大学化学01第一章 气体和溶液
第1章 气体和溶液练习题及答案资料讲解

第1章气体和溶液练习题及答案第1章气体、溶液和胶体练习题一、选择题1.用来描述气体状态的四个物理量分别是(用符号表示)()A. n,V,p,TB. n,R,p,VC. n,V,R,TD. n,R,T,p2.现有两溶液:A为0.1 mol·kg-1氯化钠溶液;B为0.1 mol·kg-1氯化镁溶液()A. A比B沸点高B. B比A凝固点高C. A比B沸点低D. A和B沸点和凝固点相等3.稀溶液在蒸发过程中()A.沸点保持不变B.沸点不断升高直至溶液达到饱和C.凝固点保持不变D.凝固点不断升高直至溶液达到饱和4.与纯液体的饱和蒸汽压有关的是()A. 容器大小B. 温度高低C. 液体多少D. 不确定5.质量摩尔浓度是指在()A.1kg溶液中含有溶质的物质的量B. 1kg溶剂中含有溶质的物质的量C. 0.1kg溶剂中含有溶质的物质的量D.1L溶液中含有溶质的物质的量6.在质量摩尔浓度为1.00mol·kg-1的水溶液中,溶质的摩尔分数为()A.1.00B. 0.055C. 0.0177D. 0.1807.下列有关稀溶液依数性的叙述中,不正确的是()A. 是指溶液的蒸气压下降、沸点升高、凝固点降低和渗透压B. 稀溶液定律只适用于难挥发非电解质的稀溶液C. 稀溶液依数性与溶液中溶质的颗粒数目有关D. 稀溶液依数性与溶质的本性有关8.质量摩尔浓度均为0.050 mol·kg-1的NaCl溶液,H2SO4溶液,HAc溶液,C6H1206(葡萄糖)溶液,蒸气压最高的是()A. NaCl溶液B. H2SO4溶液C. HAc溶液D. C6 H1206溶液9.糖水的凝固点()A.等于0℃B. 低于0℃C. 高于0℃D.无法判断10.在总压力100kPa的混合气体中,H2、He、N2、CO2的质量都是1.0g,其中分压最小的是()A. H2B. HeC. N2D. CO2二、填空题1.理想气体状态方程的表达式为。
第一章 气体、溶液和胶体

第一章气体、溶液和胶体⏹§1.1 气体⏹§1.2 液体⏹§1.3 分散系⏹§1.4 溶液⏹§1.5 胶体溶液⏹§1.6 高分子溶液和凝胶⏹§1.7 表面活性物质和乳浊液1、Dalton分压定律2、稀溶液的依数性3、胶体的结构、性质依数性的计算、胶团结构的书写、胶体的性质1、气体的基本特征:(1)无限膨胀性:所谓无限膨胀性就是,不管容器的形状大小如何,即使极少量的气体也能够均匀地充满整个容器。
(2)无限掺混性:无限掺混性是指不论几种气体都可以依照任何比例混合成均匀的混溶体(起化学变化者除外)。
高温低压下气体的p 、V 、T 之间的关系。
即:P :气体压力,单位用kPa(或Pa)。
V :气体体积,单位取dm 3(或写为L ,l) n :气体物质的量mol 。
T :绝对温度,单位是K ,它与t °C 的关系为:T=273.15+t °CR :理想气体常数P V = n R T (1-1)此式称为理想气体状态方程。
普通化学普通化学Dalton分压定律适用范围:Dalton分压定律可适用于任何混合气体,包括与固、液共存的蒸气。
对于液面上的蒸气部分,道尔顿分压定律也适用。
例如,用排水集气法收集气体,所收集的气体含有水蒸气,因此容器内的压力是气体分压与水的饱和蒸气压之和。
而水的饱和蒸气压只与温度有关。
那么所收集气体的分压为:p气=p总-p水如图:普通化学【例1.3】 一容器中有4.4 g CO 2,14 g N 2和12.8 g O 2,气体的总压为202.6 kPa ,求各组分的分压。
【解】混合气体中各组分气体的物质的量m ol m olg g n N 5.028141)(2=⋅=-m ol m olg g n CO 1.0444.41)(2=⋅=-m ol m ol g g n O 4.0328.121)(2=⋅=-k Pa k Pa m olm ol m ol m ol p CO 26.206.2024.05.01.01.0)(2=⨯++=()kPa kPa molmol mol mol p kPa kPa molmol mol mol p O N 04.816.2024.05.01.04.03.1016.2024.05.01.05.022)(=⨯++==⨯++=,总=总总p i x p n i n i p =由道尔顿分压定律T 一定,速率和能量特别小和特别大的分子所占的比例都是很小的,温度升高时,速率的分布曲线变得较宽而平坦,高峰向右移,曲线下面所包围的面积表示的是分子的总数,对一定的体系它是常数. 氮的速率分布曲线麦克斯韦-玻尔兹曼分布定律:普通化学水有三种存在状态,即水蒸气(气态)、水(液态)、冰(固态)。
第一章 气体和溶液

溶液的蒸气压降低的原因:
溶质是难挥发非电解质,因此溶液的蒸气压实际上 是溶液中溶剂的蒸气压。
pA*
p
水
糖水
蒸气压与溶液的浓度有没有定量规律? 1887年,法国著名物理学家拉乌尔根据大量的实验 结果,总结出一个经验定律,这就是拉乌尔定律。
拉乌尔(Raoult)定律 在一定温度下,难挥发非电解质稀溶液的蒸气压(p) 等于纯溶剂的蒸气压(pA*)乘以溶剂在溶液中的摩尔分 数(xA)。即: p = p A * · xA
第一章 气体和溶液
基本要求 掌握理想气体状态方程及其应用;掌握道尔
顿分压定律的应用和计算;熟悉溶液浓度的表示方法;
理解稀溶液的依数性及应用;熟悉胶体的结构、性质、
稳定性等;掌握胶粒聚沉的方法和电解质对溶胶聚沉作 用的影响规律。 学习重点 理想气体状态方程;分压定律;溶液浓度的
表示方法;稀溶液的依数性;胶体的性质与结构;影响
∵ xA + xB = 1 ∴ p = pA*(1-xB) 溶液的蒸气压下降值Δp为 Δp = pA*-p
= pA*-pA*(1-xB)
Δp = pA*xB 因此拉乌尔定律也可以这样说:
拉乌尔(Raoult)定律:
在一定温度下,难挥发非电解质稀溶液的蒸气压下
降(Δ p)与溶质的摩尔分数(xB)成正比,而与溶质的本
理想气体:忽略分子的大小和分子间的作用 力 理想气体状态方程:pV= nRT
式中:p为压力 (Pa), V为体积(m3), n为物质的量(mol), R为摩尔气体常数, T为热力学温度(K)。
气体状态方程式的另一些形式:
物质的量(n)与质量(m)、摩尔质量(M)的关系
m pV RT M pM RT
无机及分析化学——第一章 气体和溶液

依数性来源于分散微粒间距离远,作用力小。
通常所说的“依数性”,包括四个方 面: • 蒸气压下降 (The lowering of the vapor pressure)
• 沸点升高 (The elevation of the boiling point)
• 凝固点降低 (The depression of the freezing point) • 渗透压 (The phenomenon of osmotic pressure)
c)粗分散系:
1000 nm (> 10-6 m), 例如:泥浆水(悬浊液)、牛奶、豆 浆等。肉眼或在显微镜下可观察到微粒,静置易沉淀,是一种 不稳定的体系。
相与界面
相(phase):体系中物理性质和化学性质完全相同的部分。 相界面(简称界面,interface):将相与相分隔开来的部分。 相与相之间在指定的条件下具有明确的界面,在界面两边体 系的性质会有突跃变化。处于界面上的原子或分子的受力情况 与相内部的不同,往往存在剩余引力,具有界面能。一般来说, 体系中存在的界面越多,能量就越高,体系也越不稳定。
体来说,只要温度不是太低(高温,高于273K),压力不
是太高(低压 , 低于数百 kPa ),都可以近似用理想气体 状态方程作有关p、V、T、n 的计算。
2. 理想气体状态方程
理想气体的温度(T)、压力(p)、体积(V)和物质的 量(n)之间, 具有如下的方程式关系: pV = nRT 在SI制中,p—Pa,V—m3,T—K,n—mol。 标准状况(p=101.325 kPa,T=273.15 K)下,1 mol 气 体的标准摩尔体积为 22.414×10-3 m3 ,摩尔气体常数 R 的 单位及数值为: pV 1.01325 105 Pa 22.414 103 m3
无机化学-气体和溶液

1-1 气体
一、理想气体(ideal gas)的状态方程:
(1)分子本身不占体积,分子是具有质量的几何点, (2)分子之间没有作用力, (3)分子之间、分子与容器壁之间的碰撞不造成动能损
失(完全弹性碰撞)。
研究结果表明:在高温(高于273K)、低压(低于数百 kPa)条件下,许多实际气体很接近理想气体。
可见光波长400-700 nm,溶胶直径1-100nm,发生散射。 每一个胶体粒子变成一个小光源,向四周发射与入射 光波长相同的光波。
真溶液粒子太小,光散射微弱,显示不出丁达尔现象。 可用丁达尔现象来区别溶胶和真溶液。
3)电学性质:电泳 电泳——在电场作用下,胶体粒子在分散介质中作定向移动的现象。
Tb = Kb·b
II = bRT
来测定溶质的摩尔质量。只有对摩尔 质量特别大的物质(如血红素等生物 大分子)才采用渗透压法。
●配制等渗透液:渗透现象在许多生 物过程中有着不可缺少的作用,特别 是人体静脉输液所用的营养液(如葡 萄糖液等)都需要经过细心调节以使 之与血液具有同样的渗透压(约 780kPa),否则血红细胞将遭到破坏。
五、胶体的稳定性与聚沉(coagulation) 1)稳定性: 溶胶具有很大的比表面积,总是有自发聚集成更大颗粒,降低表面能的倾向,
因此,是热力学不稳定体系,但胶体具有相对稳定性。 溶胶相对稳定的原因: 1)布朗运动, 2)胶粒带电, 3)溶剂化作用(扩散层和吸附层离子都水合)——起保护作用。 可用来衡量溶胶的稳定性: 越大,胶粒带电量越多,扩散层厚,溶剂化层也厚,溶胶就越稳定。 2)聚沉: 聚沉:溶胶失去稳定性,相互碰撞导致颗粒变大,最后以沉淀形式析出。
p总
无机化学第一章

实际气体
高温(>273 K, 0 C) 低压(<几百个kPa)
o
理想气体
1.1.2道尔顿(Dalton) 1.1.2道尔顿(Dalton)分压定律 道尔顿
(一)道尔顿分压定律的要点 (二)道尔顿分压定律的实际应用 (实验室的排气集气) 实验室的排气集气)
道尔顿分压定律的要点
同一温度下 1. 同一温度下,混合气体的总压力等于各组 分气体分压之和。 分气体分压之和。
例6 在291K和101.325KPa下,将2.7L被水蒸气饱和的空气通过 和 下 被水蒸气饱和的空气通过 装有CaCl2的干燥管,测得干燥空气的质量为 的干燥管,测得干燥空气的质量为3.21g,求291K时 装有 , 时 水的饱和蒸气压。 水的饱和蒸气压。
[解]
∵
V(干燥空气)
pV =
m RT M mRT 3.21 × 8.315 × 291 = = Mp 29 × 101.325
= 2.643 L T不变 又∵ pV = nRT 而这时 n、T不变 ∴ p1V1=p2V2
p( 水蒸气) =
=
p2=p1–p(水蒸气 水蒸气) 水蒸气
101.32 × ( 2.7 − 2.643) 2.7
p1 × (V2 − V1 ) V2
= 2.14 kPa
§1-2
溶
液
分散系 (自学 自学) 自学
[解]
P(H ) = P–P(H O) = 101.325 - 3.17 = 98.155kPa ∵ pV = nRT ∴ n(H ) = p(H )V/RT
2 2 2 2
= 98.155×0.25/8.315×298 × × = 9.90×10-3 mol × 又∵ pV = nRT 而这时 n、T不变 不变 ∴ p1V1 = p2V2
大学化学01第一章 气体和溶液

第一章 气体和溶液学习要求1. 了解分散系的分类及主要特征。
2. 掌握理想气体状态方程和气体分压定律。
3. 掌握稀溶液的通性及其应用。
4. 掌握胶体的基本概念、结构及其性质等。
5. 了解高分子溶液、乳状液的基本概念和特征。
1.1 气体1.1.1 理想气体状态方程气体是物质存在的一种形态,没有固定的形状和体积,能自发地充满任何容器。
气体的基本特征是它的扩散性和可压缩性。
一定温度下的气体常用其压力或体积进行计量。
在压力不太高(小于101.325 kPa)、温度不太低(大于0 ℃)的情况下,气体分子本身的体积和分子之间的作用力可以忽略,气体的体积、压力和温度之间具有以下关系式:V=RT p n (1-1)式中p 为气体的压力,SI 单位为 Pa ;V 为气体的体积,SI 单位为m 3;n 为物质的量,SI 单位为mol ;T 为气体的热力学温度,SI 单位为K ;R 为摩尔气体常数。
式(1-1)称为理想气体状态方程。
在标准状况(p = 101.325 Pa ,T = 273.15 K)下,1 mol 气体的体积为 22.414 m 3,代入式(1-1)可以确定R 的数值及单位:333V 101.32510 Pa 22.41410 m R T1 mol 27315 Kp n .-⨯⨯⨯==⨯3118.314 Pa m mol K --=⋅⋅⋅11= 8.314 J mol K --⋅⋅ (31 Pa m = 1 J ⋅)例1-1 某氮气钢瓶容积为40.0 L ,25 ℃时,压力为250 kPa ,计算钢瓶中氮气的质量。
解:根据式(1-1)333311V 25010Pa 4010m RT8.314Pa m mol K 298.15Kp n ---⨯⨯⨯==⋅⋅⋅⨯4.0mol =N 2的摩尔质量为28.0 g · mol -1,钢瓶中N 2的质量为:4.0 mol × 28.0 g · mol -1 = 112 g 。
大学无机第1章 气体、溶液和胶体

第1章 气体、溶液和胶体一、 教学要求1.了解理想气体状态方程,气体分压定律;2.了解有关溶液的基本知识,并能进行溶液浓度的有关计算;3.掌握稀溶液的四个依数性及其应用;4.了解胶体溶液的基本性质,了解吸附的基本规律。
掌握胶团的组成和结构,理解溶胶的双电层结构和溶胶稳定性之间的关系,掌握胶体的保护及破坏,熟练写出胶团结构式;5.了解表面活性物质和乳状液的基本概念。
【重点】:1.理想气体状态方程式及分压定律的应用和相关计算;2.溶液浓度的表示法,各浓度之间的相互换算;3.稀溶液依数性的含义,各公式的适用范围及进行有关的计算;4.胶团结构和影响溶胶稳定性和聚沉的因素。
【难点】:1.稀溶液依数性的原因;2. 胶团结构和影响溶胶稳定性和聚沉的因素。
二、重点内容概要在物质的各种存在状态中,人们对气体了解得最为清楚。
关于气体宏观性质的规律,主要是理想气体方程,混合气体的分压定律。
1. 理想气体状态方程所谓理想气体,是人为假设的气体模型,指假设气体分子当作质点,体积为零,分子间相互作用力忽略不计的气体。
理想气体状态方程为:PV = nRT① RT M m pV = ② RT Mp ρ= 此二式可用于计算气体的各个物理量p 、V 、T 、n ,还可以计算气体的摩尔质量M 和密度ρ。
原则上理想气体方程只适用于高温和低压下的气体。
实际上在常温常压下大多数气体近似的遵守此方程。
理想气体方程可以描写单一气体或混合气体的整体行为,它不能用于同固、液共存时的蒸气。
2.分压定律混合理想气体的总压力等于各组分气体分压力之和。
分压是指在与混合气体相同的温度下,该组分气体单独占有与混合气体相同体积时所具有的压力。
∑i321p p p p p =+++= 还可以表述为: i i px p =3.溶液浓度的表示方法(1)质量分数 ωB =m m B (2)质量浓度 B B m Vρ= (3)物质的量浓度 B B n c V = (4)质量摩尔浓度 AB B =m n b (5)物质的量分数(摩尔分数)BA A AB A B B n n n x n n n x +=+= 所以:x A + x B = 1,若将这个关系推广到任何一个多组分系统中,则有:i i 1x=∑质量分数ωB 和质量摩尔浓度B b 与物质的量浓度B c ,可用溶液的密度ρ为桥梁相互换算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学化学01第一章气体和溶液
大学化学01第一章气体和溶液
第一章气体和溶液
学习要求
1.了解分散体系的分类和主要特点。
2.掌握理想气体状态方程和气体分压定律。
3.掌握稀溶液的通用性和应用。
4.掌握胶体的基本概念、结构及其性质等。
5.了解高分子溶液、乳状液的基本概念和特征。
1.1天然气
1.1.1理想气体状态方程
气体是物质的一种形式。
它没有固定的形状和体积,可以自动填充任何容器。
气体的基本特性是扩散性和压缩性。
特定温度下的气体通常通过其压力或体积来测量。
当压力不太高(小于101.325kpa)且温度不太低(大于0℃)时,可以忽略气体分子的体积和分子间的作用力。
气体体积、压力和温度之间的关系如下:
pv=nrt(1-1)
式中,p为气体压力,Si为单位PA;V是气体的体积,Si单位为m3;N是物质的量,SI单位是摩尔;T是气体的热力学温度,Si是K;R是摩尔气体常数。
方程(1-1)称为理想气体状态方程。
在标准状况(p=101.325pa,t=273.15k)下,1mol气体的体积为22.414m3,代入式(1-1)可以确定r的数值及单位:
Rpvnt?101.325? 103帕?22.414? 10? 3m31mol?273.15k3?1.一
8.314pammolk
=8.314j?摩尔?k(1pa?m=1j)
例1-1某氮气钢瓶容积为40.0l,25℃时,压力为250kpa,计算钢瓶中氮气的质量。
解:根据式(1-1)
1.13n?pvrt?250? 103帕?40? 10? 3m38。
314pa?m3?摩尔?1.K1.298.15k
4.0mol
N2的摩尔质量为28.0gmol-1,气缸中N2的质量为4.0mol×28.0gmol-1=112g
1.1.2道尔顿分压定律
在生产和科学实验中,实际遇到的大多数气体都是由几种气体组成的混合物。
如果将几个互不反应的气体放入同一容器中,则组分气体I施加在容器壁上的压力称为气体的分压(PI),它等于气体在相同温度下与混合气体体积相同时产生的压力。
1801年,英国物理学家道尔顿J通过大量实验发现,气体混合物中各组分的分压之和等于气体混合物的总压。
这种关系被称为道尔顿分压定律。
可以表示为:
p?p1+p2?p3??pi??pi(1-2)
我1n,其中:P是气体的总压力;PI是组分气体B的分压。
根据理想气体状态方程,p总?n总所以
rtrt,pi?nivv
pip总?nin总即pi?p总nin总(1-3)
顺序
nin总?xi,则
圆周率?P全席(1-4)
xi表示i的物质的量与混合物的物质的量之比,称为组分i的摩尔分数。
对于任何一个多组分系统
席?1ni?1.
在同温同压的条件下,气体的体积与其物质的量成正比,因此混合气体中组分i的体积分数等于其摩尔分数,即
VIV total?总Nin(1-5)
式中:vi和v总分别表示组分i的体积和混合气体的总体积。
将方程(1-5)代入方程(1-3),我们可以得到:
pi?p总viv总(1-6)
该公式表明,在相同温度和压力下,气体混合物组分I的分压等于组分I的体积分数与气体混合物总压的乘积。
严格来说,分压定律仅适用于理想气体混合物,但对压力不太高的真实混合气体,在温度不太低的情况下也可近似使用。
在本课程中,把实际气体均近似为理想气体。
例1-2在冬季,草原上的空气主要含有氮、氧和氩。
在压力为9.9×104pa和-20℃时,氮、氧和氩的体积分数分别为0.790、0.20和0.010。
收集样品时,计算每种气体的分压。
解决方案:根据公式(1-6)
pi?p总viv总
p(n2)?总共0.79便士?0.790? 9.9? 104? 7.82? 104pap(o2)?总共0.20便士?
0.20? 9.9? 104? 1.98? 104pap(AR)=0.010p总计?0.010? 9.9? 104? 0.099? 104pa
1.2溶液
1.2.1分散系统
物质除了以气态、液态、固态的形式单独存在以外,还常常以一种(或多种)物质分散
于另一种物质中的形式存在,这种形式称为分散系。
例如,细小的水滴分散在空气中形成
的云雾,二氧化碳分散在水中形成的汽水,奶油分散在水中形成的牛奶,各种金属化合物
分散在岩石中形成的矿石等都是分散系。
在分散系中,被分散的物质称为分散相(或分散质),而容纳分散质的物质称为分散介质(或分散剂)。
分散相处于分割成粒子的不连续状态,而分散介质则处于连续状态。
在分散系中,分散相和分散介质可以是固体、液体或气体。
按分散相和分散介质的聚集状态分类,分散系可以分为九种,见表1-1。
表1-1按聚集状态分类的各种分散体系
分散相气液固气液固气液固
分散介质气-气-液-固
实例空气、家用煤气云、雾烟、灰尘泡沫、汽水
牛奶、豆浆、果冻乳液、油漆泡沫、木炭冻肉、硅胶
红宝石、合金、有色玻璃
此外,根据分散相的粒径,分散体系通常分为三类:低分子或离子分散体系、胶体分
散体系和粗分散体系,如表1-2所示。
表1-2按分散相粒子大小分类的各种分散系
分散相
分散系类型
粒径/nm
稳定、扩散快、粒子能
<1
低分子或离子分散系小分子或离子
通过半透膜稳定,扩散缓慢,颗粒不稳定
氯化钠、氢氧化钠
分散相
主要特征
实例
单相系统等水溶液蛋白质、核酸水溶液、橡胶的苯溶液氢氧化铁、碘化银
1~100
胶体分散系高分子溶液高分子
它能穿透半透膜
分子、离子、原较稳定、扩散慢、粒子
索尔
子的聚集体
无法穿透半透膜,不稳定,扩散缓慢,粒径
乳状液、悬浊液分子的大集合体
过滤器不能通过滤纸
>100
粗分散多相体系溶胶
乳汁、泥浆
系统的任何统一部分都称为相位。
在同一相中,其物理和化学性质完全相同,并且相
之间存在明显的界面分离。
只有一个相的系统称为单相系统或均相系统,
有两个或两个以上相的系统称为多相系统。
低分子或离子分散系为均相系统,溶胶和
粗分散系属于多相系统。
1.2.2溶液浓度的表示方法
解作为物质存在的一种形式,广泛存在于自然界。
它与生物体的生存和发展密切相关。
生物体内的各种生理生化反应都是在以水为主要保持剂的溶液体系中进行的。
此外,科学
研究和工农业生产也离不开解决方案。
溶液的性质与溶质和溶剂的相对含量有关。
根据研究和生产的不同需要,溶液浓度的表示方法有很多,如量浓度、摩尔分数、质量摩尔浓度和质量分数。
1.物质的量浓度
B物质的量除以混合物的体积称为B物质的量浓度。
当无法混淆时,简称为浓度。
由符号CB表示,即
cb?nbv(1-7)
混合物中Si的体积为mol,V的单位为混合物中Si的体积。
常用的非国际单位制体积单位是l,所以常用的浓度单位是moll-1。
根据si规定,使用物质的量单位mol时,应指明物质的基本单元。
所以在使用物质的量浓度时也必须注明物质的基本单元。
例如c(h2so4)=0.10moll-1与
c(1/2h2so4)=0.10moll-1的两个溶液,它们浓度数值虽然相同,但是,它们所表示1l溶液中所含h2so4的物质的量是不同的,分别为0.10mol和0.050mol。
2.摩尔分数
物质b的物质的量与混合物总物质的量之比,称为物质b的摩尔分数。
其数学表达式为:
xb?nbn(1-8)
式中:,xi为物质b的摩尔分数,si单位为1;nb为物质b的物质的量,si单位为mol;n为混合物总物质的量,si单位为mol。
3.质量摩尔浓度
溶液中溶质b的物质的量除以溶剂的质量,成为溶质b的质量摩尔浓度。
其数学表达式。