,2,1.1=-=k p q5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0C C C k)P(ξn Nkn MN kM -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C r m =,则k 的范围可以写为k=0,1,…,n.〕/ 教育,我们只做精品则次品数ξ的分布列为n.,0,1,k C CC k)P(ξnba kn b ka =⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有nb a )(+个可能结果,等可能:k)(η=含kn k kn ba C -个结果,故n,0,1,2,k ,)ba a (1)ba a (C b)(a ba C k)P(ηkn kkn nk n kkn =+-+=+==--,即η~)(ba a n B +⋅.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.三、数学期望与方差.1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为++++=n n p x p x p x E 2211ξ期望反映了离散型随机变量取值的平均水平. 2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身. ②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和. ③当0=b时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积. ⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ. ⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1)⑷二项分布:∑=⋅-⋅=-npqp k n k n k E kn k )!(!!ξ其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ其分布列为ξ~),(p k q .(P 为发生ξ的概率)3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差. 显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数)/ 教育,我们只做精品0=D p P ==)1(ξ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1) ⑷二项分布:npq D =ξ⑸几何分布:2pq D =ξ5. 期望与方差的关系. ⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)( ⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)(⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E .四、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线bx=(如图阴影部分)的曲线叫ξ的密度曲线,以其作为图像的函数)(x f 叫做ξ的密度函数,由于“),(+∞-∞∈x ”是必然事件,故密度曲线与x 轴所夹部分面积等于1.2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:2221)(σσπ-=ex f . (σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . ⑶正态曲线的性质. ①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称. ③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线. ④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近. ⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=- x ex xπϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤ .注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有/ 教育,我们只做精品5.0)( x Φ.比如5.00793.0)5.0(=-Φσμ则σμ-5.0必然小于0,如图.⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通 常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.4.⑴“3σ”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a 是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设.⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为99.7% 亦即落在)3,3(σμσμ+-之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).。

高中数学-选修2-3-第八章统计和概率

高中数学-选修2-3-第八章统计和概率

概率与统计学问点:1、随机变量:假如随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而改变,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。

2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按肯定次序一一列出,这样的随机变量叫做离散型随机变量.3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列4、分布列性质① p i ≥0, i =1,2, … ;② p 1 + p 2 +…+p n = 1.5、二项分布:假如随机变量X 的分布列为:其中0<p<1,q=1-p ,则称离散型随机变量X 听从参数p 的二点分布6、超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从全部物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为,其中,且 7、条件概率:对随意事务A 和事务B ,在已知事务A 发生的条件下事务B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率8、公式:9、相互独立事务:事务A(或B)是否发生对事务B(或A)发生的概率没有影响,这样的两个事务叫做相互独立事务。

10、n 次独立重复事务:在同等条件下进行的,各次之间相互独立的一种试验11、二项分布: 设在n 次独立重复试验中某个事务A 发生的次数,A 发生次数ξ是一个随机变量.假如在一次试验中某事务发生的概率是p ,事务A 不发生的概率为q=1-p ,那么在n 次独立重复试验中 (其中 k=0,1, ……,n ,q=1-p )于是可得随机变量ξ的概率分布如下:这样的随机变量ξ听从二项分布,记作ξ~B(n ,p) ,其中n ,p 为参数12、数学期望:一般地,若离散型随机变量ξ的概率分布为 则称 E ξ=x1p1+x2p2+…+xnpn +…为ξ的数学期望或平均数、均值,数学期望又简称为期()(0,1,2,,)k n k M N M n N C C P X k k m C --==={}min ,m M n =*,,,,n N M N n M N N ∈≤≤.0)(,)()()|(>=A P A P AB P A B P )()()(B P A P B A P ⋅=⋅)(k P =ξkn k k n q p C -=望.是离散型随机变量。

_新教材高中数学第五章统计与概率

_新教材高中数学第五章统计与概率

5.1.1 数据的收集【课程标准】(1)获取数据的基本途径及相关概念:①知道获取数据的基本途径,包括:统计报表和年鉴、社会调查、试验设计、普查和抽样、互联网等.②了解总体、样本、样本量的概念,了解数据的随机性.(2)抽样:①简单随机抽样通过实例,了解简单随机抽样的含义及其解决问题的过程,掌握两种简单随机抽样方法:抽签法和随机数表法.会计算样本均值和样本方差,了解样本与总体的关系.②分层随机抽样通过实例,了解分层随机抽样的特点和适用范围,了解分层随机抽样的必要性,掌握各层样本量比例分配的方法.结合具体实例,掌握分层随机抽样的样本均值和样本方差.③抽样方法的选择在简单的实际情境中,能根据实际问题的特点,设计恰当的抽样方法解决问题.新知初探·自主学习——突出基础性教材要点知识点一总体与样本所考察问题涉及的对象全体是________,总体中每个对象都是________,抽取的部分对象组成总体的一个样本,一个样本中包含的个体数目是________容量.知识点二简单随机抽样1.简单随机抽样的意义:一般地,简单随机抽样(也称为纯随机抽样)就是从总体中不加任何分组、划类、排队等,完全随机地抽取个体.简单随机抽样是其它各种抽样形式的基础.通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法.2.简单随机抽样的分类简单随机抽样{____________________状元随笔 (1)对总体、个体、样本、样本容量的认识总体:统计中所考察对象的全体叫做总体.个体:总体中的每一个考察对象叫做个体.样本:从总体中抽取的一部分个体叫做样本.样本容量:样本的个体的数目叫做样本容量.(2)简单随机抽样必须具备的几个特点①被抽取样本的总体中的个体数N 是有限的.②抽取的样本个体数n 小于或等于总体中的个体数N.③样本中的每个个体都是逐个不放回抽取的.④每个个体入样的可能性均为n N .3.随机数表法进行简单随机抽样的步骤状元随笔 用随机数表法进行简单随机抽样的规则(1)定方向:读数的方向(向左、向右、向上或向下都可以).(2)读数规则:读数时结合编号的特点进行读取,编号为两位数则两位两位地读取,编号为三位数则三位三位地读取,若得到的号码不在编号中或已被选用,则跳过,直到选满所需号码为止.知识点三分层抽样1.分层抽样的定义一般地,如果相对于要考察的问题来说,总体可以分成有明显差别的、互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称分层抽样)注意:分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则.(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.2.分层抽样的步骤:(1)分层:按某种特征将总体分成若干部分.(2)按比例确定每层抽取个体的个数.(3)各层分别按简单随机抽样的方法抽取.(4)综合每层抽样,组成样本.状元随笔应用分层抽样法的前提条件①总体可以分层,层与层之间有明显区别,而层内个体间差异较小.②每层中所抽取的个体差异可按各层个体在总体中所占的比例抽取.③分层抽样要求对总体的情况有一定的了解,明确分层的界限和数目.基础自测1.某校期末考试后,为了分析该校高一年级1000名学生的成绩,从中抽取了100名学生的成绩单进行调查.就这个问题来说,下面说法正确的是( )A.1000名学生是总体B.每名学生是个体C.100名学生的成绩是一个个体D.样本的容量是1002.某政府机关在编人员共100人,其中副处级以上干部10人,一般干部70人,工人20人,上级部门为了了解该机关对政府机构改革的意见,要从中抽取20人,用下列哪种方法最合适( )A.抽签法 B.简单随机抽样法C.分层抽样法D.随机数表法3.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( ) A.100B.150C.200D.2504.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( )A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人课堂探究·素养提升——强化创新性题型1 简单随机抽样的概念[经典例题]例1 下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)质量监督部门从180种儿童玩具中选出18种玩具进行质量检验,在抽样过程中,从中任取一种玩具检验后再放回;(3)某社区组织100名党员研读《十九大报告》,学习十九大精神;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地逐个抽出7个号签.方法归纳简单随机抽样的四个特征跟踪训练1 下列抽样方式是否是简单随机抽样?(1)在某车间包装一种产品,在自动包装的传送带上每隔30分钟抽一包产品,检验其质量是否合格;(2)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.题型2 简单随机抽样的应用[经典例题]例2 (1)要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程;(2)某车间工人加工了一批零件共40件.为了了解这批零件的质量情况,要从中抽取10件进行检验,如何采用随机数表法抽取样本,写出抽样步骤.状元随笔(1)总体中的个体数有限,可以采用简单易行的抽签法,按照抽签法的步骤进行即可.抽签法:按照抽签法的步骤:“编号,制号签,搅拌均匀,随机抽取,得号码”进行.→→方法归纳(1)抽签法的优点:简单易行.当总体的个数不多时,使总体处于“搅拌均匀”的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性.缺点:仅适用于个体数较少的总体.当总体容量非常大时,费时费力又不方便.况且,如果号签搅拌不均匀,可能导致抽样不公平.(2)在随机数表法抽样的过程中要注意:①编号要求位数相同,读数时应结合编号特点进行读取,如:编号为两位,则两位、两位地读取;编号为三位,则三位、三位地读取.②第一个数字的抽取是随机的.③读数的方向是任意的,且事先定好.跟踪训练2 (1)第十三届中国(徐州)国际园林博览会于2021年9月开幕.为做好徐州园博园运营管理工作,2022年春节期间,还需要从30名大学生中随机抽取8人作为志愿者,请写出抽取样本的过程;(2)有一批机器,编号为1,2,3,…,112.请用随机数法抽取10台入样,写出抽样过程.题型3 分层抽样的概念及计算[经典例题]例3 (1)某中学有老年教师20人,中年教师65人,青年教师95人.为了调查他们的健康状况,需从他们中抽取一个容量为36的样本,则合适的抽样方法是( )A .抽签法B .简单随机抽样C .分层抽样D .随机数表法(2)某市有大型超市200家,中型超市400家,小型超市1400家.为掌握各类超市的营业情况,现按分层抽样的方法抽取一个容量为100的样本,应抽取中型超市________家.状元随笔 (1)有明显差异用分层抽样.→方法归纳(1)各部分之间有明显的差异是分层抽样的依据,至于各层内用什么方法抽样是灵活的,可用简单随机抽样,也可采用系统抽样.分层抽样中,无论哪一层的个体,被抽中的机会均等,体现了抽样的公平性.(2)分层抽样中有关抽样比的计算方法对于分层抽样中的比值问题,常利用以下关系式巧解: ①样本容量n总体容量N =该层抽取的个体数该层的个体数;②总体中某两层的个体数之比=样本中这两层抽取的个体数之比.对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.跟踪训练3 (1)某市有四所重点大学,为了解该市大学生的课外书籍阅读情况,采用下列哪种方法抽取样本最合适(四所大学图书馆的藏书有一定的差距)( )A .抽签法B .随机数表法C.简单随机法D.分层抽样法(2)某校高三年级有男生800人,女生600人,为了解该年级学生的身体健康情况,从男生中任意抽取40人,从女生中任意抽取30人进行调查.这种抽样方法是 ( ) 关键看是否有明显差异A.简单随机法B.抽签法C.随机数表法D.分层抽样法(3)某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工的身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为________.题型4 分层抽样的概念及应用例4 某家电视台在因特网上征集某电视节目现场参与的观众,报名的总人数为12000人,分别来自4个城区,其中东城区2400人,西城区4600人,南城区3800人,北城区1200人,从中抽取60人参加现场的节目,应当如何抽取?写出抽取过程.状元随笔由题知有明显差异,利用分层抽样抽样.(1)分多少层.(2)比例是多少.(3)每层抽多少.方法归纳(1)如果总体中的个体有差异时,就用分层抽样抽取样本,用分层抽样抽取样本时,要把性质、结构相同的个体,组成一层.(2)每层中所抽取的个体数应按各层个体数在总体中所占的比例抽取,也就是各层抽取.这样抽取能使所得到的样本结的比例都等于样本容量在总体中的比例,即抽样比=样本容量总体容量构与总体结构相同,可以提高样本对总体的代表性.跟踪训练4 在100个产品中,有一等品20个,二等品30个,三等品50个,现要抽取一个容量为30的样本,请说明抽样过程.第五章 统计与概率5.1 统计5.1.1 数据的收集新知初探·自主学习知识点一总体 个体 样本知识点二2.抽签法 随机数表法3.编号 任意 规则 编号[基础自测]1.解析:由随机抽样的基本概念可得,选D.答案:D2.解析:总体由差异明显的三部分组成,应选用分层抽样.答案:C3.解析:方法一:由题意可得70n−70=3 5001 500,解得n =100,故选A. 方法二:由题意,抽样比为703 500=150,总体容量为3500+1500=5000,故n =5000×150=100.答案:A4.解析:先求抽样比n N =903 600+5 400+1 800=1120,再各层按抽样比分别抽取,甲校抽取3600×1120=30(人),乙校抽取5400×1120=45(人),丙校抽取1800×1120=15(人),故选B. 答案:B课堂探究·素养提升例 1 【解析】 (1)不是简单随机抽样,因为简单随机抽样要求被抽取样本的总体的个数是有限的.(2)不是简单随机抽样,因为简单随机抽样要求逐个不放回地抽取.(3)不是简单随机抽样,因为这100名党员是挑选出来的,该社区每个人被抽到的可能性不同,不符合简单随机抽样中“等可能性”的要求.(4)是简单随机抽样,因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.跟踪训练1 解析:由简单随机抽样的特点可知,(1)(2)均不是简单随机抽样.(1)总体个数不是有限的.(2)不符合“等可能性”的要求.例2 【解析】(1)利用抽签法,步骤如下:①将30辆汽车编号,号码是1,2, (30)②将号码分别写在一张纸条上,揉成团,制成号签;③将得到的号签放入一个不透明的袋子中,并搅拌均匀;④从袋子中依次抽取3个号签,并记录上面的编号;⑤所得号码对应的3辆汽车就是要抽取的对象.(2)抽样步骤是:第一步,先将40件零件编号,可以编号为00,01,02,…,38,39.第二步,在随机数表中任选一个数作为开始,例如从教材附表的随机数表中的第8行第9列的数0开始.为便于说明,我们将随机数表中的第6行到第10行分别摘录如下:6606574717 3407276850 3669736170 6581339885 11199291708105010805 4557182405 3530342814 8879907439 23403097328326977602 020******* 6855574818 7305385247 18623885796357332135 0532547048 9055857518 2846828709 83401256247379645753 0352964778 3580834282 6093520344 3527388435第三步,从选定的数0开始向右读下去,得一个两位数字号码02,将它取出;继续向右读,得到02,由于前面已经取出,将它去掉;继续下去,去掉重复的号码,又得到05,16,18,38,33,21,35,32,28.至此,10个样本号码已经取满,于是,所要抽取的样本号码是02,05,16,18,38,33,21,35,32,28.与这10个号码对应的零件即是抽取的样本个体.跟踪训练2 解析:(1)抽样过程如下:第一步,先将30名大学生进行编号,从1到30.第二步,将编号写在形状、大小相同的号签上.第三步,将号签放到一个不透明的盒子中搅拌均匀,然后从盒子中逐个抽取8个号签.第四步,将与号签上的编号对应的大学生抽出,即得样本.(2)方法一:第一步,将原来的编号调整为001,002,003, (112)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第14行第7个数“0”,向右读.第三步,从“0”开始,向右读,每次读取三位,凡不在001~112中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到020,086,013,110,089,021,080,098,027,002.第四步,对应原来编号为20,86,13,110,89,21,80,98,27,2的机器便是要抽取的对象.方法二:第一步,将原来的编号调整为101,102,103, (212)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第9行第7个数“1”,向右读.第三步,从“1”开始,向右读,每次读取三位,凡不在101~212中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到173,119,170,187,186,125,140,109,184,178.第四步,对应原来编号为73,19,70,87,86,25,40,9,84,78的机器便是要抽取的对象.例3 【解析】 (1)各部分之间有明显的差异是分层抽样的依据.(2)依据题意,可得抽样比为100200+400+1 400=120,故应抽取中型超市400×120=20(家).【答案】 (1)C (2)20跟踪训练3 解析:(1)因为学校图书馆的藏书对学生课外书籍阅读影响比较大,因此采取分层抽样.(2)总体中个体差异比较明显40800=30600=120,且抽取的比例也符合分层抽样.(3)设该单位老年职工人数为x ,由题意得3x =430-160,解得x =90.则样本中的老年职工人数为90×32160=18.答案:(1)D (2)D (3)18例4 【解析】 采用分层抽样的方式抽取参加现场节目的观众,步骤如下:第一步,分层.按城区分为四层:东城区、西城区、南城区、北城区.第二步,确定抽样比.样本容量n =60,总体容量N =12000,故抽样比k =n N =6012 000=1200.第三步,按比例确定每层抽取个体数.在东城区抽取2400×1200=12(人),在西城区抽取4600×1200=23(人),在南城区抽取3800×1200=19(人),在北城区抽取1200×1200=6(人).第四步,在各层分别用简单随机抽样法抽取样本.将各城区抽取的观众合在一起组成样本.跟踪训练4 解析:先将产品按等级分成三层;第一层,一等品20个;第二层,二等品30个;第三层,三等品50个.然后确定每一层抽取的个体数,因为抽样比为30100=310,所以应在第一层中抽取产品20×310=6(个),在第二层中抽取产品30×310=9(个),在第三层中抽取产品50×3=15(个).分别给这些产品编号并贴上标签,用抽签法或随机数表法10在各层中抽取,得到一等品6个,二等品9个,三等品15个,这样就通过分层抽样得到了一个容量为30的样本.。

高中数学统计与概率知识点

高中数学统计与概率知识点

高中数学统计与概率知识点高中数学统计与概率知识点第一部分:统计一、众数众数是一组数据中出现次数最多的数据。

它反映了数据的集中趋势,但当数据大小差异很大时,众数的准确值难以判断。

此外,当众数出现次数不具明显优势时,用它来反映数据的典型水平是不可靠的。

二、中位数中位数是一组数据中位于最中间的数据,当数据为偶数个时,为最中间两个数据的平均数。

求中位数时,需要先将数据排序,然后根据数据的个数来确定中位数。

三、众数、中位数及平均数的求法众数由所给数据可直接求出;求中位数时,需要先排序,然后根据数据的个数来确定中位数;求平均数时,需要将各数据的总和除以数据的个数。

四、中位数与众数的特点中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是;众数考察的是一组数据中出现的频数,它的大小只与这组数据的个别数据有关,可能是一个或多个,甚至没有。

五、平均数、中位数与众数的异同平均数、中位数和众数都是描述一组数据集中趋势的量,都有单位。

平均数反映数据的平均水平,与每个数据都有关系,应用最广;中位数不受个别偏大或偏小数据的影响;众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。

六、样本数据的分散程度对于样本数据x1,x2,…,xn,可以通过各数据到其平均数的平均距离来反映样本数据的分散程度。

平均距离的计算公式为12n。

本文介绍了统计学中常用的标准差,以及简单随机抽样的定义和特点。

其中,简单随机抽样的主要特点包括总体个体数有限、逐个抽取、不放回、公平性。

抽签法是一种简单易行的抽样方法,但在总体个数较多时可能会导致样本代表性差。

随机数表法是另一种常用的抽样方法,其步骤包括编号、选定起始位置和依次读取。

最后,对于从100个个体中抽取一个容量为10的样本,可以采用抽签法或随机数表法进行编号。

十三、系统抽样的一般步骤在使用系统抽样从总体中抽取样本时,首先需要将总体中的所有个体进行编号。

举例来说,如果要从605件产品中抽取60件进行质量检查,由于605件产品不能均衡分成60部分,因此需要先从总体中随机剔除5个个体,再均衡分成60部分。

高中数学统计与概率知识点归纳全

高中数学统计与概率知识点归纳全

高中数学统计与概率知识点归纳全统计与概率是数学中重要的一部分,出现在中学数学和高中数学的教学中。

它涵盖了很多基本的概念和方法,并且在实际生活中有广泛的应用。

本文将全面归纳高中数学统计与概率的知识点,以帮助读者更好地理解和掌握这一领域的内容。

一、基本概念1. 数据与统计:数据是通过观察、测量或实验获得的信息,统计是对数据进行收集、整理、分析和解释的过程。

2. 总体与样本:总体是指研究对象的全体,样本是从总体中选取的一部分。

3. 参数与统计量:参数是描述总体的数值特征,统计量是根据样本数据计算得到的总体参数的估计值。

4. 随机事件与样本空间:随机事件是指一个结果不确定、以概率形式描述的事件,样本空间是随机事件可能发生的所有结果的集合。

5. 概率:概率是用来描述随机事件发生可能性大小的数值。

它可以通过实验、几何、统计推理等方法进行计算。

二、统计方法1. 数据收集与处理:包括数据的收集、整理和清洗,以及计算数据的频数、频率、中位数、平均数等。

2. 描述统计和推断统计:描述统计通过图表、图像和数值等形式展示数据的分布特征;推断统计则通过样本数据进行参数估计、假设检验等,从而对总体进行推断。

3. 频数分布与频率分布:频数分布是指将数据按照取值范围划分成若干组,并统计每组中数据出现的频数;频率分布则是统计每组数据出现的频率。

三、概率相关知识1. 事件的概率:事件A发生的概率记为P(A),它满足0≤P(A)≤1。

2. 基本事件与复合事件:基本事件是样本空间中的单个事件,复合事件由一个或多个基本事件组成。

3. 互斥事件与相对事件:互斥事件是指两个事件不可能同时发生,相对事件是指两个事件都能够发生,或者都不能发生。

4. 概率的计算:通过等可能原理、频率法、古典概型等方法计算事件的概率。

5. 条件概率与独立事件:条件概率是指在已知事件B发生的条件下,事件A发生的概率,记为P(A|B);独立事件是指事件A和事件B的发生与否互不影响。

高中数学统计与概率经典题型

高中数学统计与概率经典题型

高中数学统计与概率经典题型
高中数学统计与概率经典题型主要包括以下几种:
1. 事件及概率的运算:涉及到互斥与对立事件、事件的差等概念,以及加法公式、减法公式等运算。

2. 古典概型:也称为等可能概型,涉及到排列组合公式。

常见的题目类型包括抽签(不放回)和概率相同的情况。

3. 条件概率与乘法公式:涉及到条件概率的概念,即在A发生的情况下B 发生的概率,以及乘法公式的应用。

4. 全概率公式与贝叶斯公式:全概率公式用于计算某事件发生的概率,而贝叶斯公式则是在已知条件概率的情况下,计算后验概率。

5. 树状图(或表格)探究:这类问题需要使用树状图或表格列出所有等可能的结果,然后计算出事件发生的概率。

以上是高中数学中常见的统计与概率经典题型,通过掌握这些题型,可以帮助你更好地理解和应用概率与统计的知识。

高中数学概率与统计知识点总结

高中数学概率与统计知识点总结

概率与统计一、概率及随机变量的分布列、期望与方差(一)概率及其计算1.几个互斥事件和事件概率的加法公式①如果事件A 与事件B 互斥,则()P A B =()()P A P B +.推广:如果事件1A ,2A ,…,n A 两两互斥(彼此互斥),那么事件12n A A A +++发生的概率,等于这n 个事件分别发生的概率的和,即()12n P A A A +++=()()()12n P A P A P A ++.②若事件B 与事件A 互为对立事件,则()P A =()1P B -. 2.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.(二)随机变量的分布列、期望与方差1. 常用的离散型随机变量的分布列(1)二项分布如果随机变量X 的可能取值为0,1,2,…,n ,且X 取值的概率()P X k ==C k k n kn p q-(其中0,1,2,,,1k n q p ==-),其随机变量分布列为X 0 1 …k…nP0C nnp q111C n np q-…C k k n knp q-…0C n n n p q则称X 服从二项分布,记为(),X B n p ~.(2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为C C C k n kM N Mn N--()0,10,1,2,,2,,k m =,其中{}min ,m M n =,且n N …,M N …,n ,M ,*N ÎN .此时称随机变量X 的分布列为超几何分布列,称随机变量X 服从超几何分布.2.条件概率及相互独立事件同时发生的概率 I.条件概率条件概率一般地,设A ,B 为两个事件,且()0P A >,称()()()P ABP B A P A=为事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用()n A 表示事件A 中基本事件的个数,则()()()()()n AB P AB P B A n A P A ==. II .相互独立事件相互独立事件(1)若,A B 相互独立.则()P AB =()()P A P B .(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. III .独立重复试验与二项分布独立重复试验与二项分布在n 次独立重复试验中,事件A 发生k 次的概率为(每次试验中事件A 发生的概率为p)()C 1n kkknp p --,事件A 发生的次数是一个随机变量X ,其分布列为()01)2()C 1(n kk knP X k k n p p -===-¼,,,,,此时称随机变量X 服从二项分布. 学科*网3.离散型随机变量的数学期望(均值)与方差 (1)若离散型随机变量X 的概率分布列为的概率分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n则称EX =1122i i n n x p x p x p x p ++++¼+¼为随机变量X 的均值或数学期望. (2)若Y aX b =+,则EY =aEX b +,)(D aX b +=2a DX (3)若()X B n p ~,,则EX np =.()(1)D X np p -=. 4.正态分布(1)正态曲线的性质:正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,它关于直线x m =对称;③曲线在x m=处达到峰值12πs;④曲线与x 轴之间的面积为1;⑤当s 一定时,曲线的位置由m 确定,曲线随着m 的变化而沿x 轴平移,⑥当m 一定时,曲线的形状由s 确定,s 越小,曲线越“瘦高”,表示总体的分布越集中;s 越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)服从正态分布的变量在三个特殊区间内取值的概率服从正态分布的变量在三个特殊区间内取值的概率 ①0().6826P X m s m s -<+=…;②2209().544P X m s m s -<+=…; ③3309().974P X m s m s -<+=…. 二、统计与统计案例 (一)抽样方法 1.简单随机抽样设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本()n N …,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,最常用的简单随机抽样的方法:抽签法和随机数表法.最常用的简单随机抽样的方法:抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.的样本.(1)先将总体的N 个个体编号.(2)确定分段间隔k ,对编号进行分段,当Nn是整数时,取N k n =.如果遇到Nn不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除得总体中剩余的个体数能被样本容量整除(3)在第1段用简单随机抽样确定第一个个体编号()l l k ….(4)按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号()l k +,再加k 得到第3个个体编号()2l k +,依次进行下去,直到获取整个样本.直到获取整个样本.3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.分层抽样的应用范围:当总体是由差异明显的几个部分组成的,往往选用分层抽样.层抽样.注:注:不论哪种抽样方法不论哪种抽样方法,总体中的每一个个体入样的概率是相同的. (二)统计图表的含义 1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距和组数.(3)将数据分组.(4)列频率分布表.列频率分布表. (5)画频率分布直方图.画频率分布直方图. (三)样本的数字特征1.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列,把处在中间位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数叫做这组数据的中位数3.平均数:样本数据的算术平均数,即x =()121n x x x n+++.4.方差:()()()2222121n s x x x x x x n éù=-+-++-êúëû(n x 是样本数据,n 是样本容量,x 是样本平均数).5.标准差:()()()222121ns x x x x x x n éù=-+-++-êúëû.(四)线性回归直线方程 1.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫回归直线.(2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为正相关;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为负相关. (3)相关系数相关系数r =ååå===----ni nj jini i i y y x x y y x x 11221)()())((,当0r >时,表示两个变量正相关;当0r <时,表示两个变量负相关.r 的绝对值越接近1,表示两个变量的线性相关性越强;r 的绝对值越接近0,表示两个变量的线性相关性越弱.通常当r 的绝对值大于0.75时,便认为两个变量具有很强的线性相关关系.当1r =时,两个变量在回归直线上两个变量在回归直线上 2.回归直线方程 (1)通过求21()ni i i Qy x a b ==--å的最小值而得出回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.该式取最小值时的a ,b 的值即分别为aˆ,b ˆ. (2)两个具有线性相关关系的变量的一组数据:11(,)x y ,22(,)x y ,…,()n n x y ,,其回归方程为a x b y ˆˆˆ+=,则1122211()()ˆ()ˆˆnn i i i i i i n ni ii i x x y y x y nx yb x x x nxa y bx ====ì---×ï==ïí--ïï=-ïîåååå.注:样本点的中心(),x y 一定在回归直线上. (3)相关系数22121ˆ()1()n i ii ni i y yR y y ==-å=--å.2R 越大,说明残差平方和越小,即模型的拟合效果越好;2R 越小,残差平方和越大,即模型的拟合效果越差.在线性回归模型中,2R表示解释变量对于预报变量变化的贡献率,2R 越接近于1,表示回归的效果越好. (六)独立性检验(1)变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.像这样的变量称为分类变量.(2)像下表所示列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y ,它们的可能取值分别为12(,)x x 和12(,)y y ,其样本频数列联表(称为22´列联表)为表)为y 1 y 2 总计总计x 1 a b a b + x 2 cdc d +总计a c +b d +a b c d +++构造一个随机变量()()()()()22n ad bc K a b c d a c b d -=++++ ,其中n a b c d =+++为样本容量.确定临界值0k ,如果2K 的观测值0k k …,就认为“两个分类变量之间有关系”;否则就认为“两个分类变量之间没有关系”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学统计与概率
1、概率的定义
随机事件A的概率是频率的稳定值;频率是概率的近似值。

2、等可能事件的概率
如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每
一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概
率为P(A)=m/n。

3、互斥事件
不可能同时发生的两个事件叫互斥事件。

如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B)。

4.抽签法和随机数表法
(1)抽签法
①优点:简单易行;
②缺点:当总体容量非常大时,操作比较麻烦;若抽取前搅拌不均匀,可能导致抽取
的样本不具有代表性.
(2)随机数表法
随机数表是由水技术(通常为自然数)形成的数表,表中的每一位置出现的数都是随
机的.
随机数表法的一般步骤:
第一步:对总体进行编号;
第二步:任意指定一个开始选取的位置,位置的确定可以闭着眼用手指随机确定,也
可以用其他方法;
第三步:按照一定规则选取编号;
第四步:按照得到的编号找出对应的个体.
【注释】
①规则一经确定,就不能更改;
②选取过程中,遇到超过编号范围或已经选取了的数字,应该舍弃.
5.分层抽样
一般地,如果相对于要考察的问题来说,总体可以分为有明显差别的,互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称分层抽样).
【注释】
分层抽样得到的样本,一般更具有代表性,可以更准确地反映总体的特征,尤其是在层内个体相对同质而层间差异较大时更是如此.
分层抽样在各层中抽样时,还可根据各层的特点灵活选用不同的随机抽样方法.。

相关文档
最新文档