八年级解分式方程练习题及答案
八年级数学上册第十五章 第3节 分式方程 解答题专题训练 33含答案解析.docx

八年级数学上册第十五章第3节分式方程解答题专题训练(33)一、解答题x-6 x(2)已知关于x的一元二次方程-x2+-x-m^2无实数根,求m的取值范围.2 32.某书店老板去图书批发市场购买某种图书.第一次用12000元购书若干本,并按该书定价70元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用15000元所购该书数量比第一次多10本.(1)求两次购书的价格分别是多少?(2)若第二次购书按定价售出200本时,出现滞销,于是决定打折出售剩下这批书,那么该商家最低打几折才能保证剩下书的利润率不低于5% ?、 4 1 23.解方程:——-—I—= ;-2x x x-24.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成. 已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天。
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少?(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?5.足球是世界第一运动,参与足球运动可以锻炼身体,陶冶情操.“高新美少年,阳春蹴鞠忙”,让学生走出教室,走进阳光,让每一位学生健康、快乐成长,是高新一中初中校区一直秉承的理念.本月,我校第四届校园足球联赛落下了帷幕,并取得了四满成功.为了举办本次活动,我校在商场购买甲、乙两种不同的足球,购买甲种足球共花费2600元,购买乙种足球共花费1328元,购买甲种足球的数量是购买乙种足球数量的2.5倍,且购买一个乙种足球比购买一个甲种足球多花18元.求购买一个甲种足球、一个乙种足球各需多少元?6.为推进垃圾分类,推动绿色发展,某工厂购进甲乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分10kg,甲型机器人分类800千克垃圾所用的时间与乙型机器人分类600kg垃圾所用的时间相等.(1)两种机器人每小时分别分类多少垃圾?(2)现在两种机器人共同分类500kg垃圾,工作2小时后,甲型机器人因机器维修退出,求甲型机器人退出后,乙型机器人还需工作多长时间才能完成?7.解下列分式方程,、x + 1 4 1(2)------------ — = 1X-1 X' -1&某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:王老师说:"篮球的单价比排煤的单价多30元李老师说:“用1000元购买的排球个数和用】600元氏买 J的至■直个豪相等同学们,请求出篮球和排球的单价各是多少元.9.解方程(组):2x+7y=53x+y = -210.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1. 2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?11.为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表甲乙进价(元/双)m m-20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值(2)由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,且总利润应不超过22300元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?(3)在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50〈a〈70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货. 12.端午节期间,某校"慈善小组"筹集善款600元全部用于购买粽子到福利院送给老人.购买大枣粽子和豆沙粽子各花300元,已知大枣粽子比豆沙粽子每盒贵5元,结果购买的 大枣粽子比豆沙粽子少2盒.请求出两种口味的粽子每盒各多少元?13. 解方程:(每小题3分,共6分)16. 根据《佛山-环西拓规划方案》,三水区域内改造提升的道路约37公里,届时,沿线 将串联起狮山、乐平、三水新城、水都基地、白堀等城镇节点,在这项工程中,有一段 4000米的路段由甲、乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队 每天完成的工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少 用20天.求甲、乙两个工程队平均每天各完成多少米?17. 桐梓县"四抓四到位"确保教育均衡发展,加速城区新、扩建项目工程・,加快建设某间 小学,公司经过调查了解:甲、乙两个工程队有能力承包建校工程,甲工程队单独完成建 校工程的时间是乙工程队的2倍,甲、乙两队合作完成建校工程需要60•天.(1) 甲、乙两队单独完成建校工程各需多少天?(2) 若甲、乙两队共同工作了 10天后,乙队因其他工作停止施工,由甲队单独继续施 工,要使甲队总的工作量不少于乙队已做工作量的2倍,那么甲队至少再单独施工多少 天? 18. 解分式方程:(2) ---------- = ------- . 2x-l x+219. 台风“天鸽”登录珠海,距离珠海市180千米处的某武警部队立即派车前往救灾,按 原计划速度匀速行驶60千米后,接上级通知,需紧急赶往目的地.于是以原速度的1.2倍 匀速行驶,结果比原计划提前12分钟到达,求原计划的行驶速度.20. 解分式方程:,、x , 3 , 、 x+1 4 , (1) ---------- 1 — ----------- . (2) --------------- z ---- — 1. x — 1 2x — 2 x — 1 x — 121. 某校为了开展“阳光体育〃活动,购进一批体育用品.经了解,长绳的单价比短绳的单 价多5元,用12000元购进的长绳与用8000元购进的短绳的数量相等.问购进的长绳和14.按要求计算:(2)解分式方程:Y1 5+23 15.解下列方程:(1) ----------- 1 = ------ (2)— ------- =— x+2 x-2 x 2 + x x + 1小淇: 105 140------ 1 ------x 0.8%= 40;小尧:亜x0.8 14040 — y短绳的单价分别是多少元.22.甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,则乙每分钟打________ 个字.23.关于x的方程:竺学一X-1 1-X(1)当a = 3时,求这个方程的解;(2)若这个方程有增根,求a的值.24.计算或解方程:(1)[―右]十[—六) (2)甘一士[ = 125.现用A、B两种机器人来搬运化工原料.A型机器人比B型机器人每小时少搬运3kg, A 型机器人搬运40kg与B型机器人搬运60kg所用时间相等,两种机器人每小时分别搬运多少化工原料?26.某服装店用960元购进一批服装,并以每件46元的价格全部售完•由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.(1)该服装店第一次购买了此种服装多少件?⑵两次出售服装共盈利多少元?27.2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了25%.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.28.某县为践行“绿水青山就是金山银山”的理念,保护生态环境,某村计划在荒山上植树1200棵,实际每天植树的数量是原计划的1. 5倍,结果比原计划提前了5天完成任务,求原计划每天植树多少棵?29.下面是小淇、小尧对一道中考题目的部分解答.题目:刘阿姨到超市购买大米,第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40kg.这种大米的原价是多少?根据以上信息,解答下列问题.⑴小淇同学所列方程中的X表示 _____ ,小尧同学所列方程中的y表示_______ ;(2)在上述两个方程中任选一个求解,并回答题目中的问题.30.长春外国语学校为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元.已知学校用12000元购买的科普类图书的本数与用9000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【答案与解析】一、解答题1. (1) x=-12 ; (2) m< -----18分析:(1)去分母后解整式方程即可,注意要检验;(2)根据方程无实数根,结合根的判别式即可得出关于m 的一元一次不等式,解之即可 得出结论.详解:(1)方程两边乘以x (x-6)得:90x=60(x-6),解得:x=—12.经检验:x=-12是原方程的根.分式方程的根为x=—12.(2) •••关于x 的一元二次方程丄_? +丄兀—加=2没有实数根,2 3点睛:本题考查了解分式方程以及根的判别式,熟练掌握"当厶<0时,方程没有实数根" 是解题的关键.2. (1)第一次购书的进价是50元,第二次购书的进价是60元;(2)该商家最低打九折才能保证剩下书的利润率不低于5%(1) 设第一次购书的单价为x 元,根据第一次用12000元购书若干本,第二次购书时,每 本书的批发价已比第一次提高了 20%,他用15000元所购该书的数量比第一次多10本,列 出方程,求出x 的值即可得出答案;(2) 设该商家打y 折,依题意列出不等式,解不等式即可(1)设第一次购书的单价为x 元,则第二次购书单价是(1+20%) x 元,12000 15000x +1°=(l + 20%)x解得:x = 50,经检验,x = 50是原方程的解, /.(1+20%) x=60答:第一次购书的进价是50元,第二次购书的进价是60元;(2) 150004-60=250 (本) 解:设该商家打y 折,依题意得:® 話 60)x (詈°-200),(罟200)x60x5%解得:y>9答:该商家最低打九折才能保证剩下书的利润率不低于5%.•.△=(*)2_4X *X (—加―2)<0,解得: 37 m < ------- , 18 37 的值取值范围为m<- —18根据题意得:【点睛】此题考查了分式方程的应用、不等式的应用,分析题意,找到关键描述语,找到合适的等 量关系是解决问题的关键.3. 原分式方程无解.按照去分母、移项、合并同类项的步骤求解即可.方程两边同时乘以x(x-2),得:4+(兀—2)= 2%x = 2检验:当x = 2时,x(x-2)= 0•••原分式方程无解.【点睛】此题主要考查分式方程的求解,熟练掌握,即可解题.4. (1)甲、乙两工程队每天能完成绿化的面积分别是50m\ 25m 2; (2)至少安排甲队 工作20天.(1) 设乙工程队每天能完成绿化的面积是xrr?,则甲工程队每天能完成绿化的面积是 2xm 2,根据"独立完成面积为200加$区域的绿化时,甲队比乙队少用4天"列出方程,再解 即可;(2) 根据题意可得等量关系:绿化总费用=甲队的绿化总费用+乙队的绿化总费用,根据 "使这次的绿化总费用不超过8万元"列出不等式求解即可.解:(1)设乙工程队每天能完成绿化的面积是xrrA解得:x=25, 经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25x2=50 (m?),答:甲、乙两工程队每天能完成绿化的面积分别是50n?、25m 2;(2)设至少应安排甲队工作y 天.根据题意得:解得y>20,所以至少安排甲队工作20天.【点睛】本题考查分式方程的应用,一元一次不等式的应用.解决此题的关键是正确理解题意,找 出题目中的等量关系和不等量关系,据此列出方程或不等式.5.购买一个甲种足球、一个乙种足球各需65和83元 设一个甲种足球需要x 元,根据题意列出方程即可求出答案.解:设一个甲种足球需要x 元,根据题意得:型一型=4 x 2x0.35y + 1100 —50y25 x 0.25 <8•I 一个乙种足球需要(x+18)元,解得:x = 65, 经检验,x = 65是原方程的解, /.x+18 = 83,答:购买一个甲种足球、一个乙种足球各需65和83元【点睛】本题考查分式方程的实际应用,解题的关键是正确找出题中的等量关系,本题属于基础题 型.6. (1)甲型机器人每小时分类40kg 垃圾.乙型机器人每小时分类30kg 垃圾;(2)甲型 机器人退出后乙型机器人还需要工作12小时.(1) 设甲型机器人每小时分类xkg 垃圾.则乙型机器人每小时分类(x- 10) kg 垃圾,根 据工作时间=工作总量十工作效率结合甲型机器人分类800千克垃圾所用的时间与乙型机 器人分类600kg 垃圾所用的时间相等,即可得出关于x 的分式方程,解之经检验后即可得 出结论;(2) 根据乙型机器人还需工作时间=剩余的工作总量宁乙型机器人的工作效率,即可求出 结论.解:(1)设甲型机器人每小时分类xkg 垃圾.则乙型机器人每小时分类(x- 10) kg 垃 圾, , 800 600依逆思,得: ---- =X x-10解得:x=40,经检验,x=40是原方程的根,且符合题意,.•.X - 10=40 - 10 = 30. 答:甲型机器人每小时分类40kg 垃圾.乙型机器人每小时分类30kg 垃圾.(2) [500 - (40+30) X214-30 = 12 (小时).答:甲型机器人退出后乙型机器人还需要工作12小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.2 7. (1) x=—; (2)无解 3(1) 先去分母化为整式方程,再解方程求出解后检验即可;(2) 先去分母化为整式方程,再解方程求出解后检验即可.3- x _ 14+7_2 2 (3-x) =4+x6-2x=4+x-3x=-2由题意可知:型竺 x % + 182x=—,3经检验,x= |•是原分式方程的解, •••原分式方程的解是x=|;(X +1)2-4= X2-1%2 + 2尢 +1 — 4 = — 12x=2x=l,检验:当x=l时,x2-l=0, /.x=l不是原分式方程的解,•••分式方程无解.【点睛】此题考查解分式方程,首先将分式方程去分母化为整式方程,求出整式方程的解后需检验是否符合分式方程,再确定分式方程的解.8.排球的单价为50元,则篮球的单价为80元.设排球的单价为x元,则篮球的单价为(x+30)元,根据总价宁单价=数量的关系建立方程求出其解即可.设排球的单价为x元,则篮球的单价为(x+30)元,根据题意,列方程得:1000 1600x x + 30解得:x=50.经检验,x=50是原方程的根,当x=50 时,x+30=80.答:排球的单价为50元,则篮球的单价为80元.【点睛】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,总价夕单价=数量的数量关系的运用,解答时根据排球和篮球的数量相等建立方程是关键.(1)利用加减消元法解方程组即可;(2)去分母、移项、解出X的值,最后验根即可.2x + 7y = 5 ①(1)\ …3x + y = -2(2)②x7-①得:19x=-19,解得x=-l把x=-l代入②解得:y=lx = -l ・・・原方程组的解为{ °卜=12x + 5 1 (2) ----- = _ x-3 2去分母得:2(2x+5)=x-3,去括号得:4x+10=x-3,移项得:3x=-13,13系数化为1得:X=-y.经检验,x=——是原方程的解.【点睛】本题考查解二元一次方程组及分式方程,解二元一次方程组的主要思想是消元,其解法有 加减消元法和代入消元法等,解分式方程主要是转化思想,把分式方程转化为整式方程求 解,注意,解分式方程时,最后要检验是否为增根.10. (1)购入B 种原料每千克的价格最高不超过10元;(2)这种产品的批发价为50 元.(1)设B 种原料每千克的价格为x 元,则A 种原料每千克的价格为(x + 10)元 根据使 每件产品的成本价不超过34元列出不等式求解即可;(2)设这种产品的批发价为a 元, 则零售价为(a + 30)元,根据“用10000元通过批发价购买该产品的件数与用16000元 通过零售价购买该产品的件数相同,”正确列出分式方程即可.(1)设B 种原料每千克的价格为X 元,则A 种原料每千克的价格为(X + 10)元, 根据题意得:1.2(兀+10)+兀34, 解得:兀,10.答:购入B 种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a 元,则零售价为(a+30)元,解得:a = 50, 经检验,a = 50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量 间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.11. (1) m=100; (2)共有11种方案;(3)①当50<a<60时,应购进甲种运动鞋 105双,购进乙种运动鞋95双;②当a=60时,所有方案获利都一样;③当60<a<70 时,应购进甲种运动鞋95双,购进乙种运动鞋105双.(1)根据用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同,构根据题意得: 10000 a 16000a + 30建方程即可解决问题;(2) 根据题意,列出不等式组即可解决问题;(3) 设总利润为 W,则 W= (240-100-a) x+80 (200-x) = (60-a) x+16000 (95<x<105), 分三种情况:①当50<a<60时,②当a=60时,③当60<a<70时,进行讨论.解:(1)依题意得,2400 ,整理得,3000 (m-20) -2400m,解得 m=100, m m-20 经检验,m=100是原分式方程的解,所以,m=100; (2) 设购进甲种运动鞋x 双,则乙种运动鞋(200-x)双,(240 —100)x + (160 — 80)(200-%)> 21700①根据题思得,[go_go)* + (160-80)(200-x)< 22300②解不等式①得,x>95,解不等式②得,x<105,所以,不等式组的解集是95<x<105,Tx 是正整数,105-95+1=11, /.共有11种方案;(3) 设总利润为 W,则 W= (240-100-a) x+80 (200-x) = (60-a) x+16000 (95<x<105),① 当50<a<60时,60-a>0, W 随x 的增大而增大,所以,当x=105时,W 有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95 双; ② 当a=60时,60-a=0, W=16000, (2)中所有方案获利都一样;③ 当60<a<70时,60-a<0, W 随x 的增大而减小,所以,当x=95时,W 有最大值, 即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.【点睛】本题考查一元一次不等式组的应用和分式方程的应用,解题的关键是读懂题意,掌握一元 一次不等式组的应用和分式方程的应用.12. 30; 25.试题分析:方程的应用解题关键是找出等量关系,列出方程求解.本题根据购买大枣粽子和 豆沙粽子各花300元,结果购买的大枣粽子比豆沙粽子少2盒,得到等量关系:购买豆沙 粽子的盒数-2=大枣粽子的盒数,由此列出方程,解方程即可.试题解析:设豆沙粽子每盒x 元,则大枣粽子每盒(x+5)元.解得 Xi=-30, X2=25.经检验血=-30, X2=25是原方程的解,但Xi=-30不符合题意,舍去.当 x=25 时,x+5=30.答:大枣粽子每盒30兀,51沙粽子每盒25兀.考点:分式方程的应用.13. {解析}试题分析:根据题意可知分式方程的解法步骤:去分母(同乘以最简公分母), 化为整式方程,解方程,检验,得到原方程的解.试题解析:(1)去分母,得2xx2 + 2 (x+3) =7,解得,x=-, 6经检验,x=Z 是原方程的解. 6依题意得^X300尤+5’(2)方程两边同乘(x-2)得,l-x=-l-2 (x-2), 解得,x=2.检验,当x=2时,X —2=0,所以x=2不是原方程的根,所以原分式方程无解.考点:解分式方程2a14. (1) ----------- ; (2)无解;(3) 1 a-b(1) 先把括号内的分式通分化简,再把除法运算转化为乘法运算,然后约分即可;(2) 先把分式方程化为整式方程求出x 的值,再代入最简公分母进行检验即可;(3) 根据绝对值、二次根式以及平方差公式计算,再合并即可.,2a —b b 、 2b —a (1)( ------------------ )- --------------- a + b a — b a + b_ (2a - b\a -b)- b(a + b)a +b (Q + b)(a - b) -(a - 2b)2a(a - 2b) a + b(Q + b)(o-b) a-2b laa-b (2)方程两边同乘(x-3),得 x-2 = 2(x-3)+ l,x-2 = 2x-6 +1解得:x = 3 ,检验:当x = 3时,最简公分母x-3 = 0,所以x = 3不是原方程的解,所以原方程无解;=5-2^6+276-4 =1【点睛】本题考查了分式的化简,实数的混合运算,解分式方程,解分式方程要注意:(1)解分式方 程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意-(3+同(3-同⑶ |2^6-5| + 12要验根.15. (1) x=— : (2)分式方程无解. 3根据解一元一次方程的方法去分母、去括号、移项、合并同类项、化系数为1的步骤求出 x 的值即可.解:(1)去分母得:x 2 - 2x - X 2+4=X +2,经检验% = |是分式方程的解;(2)去分母得:5x+2=3x,解得:x= - 1,经检验x= - 1是增根,分式方程无解.【点睛】考查分式方程的解法,熟练掌握解分式方程的步骤是解题的关键.注意检验.16.甲工程队平均每天完成200米,乙工程队平均每天完成100米.设乙工程队平均每天完成x 米,则甲工程队平均每天完成2x 米,根据工作时间=总工作量* 工作效率结合甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天,即可得 出关于x 的分式方程,解之经检验后即可得出结论.设乙工程队平均每天完成x 米,则甲工程队平均每天完成2x 米,解得:x=100, 经检验,x=100是原分式方程的解,且符合题意,.•.2x=200. 答:甲工程队平均每天完成200米,乙工程队平均每天完成100米.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.17. (1)甲工程队单独完成建校工程需要180天,乙工程队单独完成建校工程需要90天(2)甲队至少再单独施工30天(1)根据题意可设乙工程队单独完成建校工程需要x 天,则甲工程队单独完成建校工程需 要2x 天,利用甲乙合作工作量之和等于1,可列方程:60解得:x=90,所以 2x=180. (2)根据题意可设甲队再单独施工y 天,然后根据题意得:需兰 > 咯^,解得:y230. 180 90(1)设乙工程队单独完成建校工程需要X 天,则甲工程队单独完成建校工程需要2x 天, 根据题意得:60 (4占),=1,x 2x解得:x=90,经检验,x=90是原方程的解,且符合题意,2x=180.根据题意得: 4000 x 4000 2x'=1,答:甲工程队单独完成建校工程需要180天,乙工程队单独完成建校工程需要90天.(2)设甲队再单独施工y天,根据题意得:孕艮啓x2,180 90解得:y>30,答:甲队至少再单独施工30天.【点睛】本题主要考查分式方程的应用,不等式的应用,解决本题的关键是要熟练确定题目中的等量关系,正确列出方程和不等式.18.(1)方程无解;(2) x=13.(1)两边都乘以最简公分母(x+2) (x-2),把分式方程化为整式方程求解,求出x的值后要代入原方程验根;(2)两边都乘以最简公分母(x+2) (2x-l),把分式方程化为整式方程求解,求出x的值后要代入原方程验根(1)两边同乘以(x+2) (x-2)得:x (x+2) - (x+2) (x-2) =8,去括号,得:x2+2X-X1 +4=8,移项、合并同类项得:2x=4,解得:x=2.经检验,x=2是方程的增根,方程无解.(2)由题意可得:5 (x+2) =3 (2x-l),解得:x=13,经检验,当x=13 时,(x+2) 乂0, 2X-1H0,故x=13是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.19.原计划的行驶速度为100千米/时.解题时利用“计划用时-实际用时小时”这一等量关系列出分式方程求解即可.60解:设原计划的行驶速度为x千米/时,, 180-60 180-60 12n则: ----------------- =一,x 1.2% 60解得x=100,经检验:x=100是原方程的解,且符合题意,所以x=100.答:原计划的行驶速度为100千米/时.【点睛】本题主要考查分式方程的应用,根据已知条件列出分式方程式解题的关键.20. (1) -; (2) x=l (是增根)4试题分析:(1)方程左右两边同时乘以2x —2,解出x 以后验证是否为增根即可;(2) 方程左右两边同时同时乘以x 2-l,解出x 以后验证是否为增根即可.试题解析:2x+2x —2=3, 4x=5,5 x 二一, 4 经检验X=』是分式方程的解;4(2)(x+1) 2-4=X 2-1, X 2+2X +1—4=x 2 —1, x=l,经检验,x=l 是分式方程的增根,所以方程无解.点睛:解分式方程先将分式方程化为整式方程,解出X 以后一定要验证X 是否为方程的增 根.21. 短绳的单价是10元,则长绳的单价是15元.设短绳的单价是x 元,用相等关系"用12000元购进的长绳与用8000元购进的短绳的数量 相等",列分式方程求解,注意检验.解:设短绳的单价是x 元,则长绳的单价是(x+5)元,由题意,得 12000x + 58000= ------- , 5 解得:x=10,经检验,x=10是原方程的根x+5=15 元,答:短绳的单价是10元,则长绳的单价是15元.22. 45设乙每分钟打字X 个,甲每分钟打(X + 5)个,根据题意可得:饕=弓,去分母可得:(1) X x-l 2x-21000x = 900(x+5),解得% = 45,经检验可得:x = 45,故答案为:45.23. (1) x=—2;(2) a=—3. Q . -1 ry (1)将沪3代入,求解丄〒一一=1的根,验根即可, x-1 1-x (2) 先求出增根是x=l,将分式化简为ax+l+2=x —1,代入x=l 即可求出a 的值.Q . 1 r\解:⑴当a=3时,原方程为上〒一一=1, x-1 1-x方程两边同乘x —1,得3x+l+2=x —1,解这个整式方程得x=—2,检验:将 x=—2 代入 x —1 = —2—1 = —3/0,•••x=—2是原分式方程的解.(2)方程两边同乘x ―1,得ax+l+2=x —1,若原方程有增根,则x —1=0,解得x=l,将x = l 代入整式方程得a+1+2=0,解得a= —3.【点睛】本题考查解分式方程,属于简单题,对分式方程的结果进行验根是解题关键.8尢424. (1) ----------- ; (2) x=l9y分析:(1)先算乘方,然后把除法转化为乘法约分化简;(2)两边都乘以最简公分母(x+l)(x-l),把分式方程转化为整式方程求解,解分式方程要验根;y 2 8x 6 8x 4二・——x --- = ------- -----9x 2 y 3 9y '(2)两边都乘以最简公分母(x+l)(x-l),得 (x + 1)2 - 4 = x 2 -1 .*.X 2+2X +1-4=X 2-1Z2x=2,x = 1.点睛:本题考查了分式的混合运算和分式方程的解法,熟练掌握分式运算的相关法则和解 分式方程的步骤是解答本题的关键.25. A 型机器人每小时搬运6千克化工原料分析:首先设A 型机器人每小时搬运x 千克化工原料,则B 型机器人每小时搬运(x+3)千克 化工原料,根据题意列出分式方程,从而得出答案.详解: (1)原式=詁。
八年级数学下分式方程练习题含答案

八年级数学下分式方程练习题含答案1.在下列方程中,关于x的分式方程的个数(a为常数)有()2个。
2.关于x的分式方程m/(x-5)=1,下列说法正确的是()B.m>−5时,方程的解是正数。
3.方程1-153/(1-x^2)+ (x+1)/(x-1)=1-x的根是()D.x=2.4.1-4/x+42/x^2=0,那么x的值是()A.2.5.下列分式方程去分母后所得结果正确的是()C。
(x-2)^2/x-4= x(x+2)。
6.XXX同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读70页。
7.若关于x的方程(m-1)/(x-1)-x/(x-1)=0,有增根,则m的值是()B.2.8.若方程A/(x-3)+B/(x+4)=(2x+1)/[(x-3)(x+4)],那么A、B 的值为()A.2,1.9.如果x=a/b,且a-b≠0,那么(a-b)/(a+b) =()D.x-1.10.使分式43/(x^2-4)与(x^2+x-6)/(x^2+5x+6)+2/(x^2-4)的值相等的x等于()B.-3.1.满足方程 $\frac{1}{x-1}=\frac{2}{x-2}$ 的 $x$ 的值是________。
2.当 $x=$________ 时,分式 $\frac{1+x}{5+x}$ 的值等于$\frac{2}{1}$。
3.分式方程 $\frac{x^2-2x}{x-2}=\sqrt{x-1}$ 的增根是________。
4.一辆车从甲地开往乙地,每小时行驶 $v_1$ 千米,$t$ 小时可到达,如果每小时多行驶 $v_2$ 千米,那么可提前到达________小时。
5.农机厂职工到距工厂 $15$ 千米的某地检修农机,一部分人骑自行车先走 $40$ 分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的 $3$ 倍,若设自行车的速度为 $x$ 千米/时,则所列方程为$\frac{15}{x}+\frac{4}{3}\sqrt{x^2+225}=\frac{5}{2}x$。
八年级数学上册第十五章 第3节 分式方程 解答题专题训练 8含答案解析.doc

八年级数学上册第十五章第3节分式方程解答题专题训练(8)一、解答题1.解方程:^1x + 3 2x + 62.(1)分解因式:x(a-b)+y(a-b)3 4(2)解分式方程: ----- =—X-1 X3.在争创全国卫生城市的活动中,我县一青年突击队决定清运一重达50吨的垃圾,请根据以下信息,帮小刚计算青年突击队的实际清运速度。
(1)清运开工后,由于附近居民主动参加义务劳动,清运速度比原计划提高了一倍。
(2)结果比原计划提前了 2小时完成任务。
4.超市老板大宝第一次用1000元购进某种商品,由于畅销,这批商品很快售完,第二次去进货时发现批发价上涨了 5元,购买与第一次相同数量的这种商品需要1250元.(1)求第一次购买这种商品的进货价是多少元?(2)若这两批商品的售价均为32元,问这两次购进的商品全部售完(不考虑其它因素)能赚多少元钱?5.解方程:2-x 1 ,(1) ---- + ---- = 1x — 3 3 — x3 x + 2八(2) --------------- = 0%-1 %(% -1)6.根据以下信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg产品,可列方程为—小惠同学设甲型机器人搬运800kg 所用时间为v小时,可列方程为一(2)请你按照(1)中小华同学的解题思路,写出完整的解答过程.7.计算:(1)sin30° - (2)解方程;8.新冠肺炎疫情防控期间,学校为做好预防性消毒工作,开学初购进A、8两种消毒10.解方程: 6 x 2-l液,其中A 消毒液的单价比3消毒液的单价多40元,用3200元购买3消毒液的数量是用 2400元购买A 消毒液数量的2倍.(1) 求两种消毒液的单价;(2) 学校准备用不多于6800元的资金购买A 、3两种消毒液共70桶,问最多购买A 消 毒液多少桶?9. 甲乙两名工人各承包了一段500米的道路施工工程,已知甲每天可完成的工程比乙多5 米.两人同时开始施工,当乙还有100米没有完成时,甲已经完成全部工程.(1) 求甲、乙每天各可完成多少米道路施工工程?(2) 后来两人又承包了新的道路施工工程,施工速度均不变,乙承包了 500米,甲比乙多 承包了 100米,乙想:这次我们一定能同时完工了!请通过计算说明乙的想法正确吗?若 正确,求出两人的施工时间;若不正确,则应该如何调整其中一人的施工速度才能使两人 同时完工,请通过计算给出调整方案.3x+2y = -12x + 3y = T-9 1 4(2) -- = ------------- .4 — x 2 + 尤 2 — x11. 某商厦分别用600元购进甲、乙两种糖果,因为甲糖果的进价是乙糖果进价的1.2倍,所以进回的甲糖果的重量比乙糖果少10kg.(1) 甲、乙两种糖果的进价分别是多少?(2) 若两种糖果的销售利润率均为10%,则两种糖果的售价分别是多少?(3) 如果将两种糖果混合在一起销售,总利润不变,那么混合后的糖果单价应定为多少 元?12. 王老师从学校出发,到距学校2000m 的某商场去给学生买奖品,他先步行了 800m后,换骑上了共享单车,到达商场时,全程总共刚好花了 15min .已知王老师骑共享单车 的平均速度是步行速度的3倍(转换出行方式时,所需时间忽略不计).(1) 求王老师步行和骑共享单车的平均速度分别为多少?(2) 买完奖品后,王老师原路返回,为按时上班,路上所花时间最多只剩10分钟,若王 老师仍采取先步行,后换骑共享单车的方式返回,问:他最多可步行多少米?13. 某市从今年1月1日起调整居民用水价格,每立方米水费上涨S ,小丽家去年12月 的水费是15元,而今年7月的水费则是30元.已知小丽家今年7月的用水量比去年12 月的用水量多5m 3,求小丽家今年7月的用水量.14. 小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较 拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比 走路钱一少用10分钟到达.求小明走路线一时的平均速度./ 、 “、e x 1 2x + 215. (1)解万程:一+1 = ---------X+1 X, 7 3(2)解方程: -- C ------ 2x+x x-x记者:你们是用9天完成4800长的高架桥铺设任务的?眼(2)解方程:土 +: = 上19. (1)化、1 4 (1) ----- =—;x-2 x2 -4 (2) 1 -----3x-l 6x-222 . (本题共10当a为何值x-1x-2x-2_ 2x+ax + 1 (x-2)(x+ l)的解是负16.“绿水青山就是金山银山”,为了进一步优化河道环境,甲乙两工程队承担河道整治任务,甲、乙两个工程队每天共整治河道1500米,甲工程队整治3600米所用的时间与乙工程队整治2400米所用时间相等。
八年级数学上册第十五章 第3节 分式方程 解答题专题训练 7含答案解析.docx

八年级数学上册第十五章第3节分式方程解答题专题训练⑺一、解答题1.解方程(8分)x- 1 xX- 1 X2 - 12.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,若两车合作,各运12趟才能完成,需支付运费共4 800元.若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍,已知乙车每趟运费比甲车少200元.⑴分别求出甲、乙两车每趟的运费;(2)若单独租用甲车运完此堆垃圾,需多少趟?⑶若同时租用甲、乙两车,则甲车运x趟,乙车运y趟,才能运完此堆垃圾,其中x, y均为正整数.①当x=10 时,y=_;当y=10 时,x= _____:②用含x的代数式表示y;探究:⑷在⑶的条件下:①用含x的代数式表示总运费w;②要想总运费不大于4 000元,甲车最多需运多少趟?(1)化简:(2°; + 2°一_ )十互3.— 1 a~ — 2a +1 a— 1x + 1 2(2)解分式方程:- -------- =1x-3 x+34.某校服厂准备加工500套运动服,在加工200套后,改进工艺,使得工作效率比原计划提高20%,结果共用9天完成任务,问校服厂原计划每天加工多少套?5.列方程解下列实际问题某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天完成绿化的面积是乙队每天完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.求甲、乙两工程队每天能完成绿化的面积分别是多少?6.某市组织学术研讨会,需租用客车接送参会人员往返宾馆和观摩地点,客车租赁公司现有45座和60座两种型号的客车可供租用,已知60座的客车每辆每天的租金比45座的贵100 元.(1)会务组第一天在这家公司租了2辆60座和5辆45座的客车,一天的租金为1600 元,求45座和60座的客车每辆每天的租金各是多少元?(2)由于第二天参会人员发生了变化,因此会务组需重新确定租车方案,方案1:若只租用45座的客车,会有一辆客车空出30个座位;方案2:若只租用60座客车,正好坐满且 比只租用45座的客车少用两辆① 请计算方案1,2的费用;② 如果你是会务组负责人,从经济角度考虑,还有其他方案吗?7. 解下列分式方程:(2) --------- 1 = -------------------- x-1 (x-l)(x + 2)&列方程解应用题:港珠澳大桥是中国中央政府支持香港、澳门和珠三角地区城市快速发展的一项重大举措, 港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和 澳门,止于珠海洪湾,总长55千米,是粤港澳三地首次合作共建的超大型跨海交通工 程.某天,甲乙两辆巴士均从香港口岸人工岛出发沿港珠澳大桥开往珠海洪湾,甲巴士平 均每小时比乙巴士多行驶10千米,其行驶时间是乙巴士行驶时间的丄.求乘坐甲巴士从香6港口岸人工岛出发到珠海洪湾需要多长时间.9. 2019年4月12日,安庆“筑梦号”自动驾驶公开试乘体验正式启动,让安庆成为全国 率先开通自动驾驶的城市,智能、绿色出行的时代即将到来.普通燃油车从A 地到B 地, 所需油费108元,而自动驾驶的纯电动车所需电费27元,已知每行驶I 千米,普通燃油汽 车所需的油费比自动的纯电动汽车所需的电费多0.54元,求自动驾驶的纯电动汽车每行驶 1千米所需的电费.10. 2020年新冠肺炎疫情影响全球,在我国疫情得到有效控制的同时,其他国家感染人 数持续攀升,呼吸机作为本次疫情中重要的治疗仪器,出现供不应求,而我国是全球最大 的呼吸机生产国•很多企业承担了大量生产呼吸机的任务.现某企业接到订单,需生产4,B 两种型号的呼吸机共7700台,并要求生产的A 型呼吸机数量比B 型呼吸机数量多 2100 台.(1)生产A, B 型两种呼吸机的数量分别是多少台?如果该生产厂家共有26套生产呼吸机的机床设备,同时生产这两种型号的呼吸机,每套设 备每天能生产A 型呼吸机90台或B 型呼吸机60台,应各分配多少套设备生产A 型呼吸机 和B 型呼吸机,才能确保同时完成各自的任务.12. 在国庆70周年之际,为表达对人民子弟兵的敬意,某班将募集到的60件小礼品邮寄11. (1)解不等式组 % + 2< 3%4%-2<x+4(2)解分式方程口x-2=1给某边防哨卡,计划每名战士分得数量相同的若干个小礼品,结果还剩5个;改为每名战士再多分1个,结果还差6个,这个哨卡共有多少名战士?13.动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就分两批分别用32000元和68000元购进了这种玩具销售,其中第二批购进数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司这两批各购进多少套玩具?(2)如果这两批玩具每套售价相同,且全部销售后总利润不少于20000元,那么每套售价至少是多少元?JQ 314.解分式方程:R —1 = (_1)(乂 + 2)15.某班班委主动为班上一位生病住院的同学筹集部分医药费,计划筹集450元,由全体班委同学分担,有5名同学闻讯后也自愿参加捐助,和班委同学一起平均分担,因此每个班委同学比原先少分担45元,问:该班班委有几个?16.甲、乙两公司为某基金会各捐款30 000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?17.解分式方程:x+4 3(2) ---------- —------I丿兀(兀一1) x-118.已知关于x的分式方程^-^-- = 1.x-2 x⑴若方程的增根为x=2,求a的值;⑵若方程有增根,求a的值;⑶若方程无解,求a的值.19.某文具厂加工一种学生画图工具2500套,在加工了1000套后,采用了新技术,使每天的工作效率是原来的1.5倍,结果提前5天完成任务.求该文具厂采用新技术前平均每天加工多少套这种学生画图工具.20.汽车比步行每小时快24千米,自行车比步行每小时快12千米,某人从A地先步行4 千米,然后乘汽车16千米到达B地,又骑自行车返回A地,往返所用时间相同,求此人步行速度.21 •阅读下列材料:在学习"分式方程及其解法"过程中,老师提出一个问题:若关于x的分式方程亠 + — = 1的解为正数,求a的取值范围?X-1 L-X经过小组交流讨论后,同学们逐渐形成了两种意见:小明说:解这个关于X的分式方程,得到方程的解为x=a-2.由题意可得a-2>0,所以a>2,问题解决.小强说:你考虑的不全面.还必须保证时3才行.老师说:小强所说完全正确.请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明:完成下列问题:9 my — 1⑴已知关于X的方程勺解为负数,求m的取值范围;3 — 2x 2 —rix(2)若关于x的分式方程一+-—=-1无解.直接写出n的取值范围.x~3 3 — x22.一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20 天恰好完成任务,求乙队单独做需要多少天能完成任务?23.解下列方程3 x _(1)— _ — = 一2 ;x-2 2-x24.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的丄倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?25.岳阳王家河流域综合治理工程已正式启动,其中某项工程,若由甲、乙两建筑队合做,6个月可以完成,若由甲、乙两队独做,甲队比乙队少用5个月的时间完成.(1)甲、乙两队单独完成这项工程各需几个月的时间?(2)已知甲队每月施工费用为15万元,比乙队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲队做a 个月,乙队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?26.某班有45名同学参加紧急疏散演练.对比发现:经专家指导后,平均每秒撤离的人数是指导前的3倍,这45名同学全部撤离的时间比指导前快3秒.求指导前平均每秒撤离的人数. 27.东营市新建火车站站前广场需要绿化的面积为46000平方米,施工队在绿化了22000 平方米后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程,则该项绿化工程原计划每天完成多少平方米?28.解答下列各题:x+2y x+2y2x x + 129.当m为何值时关于x的方程竺+ —=的解是非负数?x-1 1-x丄3 2f2x+v = 5 30.(1)解方程:x x+2;(2)解方程组:丘-)=1【答案与解析】一、解答题1.(1) x=2;(2)无解试题分析:首先进行去分母,将分式方程转化为整式方程,然后进行求解,最后需要对所求的解进行验根.试题解析:(1) %2—2x+2=x"—x —x=—2 x=2经检验,x=2是原分式方程的解.x2+2x+l~4=x2 -1 2x=2 x=1经检验,x=l是原方程的增根原方程无解.考点:解分式方程2.(1)甲、乙两车每趟的运费分别为300元、100元;(2)单独租用甲车运完此堆垃圾,需运18 趟;(3) @16, 13, y=36 —2x; (4)①w=100x+3600,②甲车最多需运4 趟.(1)设甲、乙两车每趟的运费分别为m元,n元,根据题意列出二元一次方程组,求解即可;(2)设单独租用甲车运完此堆垃圾,需运a趟,由题意累出分式方程,求解即可;(3)①列出分式方程求解即可;②根据题意,列出分式方程转换形式即可;(4)①结合(1)和(3)的结论,列出函数关系式即可;②根据题意列出不等式,求解即可.⑴设甲、乙两车每趟的运费分别为m元,n元,由题意,得m-n = 20012(m+n) = 4800m = 300解得H = 100答:甲、乙两车每趟的运费分别为300元、100元;(2)设单独租用甲车运完此堆垃圾,需运a趟,由题意,得解得a = 18经检验,a = 18是原方程的解,且符合题意. 答:单独租用甲车运完此堆垃圾,需运18趟;⑶①由题意,得—= 1, y = 16; 1 = 1, x = 13;18 36 18 36②由题意,得話討,・*.y=36 — 2x ;(4)①由(1)和(3),得总运费为 w=300x+100y=300x+100(36—2x)=100x+3600,②由题意,得 100x+3600<4 000,/.x<4.答:甲车最多需运4趟.【点睛】此题主要考查了分式方程的应用以及一元一次方程、二元一次方程组、一元一次不等式的 应用,关键是正确理解题意,找出题目中的等量关系,列出方程求解.3. (1) — ;(2) x = —9 .2 (1)先提取公因式,再约分后进行分式的加减,最后计算分式的除法;(2)先化为整式 方程,解整式方程后注意检验是否为原方程的解./ 八 /2夕+2。
初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析1.若关于的分式方程有增根,则.【答案】2.【解析】方程两边都乘(x﹣3),得m =2+x﹣3,∵原方程有增根,∴最简公分母,x﹣3=0,解得x=3,当x=3时,m=2.故答案是2.【考点】分式方程的增根.2.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?【答案】(1)4;(2)7.【解析】(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据两次购买的数量之间的关系建立方程求出其解即可;(2)先根据(1)的结论分别求出两次购买的数量,设该蔬菜每千克售价为y元,由销售问题的数量关系建立不等式求出其解即可.试题解析:(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据题意,得,解得:x=4.经检验x=4是原方程的根,答:第一次所购该蔬菜的进货价是每千克4元;(2)由(1)知,第一次所购该蔬菜数量为:400÷4=100第二次所购该蔬菜数量为:100×2=200设该蔬菜每千克售价为y元,根据题意,得[100(1-2%)+200(1-3%)]y-400-700≥944.解得:y≥7.答:该蔬菜每千克售价至少为7元.【考点】1.分式方程的应用;2.一元一次不等式的应用.3.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】方案(3)最节省.【解析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.试题解析:设规定日期x天完成,则有:,解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.方案(1):20×1.5=30(万元),方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.【考点】分式方程的应用.4.列分式方程解应用题为提升晚高峰车辆的通行速度,北京市交通委路政局积极设置潮汐车道,首条潮汐车道于2013年9月11日开始启用,试点路段为京广桥至慈云寺桥,全程约2.5千米.该路段实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度平均提高了25%,行驶时间平均减少了1.5分钟.该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶多少千米?【答案】20.【解析】设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,则实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度为(1+25%)x千米/小时,根据实行潮汐车道前后的时间关系建立方程求出其解即可.试题解析:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴原分式方程的解是x=20.答:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶20千米.考点: 分式方程的应用.5. 2011年雨季,一场大雨导致一条全长为550米的污水排放管道被冲毁,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,问原计划每天铺设多少米管道?(列方程解应用题)【答案】原计划每天铺设10m管道【解析】设原计划每天铺设x米管道,根据实际施工时,每天的工效比原计划增加10%,表示出现在每天铺设的米数,根据现在比原计划提前5天,用全长除以每天铺设的米数分别表示出原计划及现在的时间,两时间相减等于5即可列出所求的方程, -=5,解方程x=10.试题解析:设原计划每天铺设xm的管道,则实际每天铺设(1+10%)xm的管道,由题意列方程:-=5,化简得1.1×550-550=5×1.1x,x =10,检验:当x=10时,1.1x≠0,∴ x=10是原方程的根,答:原计划每天铺设10m管道.【考点】由实际问题抽象出分式方程.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)90天(2)甲、乙合作完成最省钱【解析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.解:(1)设乙队单独完成需x天.(1分)根据题意,得:×20+(+)×24=1解这个方程得:x=90.(4分)经检验,x=90是原方程的解.∴乙队单独完成需90天.(5分)(2)设甲、乙合作完成需y天,则有(+)y=1.解得y=36,(6分)甲单独完成需付工程款为60×3.5=210(万元).乙单独完成超过计划天数不符题意,甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).(7分)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.若关于x的方程有正数解,则k的取值为A.k>1B.k>3C.k≠3D.k>1且k≠3【答案】D【解析】先解方程得到用含k的代数式表示x的形式,再结合方程有正数解及分式的分母不能为0求解即可.解方程得由题意得且解得且故选D.【考点】解分式方程点评:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.解方程:【答案】x="3"【解析】先去分母,再移项、合并同类项,化系数为1,注意解分式方程最后要写检验.经检验x=3是原方程的解.【考点】解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.9.某超市用5000元购进一批新品种的苹果试销,由于销售状况良好,超市决定再用11000元购进该种苹果,但这次进货价比试销时多了0.5元,购进苹果数量是试销时的两倍。
八年级上册数学分式方程练习题及答案

八年级上册数学分式方程练习题及答案一、选择题:1、下列式子:22x1am?n,,,1?,, 中是分式的有个x3a?ba?b?A、B、C、D、22、下列等式从左到右的变形正确的是bb2bb?1ababbmA、?B、?C、2? D、? aaaa?1baamb3、下列分式中是最简分式的是m2?142m?1A、 B、C、2D、 m?12a1?mm?14、下列计算正确的是11111?mB、?m?m??1 C、m4??m3?1 D、n?m?n? nmmmn 3m22n35、计算?的结果是 ?2n3mnn2n2nA、 B、?C、 D、?m3m3m3mA、m?n?6、计算xy的结果是 ?x?yx?yxyx?y D、 x?yx?yA、1 B、0C、m27、化简m?n?的结果是 m?nm2?n2mnA、 B、?C、 D、? m?nm?nnm8、下列计算正确的是A、??1B、9、如果关于x的方程0?1?1 C、3a?2?35?32??a D、ax?8k??8无解,那么k的值应为 x?77?xA、1B、-1C、?1D、910、甲、乙两人做某一工程,如果两人合作,6天可以完成,如果单独工作,甲比乙少用5天,两人单独工作各需多少天完成?设乙单独工作x天完成,则根据题意列出的方程是A、111111111111??B、??C、??D、?? xx?56xx?56xx?56xx?56a2?a二、填空题: 11、分式,当a______时,分式的值为0;当a______时,分式无意义,当a______时,分式有意义12、x2?y22a?1a,2,2x?y.13、9?3aa?9a?6a?9的最简公分母是_____________. ?xa?1a?1ab??_____________.15、??_____________. abba?bb ?a116、?2?_____________. 17、把?0.0000000358用科学记数法表示为______________14、18、如果方程2则m=________ 19、如果x?x?1?5,则x2?x?2?___________ ?3的解是5,m20、一轮船在顺水中航行100千米与在逆水中航行60千米所用的时间相等,已知水流速度为3千米/时,求该轮船在静水中的速度?设该轮船在静水中的速度为x千米/时,则所列方程为___________________三、解答题21、计算:0?11?3??1x?yx??2??4???3?11x?12?3?2?23 232a2?? x?1x?212?21b?aa?b2a2?4??1?0 10baba?b??xy??2y?x?y?x2?2x2x?11?,其中x??2、先化简,再求值2x?13x?1 分式方程一.选择题1.分式方程1?1的解为x?3x?x?1x??1 x??22.第六次火车大提速后,从北京到上海的火车运行速度提高了25%,运行时间缩短了2h。
(完整版)八年级上册数学分式方程应用题及答案

八年级上数学分式方程专项练习1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?解:设乙单独整理需x 分钟完工,则120204020=++x解,得x =80 经检验:x =80是原方程的解。
答:乙单独整理需80分钟完工。
2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则3001500900+=x x 解,得x =450 经检验:x =450是原方程的解。
答:第一块试验田每亩收获蔬菜450千克。
3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
解:设步行速度是x 千米/时,则247197=-+xx 解,得x =5 经检验:x =5是原方程的解。
进尔4x =20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x 瓶酸奶,则2.053140.185.12+⎪⎭⎫ ⎝⎛+=x x 解,得x =5 经检验:x =5是原方程的解。
答:她第一次在供销大厦买了5瓶酸奶。
5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴ 求这种纪念品4月份的销售价格。
八年级数学分式方程测试题及答案

分式方程知能点1 分式方程1.下列方程中分式方程有()个.(1)x2-x+1x (2)1a20103(4)xx y x y-=-+-=1A.1 B.2 C.3 D.以上都不对2A3A4(322563x x x x--+-5.解下列分式方程:(1)22142361;(2)11111x x x x x x +-=+=--+--.67 (18.解方程:2155()14x x x x---=.9.在式子50s s a a b+=+中,s>0,b>0,求a .1011.a12.已知分式方程21x ax +-=1的解为非负数,求a 的取值范围.◆开放探索创新13.阅读并完成下列问题:通过观察,发现方程x+1x =2+12的解是x 1=2,x 2=12;x+1x=3+13的解是x 1=3,x 2=13;x+1x=4+14的解是x 1=4,x 2=14,…(1. (2(3,141618.解方程:252112x x x+--=3.答案:1.B 2.C 3.C4.解:(1)方程两边同乘以x-2,得2x=x-2,(2=6x 2+6x ,(3 得 5 ( ∴ (2 2 ∴x=1是原方程的增根,即原方程无解. 6.解:方程两边各自通分,得22(4)(6)(5)(7)(9)(8)(5)(6)(8)(9)24256364(5)(6)(8)(9)x x x x x x x x x x x x x x --------=------=----整理得即x 2-11x+30=x 2-17x+72,解得x=7.检验:把x=7代入原方程各分母,显然(x-5)(x-6)(x-8)(x-9)≠0, ∴原方程的解为x=7. 7.解:(1)移项:ax a-=1-b , 去分母:a=(1-b )(x-a ), 去括号:a=(1-b )x-a (1-b ),∵ ∴ (2 ∵ ∴x=-mm n-是原方程的解. 8.解:原方程可化为:(1x x -)2-14=5(1x x-). 设1x x-=y ,则原方程可化为:y 2-5y-14=0, 即(y-7)(y+2)=0,∴y-7=0或y+2=0,则y 1=7或y 2=-2. 当y 1=7时,即1x x -=7,则x 1=-16; 当y 2=-2时,即1x x -=-2,则x 2=13. 经检验,x 1=-16,x 2=13都是原方程的解. 9.解:方程两边同乘以a (a+b ),得s ∴10 ( ( 而 ( 11 2(x+2)+ax=3(x-2). ①因为原方程有增根,而增根为x=2或x=-2, 所以这两个增根是整式方程①的根.将x=2代入①,得2×(2+2)+2a=0,解得a=-4.将x=-2代入①,得0-2a=3×(-2-2),•解得a=6.所以当a=-4或a=6时,原方程会产生增根.12.解:去分母,得2x+a=x-1,解得x=-a-1.依题意,得10,(1)10.(2)aa--≥⎧⎨--≠⎩由(1)得a≤-1,由(2)得a≠-2.13.(1(314.15.16.17.18.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级解分式方程练习题及答案八年级解分式方程练习题及答案1.分式方程252?的解是________.=3的解是________;分式方程x3x?1x2.已知公式PP1?2,用P1、P2、V2表示V1=________. V2V1 3.已知y=4mx,则x=________.n?x4.一项工程,甲单独做需m小时完成,若与乙合作20小时可以完成,则乙单独完成需要的时间是A.20m20mm?20m?20小时B.小时C.小时D.小时m?20m?2020m20m5.我市要筑一水坝,需要规定日期内完成,如果由甲队去做,?恰能如期完成,如果由乙队去做,需超过规定日期三天,现由甲、乙两队合做2天后,?余下的工程由乙队独自做,恰好在规定日期内完成,求规定的日期x,下面所列方程错误的是22x3+=1B.= xx?3xx?31111xC.×2+=1 D.+=1 xx?3xx?3x?3A.6.物理学中,并联电路中总电阻R和各支路电阻R1、R2满足关系若R1=10,R2=15,求总电阻R.7.为改善环境,张村拟在荒山上种植960棵树,由于共青团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计算每天种植多少棵?设原计划每天种植x 棵,根据题意得方程________.8.某河两地相距s千米,船在静水中的速度为a千米/时,水流速度为b千米/时,船往返一次所用的时间为A.111=+,RR1R2ss2s2sss B.C.+ D.+ aba?ba?ba?ba?b拓展创新题9.用35克盐配制成含盐量为28%的盐水溶液,则需要加水多少克?10.某车间有甲、乙两个小组,?甲组的工作效率比乙组的工作效率高25%,因此,甲组加工000个零件所用的时间比乙组加工100?个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件?11.甲、乙两工程队共同完成一项工程,乙队先单独做1?天后,再由两队合作两天就完成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的2,求甲、乙两队单独完成各需多少天?12.大华商场买进一批运动衣用了10 000元,每件按100?元卖出,全部卖出后所得的利润刚好是买进200件所用的款,?试问这批运动衣有多少件?13.一批货物准备运往某地,有甲、乙、丙三辆卡车可以雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a次、?a次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨,?若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨,问:乙车每次所运货物是甲车所运货物的几倍?现甲、乙、丙合运相同次数把这批货物运完时,?货主应付车主运费各多少元?14.一小船由A港到B港顺流需行6h,由B港到A港逆流需行8h.一天,?小船早晨6点由A港出发顺流到B港时,发现一救生圈在途中掉落在水中,立即返回,1h后找到救生圈,问:若小船按水流速度由A港到B港漂流多少小时??救生圈是何时掉入水中的?答案:1.x=2,x=232.V1=PV22P13.6ny4m?y960960-=.Dxx?204.A .D .67.9.90克 10.甲:500个/?时乙:400个/时11.甲队:4天乙队:6天 12.200件13.?乙车是甲车的2?倍,?甲2160元,乙、丙各420元.14.本题的关键是弄清顺流速度、?逆流速度和船在静水中速度与水速的关系;弄清问题中的过程和找出包含的相等关系.解:设小船由A港漂流到B港用xh,则水速为∴1. x1111-=+x8x解得x=48.经检验x=48是原方程的根.答:小船按水流速度由A港漂流到B港要48h.1,小船顺流由A港到481111B?港用6h,逆流走1h,同时救生圈又顺流向前漂了1h,依题意有=64884设救生圈y点钟落入水中,由问题可知水流速度为×1,解得y=11.答:救生圈在中午11点落水.分式方程练习题及答案一、选择题1.下列式子是分式的是A.x2xx?y B. C. D.x2?2.下列各式计算正确的是aa?1nnann?abb2,?a?0?D.?A.?B.?C.? mmabb?1mm?aaab3.下列各分式中,最简分式是m2?n2a2?b23?x?y?x2?y2A. B. C.2D.22m?n7x?yab?abx?2xy?ym2?3m4.化简的结果是?m2A.mmmmB.?C.D. m?3m?33?mm?3x?y中的x和y都扩大2倍,那么分式的值 xy5.若把分式A.扩大2倍 B.不变C.缩小2倍D.缩小4倍6.若分式方程1a?x?3?有增根,则a的值是x?2a?x A.1B.0C.—1 D.—2abca?b??,则的值是34c475A. B. C.1D.447.已知8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时,则可列方程1006010060?? B.x?3030?xx?30x?301006010060??C. D.0?x30?xx?30x?30A.9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。
设原计划行军的速度为xkm/h,,则可列方程60606060??1??1xx?20%xx?20%A. B.60606060??1??1xxxx C.D.10.已知abck,则直线y?kx?2k一定经过b?ca?ca?bA.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限二、填空题11.计算ab?= .12.用科学记数法表示—0.000 000 0314= .?232?3 2a1??.a?4a?234?14.方程的解是. x70?x9162536,,,??中得到巴尔末公式,从15.瑞士中学教师巴尔末成功地从光谱数据,512213213.计算而打开了光谱奥秘的大门。
请你尝试用含你n的式子表示巴尔末公式.x212116.如果记y? =f,并且f表示当x=1时y的值,即f=;?21?121?x21111f表示当x=时y的值,即f=;??那么?1522221?212f+f+f+f+f+?+f+f= .3n三、解答题17.计算:3b2bc2aa2?6a?93?aa2. ??; ??16a2a2b2?b3a?94?b218.解方程求x:x?14mn?2?1 ; ??0.x?1x?1xx?119.有一道题:“先化简,再求值:?其中,x=—3”. x?2x?4x?4小玲做题时把“x=—3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?16.3.1 分式方程同步测试◆知能点分类训练知能点1 分式方程1.下列方程中分式方程有个.2D34x1?x22x2?。
x?2x?5x?6x?35.解下列分式方程:67.解下列关于x的方程:ab?1;x?amn=0. ?xx?18.解方程:?14?xx2ax3会产生错误? ?2?x?2x?4x?212.已知分式方程,2x?a=1的解为非负数,求a的取值范围. x?1,.x2?2x?21a?1? 根据上面的规律,可将关于x的方程变x?1a?1 形为_______,方程的解是_________,?解决这个问题的数学思想是_________.◆中考真题实战14.解方程:x?3154; 15.解方程:?1??=0.4?xx?4x?1x14.解:方程两边同乘以x-2,得2x=x-2,解得x=-2.经检验,x=-2是原方程的解.方程两边同乘以x,得2+5x2=6x,即x2+2x+1+5x2=6x2+6x,解得x=.经检验,x=是原方程的解.1414分式方程1.分式方程252=3的解是________;分式方程?的解是________. x3x?1xPP1?2,用P1、P2、V2表示V1=________. V2V12.已知公式3.已知y=4mx,则x=________.n?x4.一项工程,甲单独做需m小时完成,若与乙合作20小时可以完成,则乙单独完成需要的时间是A.20m20mm?20m?20小时B.小时C.小时D.小时m?20m?2020m20m5.我市要筑一水坝,需要规定日期内完成,如果由甲队去做,?恰能如期完成,如果由乙队去做,需超过规定日期三天,现由甲、乙两队合做2天后,?余下的工程由乙队独自做,恰好在规定日期内完成,求规定的日期x,下面所列方程错误的是2x23+=1B.= xx?3xx?31111xC.×2+=1 D.+=1 xx?3xx?3x?3A.6.物理学中,并联电路中总电阻R和各支路电阻R1、R2满足关系若R1=10,R2=15,求总电阻R.7.为改善环境,张村拟在荒山上种植960棵树,由于共青团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计算每天种植多少棵?设原计划每天种植x 棵,根据题意得方程________.8.某河两地相距s千米,船在静水中的速度为a千米/时,水流速度为b千米/时,船往返一次所用的时间为A.111=+,RRR212s2sssss B.C.+ D.+ aba?ba?ba?ba?b拓展创新题9.用35克盐配制成含盐量为28%的盐水溶液,则需要加水多少克?10.某车间有甲、乙两个小组,?甲组的工作效率比乙组的工作效率高25%,因此,甲组加工000个零件所用的时间比乙组加工100?个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件?11.甲、乙两工程队共同完成一项工程,乙队先单独做1?天后,再由两队合作两天就完成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的2,求甲、乙两队单独完成各需多少天?12.大华商场买进一批运动衣用了10 000元,每件按100?元卖出,全部卖出后所得的利润刚好是买进200件所用的款,?试问这批运动衣有多少件?13.一批货物准备运往某地,有甲、乙、丙三辆卡车可以雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a次、?a次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨,?若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨,问:乙车每次所运货物是甲车所运货物的几倍?现甲、乙、丙合运相同次数把这批货物运完时,?货主应付车主运费各多少元?14.一小船由A港到B港顺流需行6h,由B港到A港逆流需行8h.一天,?小船早晨6点由A港出发顺流到B港时,发现一救生圈在途中掉落在水中,立即返回,1h后找到救生圈,问:若小船按水流速度由A港到B港漂流多少小时??救生圈是何时掉入水中的?答案:1.x=2,x=23PV22P12.V1=3.6ny4m?y4.A .D .67.960960-=.Dxx?209.90克 10.甲:500个/?时乙:400个/时11.甲队:4天乙队:6天 12.200件13.?乙车是甲车的2?倍,?甲2160元,乙、丙各420元.14.本题的关键是弄清顺流速度、?逆流速度和船在静水中速度与水速的关系;弄清问题中的过程和找出包含的相等关系.解:设小船由A港漂流到B港用xh,则水速为∴1. x1111-=+x8x解得x=48.经检验x=48是原方程的根.答:小船按水流速度由A港漂流到B港要48h.1,小船顺流由A港到481111B?港用6h,逆流走1h,同时救生圈又顺流向前漂了1h,依题意有=64884设救生圈y点钟落入水中,由问题可知水流速度为×1,解得y=11.答:救生圈在中午11点落水.。