数学模型第一章文稿演示
第一章 直流电动机的数学模型及其闭环控制系统

图 1-10 PWM控制器与变换器的框图
图1-9不可逆PWM变换器—直流电动机系统
结合PWM变换器工作情况可以看出:当控制 电压变化时,PWM变换器输出平均电压按线性规 律变化,因此,PWM变换器的放大系数可求得, 即为
4.直流调速系统的广义被控对象模型
(1)额定励磁状态下直流电动机的动态结构图 图1-12所示的是额定励磁状态下的直流电动机动 态结构图。
图1-12 额定励磁状态下直流电动机的动态结构框图
由上图可知,直流电动机有两个输入量,一个是施加在电枢
上的理想空载电压U d0 ,另一个是负载电流 I L 。前者是控制输入量,
它已不起作用,整流电压并不会立即变化,必须等
到 t3时刻该器件关断后,触发脉冲才有可能控制另
一对晶闸管导通。
设新的控制电压
U ct2
U
对应的控制角为
ct1
2 1 ,则另一对晶闸管在 t4 时刻导通,平均整
流电压降低。假设平均整流电压是从自然换相点
开始计算的,则平均整流电压在 t3 时刻从U d01降
Tm
GD2 R
375K
e
K
m
2 d
(1-23)
因其中d 的减小而变成了时变参数。由此 可见,在弱磁过程中,直流调速系统的被控对象 数学模型具有非线性特性。这里需要指出的是, 图1-15所示的动态结构图中,包含线性与非线性 环节,其中只有线性环节可用传递函数表示,而 非线性环节的输入与输出量只能用时域量表示, 非线性环节与线性环节的连接只是表示结构上的 一种联系,这是在应用中必须注意的问题。
Ks
U d U ct
线性规划与单纯形法文稿演示

min z = 5 x1 + 6 x2 + 7 x3 + 8 x4 3.约束条件:
x1 + 2x2 + x3 + x4 ≥160
要求:生产A种药物至少160 单位;B种药物恰好200单位, C种药物不超过180单位,且 使原料总成本最小。
2x1
+4 x3 +2 x4 =200
线性规划问题的数学模型
5. 线性规划数学模型的一般形式
目标函数:
max (min) z c1x1 c2 x2
cn xn
a11 x1 a12 x2
a1n xn ( ) b1
约束条件:
am1 x1 am2 x2
amn xn ( ) bm
x1 0
xn 0
n
简写为: max(min)Z cj xj
j1
n
aij xj ( ) bi
j1
xj 0
(i 1 2m) (j 1 2n)
线性规划问题的数学模型
向量形式: max(min)z CX
pj xj ( ) b
X 0
其中: C(c1 c2 cn)
x1
X
x n
P
j
a
1
j
a mj
b1
b
b m
线性规划问题的数学模型
3.约束条件:
2x1 + 2x2 ≤ 12
x1 + 2x2 ≤ 8
4x1
≤ 16
4x2 ≤ 12 x1 ≥ 0 , x2 ≥ 0
线性规划问题的数学模型
例1.4 某厂生产三种药物, 这些药物可以从四种不同的 原料中提取。下表给出了单 位原料可提取的药物量
第一章线性规划-模型和图解法

a22 am2
a1n
a2n amn
(P1,
P2 ,
, Pn )
用向量表示时,上述模型可写为:
max(min)Z CX
s.t
n j 1
Pj x j
(, )b
X 0
线性规划问题可记为矩阵和向量的形式:
max(min)Z CX
s.t
AX
X
(, )b 0
max(min)Z CX
x21 x23
x14
x23
x32
x41
xij 0(i 1, ,4;
15
x22 x31 12
x23 x32
j 1, ,4)
10 20
二。线性规划问题的数学模型 下面从数学的角度来归纳上述三个例子的共同点。 ①每一个问题都有一组变量---称为决策变量,一般记为
x1, x2 , , xn. 对决策变量每一组值:(x1(0) , x2(0) , xn(0) )T 代表了
表1-3
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
表1-4
单位;元/100m2
1个月 2个月 3个月 4个月
2800 4500 6000 7300
表1-2
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
max(min) Z c1x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn (, )b1
s.t
a21x1
a22 x2
a2n xn
(, )b2
am1x1 am2 x2 amnxn (, )bm
数学模型姜启源 ppt课件

《数学模型》 姜启源 主编
数学模型
9 五 5-6 6.4种群的相互依存
2
7.1市场经济中的蛛网模型
10 五 5-6 7.2减肥计划-节食与运动
2
8.3层次分析模型
12 五 5-6 8.4效益的合理分配
2
9.2报童的诀窍(讨论课)
13 五 5-6 9.5随机人口模型
2
9.6航空公司的预定票策略
14 五 5-6 10.1牙膏的销售量
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
2020/11/13
12
《数学模型》 姜启源 主编
第一章 建立数学模型
1.2 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
1.3 数学建模示例
1.4 数学建模的方法和步骤
1.5 数学模型的特点和分类
1.6 怎样学习数学建模
2020/11/13
8
《数学模型》 姜启源 主编
第一章 建立数学模型
1.1 从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
《数学模型》 姜启源 主编
数学模型
数学模型
2020/11/13
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称 数学模型与数学建模 Mathematical Modeling
先修课程 微积分、线性代数、概率论与数理统计 课程简介
第一章线性规划问题及单纯形解法演示文稿

只要存在可行解,就一定存在极点
极点的个数是有限的
最优解只可能在凸集的极点上,而不可能发生 在凸集的内部
38
第38页,共65页。
关于标准型解的若干基本概念:
Z=15x11+21x12+18x13+
20x21+25x22+16x23, x11+x12+x13≤200, x21+x22+x23≤150, x11+ x21 =100, x12+x22=80, x13+x23≥90, x13+x23≤120, xij≥0 ﹙i=1,2 j=1,2,3﹚.
10
第10页,共65页。
maxz( x) c x c x c x
11
22
nn
s.t.
a x a x a x b
11 1
12 2
1n n
1
ax 21 1
a x 22 2
a x 2n n
b 2
am1
x 1
a x m2 2
a x mn n
b m
x , x ,, x 0
1
2
n
12
第12页,共65页。
1、标准型的几种不同的表示方式
对有限个约束条件则其可行域的顶点也是有限的。
z=10000=50x1+100x
2
z=0=50x1+100x2
x2
x1+x2=300
AB C
E
z=27500=50x1+100x
姜启源 数学模型第五版-第1章

1.3
问题
建模示例之一 包饺子中的数学
通常,1kg馅, 1kg面, 包100个饺子. 今天,馅比 1kg多, 1kg面不变, 要把馅包完.
应多包几个(每个小些), 还是少包几个(每个大些)?
分析
直观认识——“大饺子包的馅多”! 但是:“用的面皮也多”!
需要比较:饺子从小变大时馅和面增加的数量关系.
C
C´ B´ B A´
O
A
x
D´
D
A,C 两脚与地面距离之和 ~ f() B,D 两脚与地面距离之和 ~ g()
正方形ABCD 绕O点旋转
模型建立
地面为连续曲面 椅子在任意位置 至少三只脚着地 椅子旋转900, 对 角线AC和BD互换 f() , g()是连续函数 对任意, f(), g() 至少一个为0 g(0)=0,f(0) > 0, f(/2)=0, g(/2)>0.
不平的地面上的椅子, 通常三只脚着地—— 放不稳! 挪动几下,使四只脚着地——椅子放稳!
讨论椅子能放稳的条件.
椅子能在不平的地面上放稳吗
模型假设
四腿一样长,椅脚与地面点接触,四脚连线呈正方形. 地面高度连续变化,可视为数学上的连续曲面. 地面相对平坦,椅子在任意位置至少三只脚着地.
模型建立
椅子位置 利用正方形(椅脚连线)的对称性. 用表示椅子位置. 四只脚着地 椅脚与地面距离为零 距离是的函数. 四个距离 (四只脚) 对称性 两个距离
模 型 构 成
尽量采用简单的数学工具
数学建模的一般步骤 模型 求解 模型 分析 模型 检验 各种数学方法、软件和计算机技术. 如结果的误差分析、统计分析、 模型对数据的稳定性分析. 与实际现象、数据比较, 检验模型的合理性、适用性.
《数学模型电子教案》课件

《数学模型电子教案》PPT课件第一章:数学模型概述1.1 数学模型的定义与分类1.2 数学模型的构建步骤1.3 数学模型在实际应用中的重要性1.4 数学模型与数学建模的区别与联系第二章:数学模型建立的基本方法2.1 直观建模法2.2 解析建模法2.3 统计建模法2.4 计算机模拟建模法第三章:线性方程组与线性规划模型3.1 线性方程组的求解方法3.2 线性规划的基本概念与方法3.3 线性规划模型的应用案例3.4 线性规划模型的求解算法第四章:微分方程与差分方程模型4.1 微分方程的基本概念与分类4.2 微分方程的求解方法4.3 差分方程的基本概念与分类4.4 差分方程的求解方法与应用第五章:概率论与统计模型5.1 概率论基本概念与随机变量5.2 概率分布与数学期望5.3 统计学基本概念与推断方法5.4 统计模型的应用案例第六章:最优化方法与应用6.1 无约束最优化问题6.2 约束最优化问题6.3 最优化方法的应用案例6.4 遗传算法与优化问题第七章:概率图与贝叶斯模型7.1 概率图的基本概念7.2 贝叶斯定理及其应用7.3 贝叶斯网络与推理方法7.4 贝叶斯模型在实际应用中的案例分析第八章:时间序列分析与预测模型8.1 时间序列的基本概念与分析方法8.2 自回归模型(AR)与移动平均模型(MA)8.3 自回归移动平均模型(ARMA)与自回归积分滑动平均模型(ARIMA)8.4 时间序列预测模型的应用案例第九章:排队论与网络流量模型9.1 排队论的基本概念与模型构建9.2 排队论在服务系统优化中的应用9.3 网络流量模型的基本概念与方法9.4 网络流量模型的应用案例第十章:随机过程与排队网络模型10.1 随机过程的基本概念与分类10.2 泊松过程与Poisson 排队网络10.3 马克威茨过程与随机最优控制10.4 排队网络模型的应用案例第十一章:生态学与种群动力学模型11.1 生态学中的基本概念11.2 种群动力学模型的构建11.3 差分方程在种群动力学中的应用11.4 种群动力学模型的案例分析第十二章:金融数学模型12.1 金融市场的基本概念12.2 金融数学模型概述12.3 定价模型与风险管理12.4 金融数学模型在实际应用中的案例分析第十三章:社会经济模型13.1 社会经济系统的基本特征13.2 经济数学模型的构建方法13.3 宏观经济模型与微观经济模型13.4 社会经济模型的应用案例第十四章:神经网络与深度学习模型14.1 人工神经网络的基本概念14.2 深度学习模型的构建与训练14.3 神经网络在数学建模中的应用案例14.4 当前神经网络与深度学习的发展趋势第十五章:数学模型在工程中的应用15.1 工程问题中的数学建模方法15.2 数学模型在结构工程中的应用15.3 数学模型在流体力学中的应用15.4 数学模型在其他工程领域中的应用案例重点和难点解析本《数学模型电子教案》PPT课件涵盖了数学模型概述、建模方法、线性方程组与线性规划、微分方程与差分方程、概率论与统计、最优化方法、概率图与贝叶斯模型、时间序列分析、排队论与网络流量模型、随机过程、生态学与种群动力学模型、金融数学模型、社会经济模型、神经网络与深度学习模型以及数学模型在工程中的应用等多个领域。
数学建模 - 第一章 组合优化模型与计算复杂性

概念的一种表达形式 . 可以建立完全不同的模型,分别反映该系统的不同
侧面;出于相同的研究目的,对于同一个对象系 模型不是研究对象本身,而是对研究对象的一种 统,也可能建立不同的模型,反映不同的研究角 抽象,它反映现实中对象系统的主要特征,但它又高 度、考察因素和价值取向 . 于现实,因而具有同类问题的共性 .
16
第一章
组合优化模型与计算复杂性
2、按模型的解的特征分类 解析模型与数值模型 3、按模型所用的数学方法分类 初等模型、微分方程模型、差分方程模型、优
化模型等
4、按模型研究的实际范畴分类
人口模型、生态系统模型 、交通流模型、经济
模型、 基因模型等 5、按对实际问题了解的程度分类 白箱模型、灰箱模型、黑箱模型
的本质属性,而且要舍弃事物的物质和能量方面的具
体内容,只考虑其数量关系和空间形式,同时还要把 这些数量关系和空间形式作进一步的抽象,加以形式 化和符号化,以便能够进行逻辑推理和数值运算 . 这种高度的抽象性,实质是对事物认识上的高度 概括和深化,对同类问题包含更多的经验和理解 .
13
§1 组合优化模型与算法 2、高度的精确性 数学方法的高度精确性表现在三个方面: 一是表达各种因素、变量和它们之间的关系相当 明确、清楚;二是逻辑推演和运算规则十分严密;三
s.t. x1 x4 x5 x6 x7 67 某商场根据客流量统计得出一周中每天所需要的
(线度)必须是偶数条 . 见图可知,与四个顶点相连的边都是奇数条,因 这是利用数学模型分析和解决问题的一个成功范例 的第一篇论文 而不可能存在通过每条边一次且仅一次的画法,即一
这是关于图论
笔画不存在 .
故七桥问题不可能有解 .
12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 从现实对象到数学模型
我们常见的模型 玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
地图、电路图、分子结构图… … ~ 符号模型 模型是为了一定目的,对客观事物的一部分 进行简缩、抽象、提炼出来的原型的替代物 模型集中反映了原型中人们需要的那一部分特征
数学模型:是指对于现实世界的某一特定研究对象,为了
某个特定的目的,在做了一些必要的简化假设,运用适当的数 学工具,并通过数学语言表述出来的一个数学结构,数学中的 各种基本概念,都以各自相应的现实原型作为背景而抽象出来 的数学概念。
简单地说,数学建模就是运用数学思想、方法和知识解决 实际问题的过程。
问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚
模 连线呈正方形;
型 假
• 地面高度连续变化,可视为数学上的连续
设 曲面;
• 地面相对平坦,使椅子在任意位置至少三
只脚同时着地。
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
• 椅子位置 利用正方形(椅脚连线)的对称性
你碰到过的数学模型——“航行问题”
甲乙两地相距750千米,船从甲到乙顺水航行需30小时, 从乙到甲逆水航行需50小时,问船的速度是多少?
用 x 表示船速,y 表示水速,列出方程:
(x y)30750
x =20
(x y)50750求解 y =5
答:船速每小时20千米/小时.
航行问题建立数学模型的基本步骤
具体一点说,数学模型是关于部分现实世界为某种目的的一 个抽象的简化的数学结构。
更确切地说:数学模型就是对于一个特定的对象为了一个特 定目标,根据特有的内在规律,做出一些必要的简化假设,运 用适当的数学工具,得到的一个数学结构。数学结构可以是数 学公式,算法、表格、图示等数学模型是用数字、字母以及其 它符号来体现和描述现实原型的各种因素形式以及数量关系的 一种数学结构。
用(对角线与x轴的夹角)表示椅子位置 B ´ B A ´
• 四只脚着地 椅脚与地面距离为零
距离是的函数
C
四个距离
两个距离
(四只脚) 正方形
C´
对称性
A
O
x
D´ D
A,C 两脚与地面距离之和 ~ f() B,D 两脚与地面距离之和 ~ g()
正方形ABCD 绕O点旋转
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
• 在一般工程技术领域数学建模仍然大有用武之地; • 在高新技术领域数学建模几乎是必不可少的工具; • 数学进入一些新领域,为数学建模开辟了许多处女地。
数学建模的具体应用
• 分析与设计
• 预报与决策
• 控制与优化
• 规划与管理
如虎添翼
数学建模
计算机技术
知识经济
1.3 数学建模示例
1.3.1 椅子能在不平的地面上放稳吗
• 作出简化假设(船速、水速为常数); • 用符号表示有关量(x, y表示船速和水速); • 用物理定律(匀速运动的距离等于速度乘以
时间)列出数学式子(二元一次方程); • 求解得到数学解答(x=20, y=5);
• 回答原问题(船速每小时20千米/小时)。
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling)
第一章 建立数学模型 第二章 初等模型 第三章 简单的优化模型 第四章 数学规划模型 第五章 微分方程模型 第六章 稳定性模型 第七章 差分方程模型 第八章 离散模型 第九章 概率模型 第十章 统计回归模型 第十一章 马氏链模型
第一章 建立数学模型
1.1 从现实对象到数学模型 1.2 数学建模的重要意义 1.3 数学建模示例 1.4 数学建模的方法和步骤 1.5 数学模型的特点和分类 1.6 怎样学习数学建模
将椅子旋转900,对角线AC和BD互换。 由g(0)=0, f(0) > 0 ,知f(/2)=0 , g(/2)>0.
令h()= f()–g(), 则h(0)>0和h(/2)<0.
由 f, g的连续性知 h为连续函数, 据连续函数的基本性
质, 必存在0 , 使h(0)=0, 即f(0) = g(0) . 因为f() • g()=0, 所以f(0) = g(0) = 0.
数学模型第一章文稿演示
前
言
数学建模是20世纪80年代初进入我国大学的一门新课,其 主要内容是通过众多的示例着重介绍如何将实际问题“翻译” 成数学问题,以及数学求解的结果又如何“翻译”回到实际中 去。课堂讲授需要简明的实际背景、合理的模型假设、有创意 的模型构造及必要的模型检验。
我们讲授这门课是根据《数学模型》(第三版,姜启源、谢 金星、叶俊编)为框架讲解的,包含了该书80%左右章节的内 容,其中大部分经过了以《数学模型》(第二版,姜启源编) 为教材的多年的教学实践,力求做到精练简明、形式活泼、信 息量大、便于使用。有条件时还可以将其中某些内容链接到数 学软件,作数值计算和图形演示。我们讲解的框架如下:
评注和思考 建模的关键 ~ 和 f(), g()的确定
假设条件的本质与非本质 考察四脚呈长方形的椅子
1.3.2 商人们怎样安全过河
问题(智力游戏)
随从们密约, 在河的任一 岸, 一旦随从的人数比商 人多, 就杀人越货.
河 小船(至多2人)
但是乘船渡河的方案由商人决定.
商人们怎样才能安全过河?
问题分析Biblioteka 地面为连续曲面f() , g()是连续函数
椅子在任意位置 至少三只脚着地
对任意, f(), g()
至少一个为0
数学 问题
已知: f() , g()是连续函数 ; 对任意, f() • g()=0 ;
且 g(0)=0, f(0) > 0.
证明:存在0,使f(0) = g(0) = 0.
模型求解
给出一种简单、粗糙的证明方法
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
1.2 数学建模的重要意义
时代特点: 1、电子计算机的出现及飞速发展
2、数学以空前的广度和深度向一切领域渗透。
数学建模作为用数学方法解决实际问题的第一步, 越来越受到人们的重视。