如何建立数学模型?

合集下载

零基础学会数学建模

零基础学会数学建模

数学建模知识‎——之新手上路一、数学模型的定‎义现在数学模型‎还没有一个统‎一的准确的定‎义,因为站在不同‎的角度可以有‎不同的定义。

不过我们可以‎给出如下定义‎:“数学模型是关‎于部分现实世‎界和为一种特‎殊目的而作的‎一个抽象的、简化的结构。

”具体来说,数学模型就是‎为了某种目的‎,用字母、数学及其它数‎学符号建立起‎来的等式或不‎等式以及图表‎、图像、框图等描述客‎观事物的特征‎及其内在联系‎的数学结构表‎达式。

一般来说数学‎建模过程可用‎如下框图来表‎明:数学是在实际‎应用的需求中‎产生的,要解决实际问‎题就必需建立‎数学模型,从此意义上讲‎数学建模和数‎学一样有古老‎历史。

例如,欧几里德几何‎就是一个古老‎的数学模型,牛顿万有引力‎定律也是数学‎建模的一个光‎辉典范。

今天,数学以空前的‎广度和深度向‎其它科学技术‎领域渗透,过去很少应用‎数学的领域现‎在迅速走向定‎量化,数量化,需建立大量的‎数学模型。

特别是新技术‎、新工艺蓬勃兴‎起,计算机的普及‎和广泛应用,数学在许多高‎新技术上起着‎十分关键的作‎用。

因此数学建模‎被时代赋予更‎为重要的意义‎。

二、建立数学模型‎的方法和步骤‎1. 模型准备要了解问题的‎实际背景,明确建模目的‎,搜集必需的各‎种信息,尽量弄清对象‎的特征。

2. 模型假设根据对象的特‎征和建模目的‎,对问题进行必‎要的、合理的简化,用精确的语言‎作出假设,是建模至关重‎要的一步。

如果对问题的‎所有因素一概‎考虑,无疑是一种有‎勇气但方法欠‎佳的行为,所以高超的建‎模者能充分发‎挥想象力、洞察力和判断‎力,善于辨别主次‎,而且为了使处‎理方法简单,应尽量使问题‎线性化、均匀化。

3. 模型构成根据所作的假‎设分析对象的‎因果关系,利用对象的内‎在规律和适当‎的数学工具,构造各个量间‎的等式关系或‎其它数学结构‎。

这时,我们便会进入‎一个广阔的应‎用数学天地,这里在高数、概率老人的膝‎下,有许多可爱的‎孩子们,他们是图论、排队论、线性规划、对策论等许多‎许多,真是泱泱大国‎,别有洞天。

建立数学模型的方法

建立数学模型的方法

建立数学模型的方法数学模型是指用数学语言和符号描述现实世界中某个问题的方法。

它是一种把复杂的现实问题转化为数学问题来进行研究和解决的手段。

建立数学模型的过程不仅需要数学知识,还需要对实际问题的深刻理解和把握。

本文将从以下几个方面介绍建立数学模型的方法。

一、分析问题建立数学模型的第一步是分析问题,要明确问题的性质、特点、目的和限制条件。

在分析问题的过程中,需要了解问题的背景和相关知识,明确问题的主要矛盾和关键因素,确定问题的量化指标和评价标准,以及考虑问题的可行性和实际性。

例如,对于一个生产企业来说,它需要分析如何提高生产效率,减少成本,同时保证产品质量和员工安全。

这就需要考虑生产设备的利用率、员工的工作效率、原材料的采购成本、产品的质量检测等因素,以及企业的资源和技术条件。

二、建立数学模型在分析问题的基础上,可以建立数学模型。

数学模型是用数学语言和符号来描述现实问题的形式化表达。

数学模型可以是代数方程、微分方程、差分方程、概率统计模型、图论模型、优化模型等等。

例如,对于上述生产企业的问题,可以建立一个生产效率的数学模型。

设生产效率为E,设生产设备的利用率为x1,员工的工作效率为x2,原材料的采购成本为x3,产品的质量检测为x4,则可以建立以下数学模型:E=f(x1,x2,x3,x4)其中,f为生产效率的函数。

可以根据实际情况选择不同的函数形式,例如线性函数、指数函数、对数函数、多项式函数等等。

三、模型求解建立数学模型后,需要进行模型求解。

模型求解是指利用数学方法和计算机技术来求解数学模型,得到问题的解答或决策。

例如,对于上述生产效率的数学模型,可以利用优化方法来求解。

假设企业的目标是最大化生产效率,同时满足设备利用率≥80%、员工工作效率≥90%、采购成本≤100万元、产品合格率≥95%等限制条件。

则可以建立以下优化模型:Max E=f(x1,x2,x3,x4)s.t. x1≥0.8, x2≥0.9, x3≤100, x4≥0.95其中,s.t.表示限制条件。

2019如何建立一个数学模型.ppt

2019如何建立一个数学模型.ppt

例2.4:AMCM-89A题要求对蠓虫加以分类。 在采用概率判别方法建模之前,作了如下假设:
1、两类蠓虫的触角与翅膀长度的总体均值、标准差
和相关系数与学习样本所能反映的值是相符的, 2、触角长度x和y服从二维正态分布
这两条假设为从概率论的角度对蠓虫进行分类提供了根据,
由于统计方法的应用必须建立在对大量样本进行分 析的基础上,而我们面临的问题是,题中所给的数 据(15个学习样本)太少,因此优秀论文作者清醒 指出,这些假设未必一定可靠,这显示了他们对实 际问题及所用方法的深刻见解,
根据赛题的实际情况,对建立的模型作出合 理的简化是解决问题的关键。
例4.1 CMCM-98B
根据题意,得到购买Si的金额为xi的交易费为
0, xi 0 ci ( xi ) pi ui ,0 xi ui p x ,x u i i i i
但因M相当大,Si若被选中,其投资额xi一般都超过ui, 交易费可简化为
如何建立一个完整的数学模型
仇秋生
数理信息工程学院
一个完整的数学建模过程主要由三部分组成: 1、用适当的数学方法对实际问题进行描述 2、采取各种数学和计算机手段求解模型 3、从实际的角度分析模型的结果,考察其是否合理、 是否具有实际意义?
一、模型准备
了解实际背景 明确建模目的 搜集有关信息 掌握对象特征
(3)统计分析模型
如AMCM-89A可以用统计学中的Fisher判别法对蠓虫 加以分类。 (4)插值与拟合模型 这是离散数据连续化处理时常用的方法。如 AMCM-86A题海底地形的描绘,AMCM-91A水塔水流 量的估计等。
(5)其它。如计算机模拟,神经网络等。
方法总结:
用的最多的方法是:微分方程、优 化化方法和概率统计的方法. 插值与拟合,随机模拟在数据处理时 很有必要。 灰色系统理论、神经网络、模糊数学 经常被乱用。 层次分析只能做半定量分析

数学模型”建立的意义与方法

数学模型”建立的意义与方法

三、建立数学模型的思维方法
数学模型构造过程的本质是数学思维的活动,因此,讨论建立数学模型的方法,不能离开思维的方法。我们认为,分析与综合、比较与分类、抽象与概括、猜想与验证等既是思维的重要方法,同样是构建数学模型的重要方法。
1.分析与综合。
分析与综合是重要的思维方式,同样是重要的数学方法,是学习数学过程中建立数学模型的重要途径之一。应用题教学中用“分析法”与“综合法”来分析数量关系,寻求解答方法的过程,就是用这种思维方式来建立一个具有典型意义的数学模型的过程。分析是对所获得的数学材料或数学问题的构成要素进行研究,把握各要素在整体中的作用,找出其内在的联系与规律,从而得出有关要素的一般化的结论的思维方式。事实上,不少学生在掌握某些数学知识或方法的时候,常常表现为一种点式的、孤立的记忆,或者只感知了某些知识之间的浅层的联系,而缺乏对他们之间的内在本质联系的把握,即缺乏一种建构意义上的链式结构,因而,其头脑中的认知结构是很不合理的,很不完善的,这样的认知结构不具有模型的价值,即不能有效地促成一些较复杂的问题的解决。如果运用分析法深人研究,以上的认知结构就可以真正建立为有价值的模型。例如,学生都会判断“谁能被谁整除”,“某两个数是否互质数”,进而判断“某分数是否最简分数”,“谋个比是否最简整数比”……但是学生可能未必真正理解“为什么这两个数是互质数而另两个数不是互质数”,或者仅将它们之间的联系停留在“约数”与“公约数”上。毫无疑问,这的确是它们之间的联系,但并非是最本质的联系,实际上“两个自然数是否具有相同的质因数”才是它们最根本的连接点。分析如下:
2.比较与分类。
比较是对有关的数学知识或数学材料,辨别它们的共同点与不同点。数学中的比较是多方面的,包括多少与大小的比较,相同与不同的比较,结构与关系的比较,定律与性质的比较等。比较的目的是认识事物的联系与区别,明确彼此之间存在的同一性与相似性,以便揭示其背后的共同模型。分类是在比较的基础上,按照事物间性质的异同,将具有相同性质的对象归入一类;不同性质的对象归入另一类的思维方法。因此,比较与分类常常是联系在一起的,在建立数学模型的诸多思维方法中,比较与分类有着重要的作用,它往往是抽象概括、合情推理的前提,而正确地进行比较与分类的基础是仔细、深入地观察。例如,教学“乘法的初步认识”,其基本过程为:(l)计算并观察算式特征:3+3+3,2+4+3,4+4+4+4+4,1+3+6+2,……(2)比较以上算式的特征并分类。(3)讨论、探索加数相同的这一类算式的简便计算方法。(4)建立基本的数学模型:“加数相同的连加算式”可以用“相同加数×相同加数的个数’这一简便的方法(乘法)来计算。

如何建立数学模型

如何建立数学模型

如何建立数学模型建立数学模型是指将实际问题抽象化,通过数学语言和符号来描述和解决问题的过程。

数学模型的建立可以帮助我们更好地理解问题的本质,分析问题的规律,预测问题的结果,以及优化问题的解决方案。

以下是建立数学模型的一般步骤和方法。

一、明确问题:首先,需要明确所要解决的问题以及问题所涉及的背景和条件。

确保对问题的理解准确明确,同时将问题与数学建模相结合。

二、问题建模:1.确定变量:将问题中涉及的各种因素抽象为数学模型中的变量。

变量可以是数值、时间、物理量等,具体根据问题的特点进行确定。

2.建立关系:确定各个变量之间的关系,包括线性关系、非线性关系、概率关系等。

可以通过实际观测数据、统计分析等方法来确定变量之间的关系。

3.建立约束条件:确定对变量的约束条件,包括等式约束、不等式约束等。

这些约束条件可以是问题中固有的限制,也可以是为了使得模型更加逼真和实际而添加的额外限制条件。

三、数学描述:1.建立数学方程:将问题中的各个变量之间的关系用数学方程来表示。

可以根据问题的特点选择合适的数学公式和方程,如线性方程组、非线性方程、微分方程等。

2.建立目标函数:如果问题是优化问题,需要建立一个目标函数,该函数描述了所要优化的目标以及变量之间的关系。

目标函数可以是最大化、最小化或者使得一些条件满足的函数。

四、求解模型:建立完数学模型后,可以通过数学方法来求解模型。

具体的求解方法根据模型的特点和问题的要求而定,例如数值计算、迭代方法、优化算法等。

求解模型的目的是得到模型的解或近似解,以用于问题的研究和应用。

五、模型验证:对建立的数学模型进行验证是非常重要的。

通过将模型的解与实际数据进行比较,或者进行模拟实验来验证模型的有效性和准确性。

如果模型的结果与实际情况相符合或者较为接近,那么该模型可以被认为是有效的。

六、模型分析和应用:对于建立的数学模型,可以进行进一步的分析和应用。

例如,可以通过灵敏度分析,研究模型对于初始条件和参数变化的敏感度;通过稳定性分析,研究模型在不同情况下的行为;通过模型的推广和延伸,应用于解决其他类似问题等。

如何建立一个数学模型

如何建立一个数学模型

如何建立一个数学模型建立一个数学模型是为了描述和解释现实问题而进行的一种抽象和形式化表示。

数学模型可以帮助我们理解现象背后的原理、预测和控制系统行为,以及进行决策和优化。

下面是一个关于如何建立一个数学模型的详细步骤。

1.确定问题:明确你要建立数学模型解决的问题。

这可能是一个实际问题,比如交通拥堵、疾病传播等,也可以是一个理论问题,比如优化问题、随机过程等。

2.收集数据:收集与问题相关的数据,并对数据进行整理和清洗。

数据可以来自实验、观测、调查等,尽量确保数据的准确性和可靠性。

3.定义假设:根据你对问题的理解和直觉,提出一些假设。

假设是对问题的简化和抽象,可以帮助我们建立数学模型。

假设可以是关于系统结构、参数、限制条件等方面的。

4.建立数学模型:选择适当的数学工具和方法来建立数学模型。

常用的数学工具包括微积分、线性代数、概率论、统计学等。

数学模型可以是方程、方程组、函数、图表等形式。

5.模型分析:分析数学模型的特性和行为。

这包括解析求解、数值求解、稳定性分析、敏感性分析等。

模型分析可以帮助我们理解和解释模型,以及对模型进行验证和调整。

6.模型验证:使用实际数据和观测结果来验证数学模型的准确性和适用性。

如果模型与实际情况相符,则可以进一步用于预测和决策。

7.模型优化:优化数学模型,使其更符合实际需求和目标。

优化可以包括调整模型参数、修正模型假设、改进模型算法等。

8.模型应用:将数学模型应用于实际问题,并进行预测、控制和优化。

根据模型的结果,制定合理的决策和行动方案。

9.模型评估:评估数学模型的效果和影响。

这包括模型的准确性、稳定性、可行性、可解释性等方面。

模型评估可以帮助我们改进和完善模型,以及对模型进行比较和选择。

总而言之,建立一个数学模型是一个复杂和系统的过程,需要深入理解问题、严谨的数据分析和数学推理能力。

一个好的数学模型可以帮助我们更好地理解和解决现实问题,促进科学研究和社会发展。

建立动态规划数学模型的步骤

建立动态规划数学模型的步骤

建立动态规划数学模型的步骤动态规划是一种解决多阶段决策问题的优化方法,它将问题分为若干阶段,每个阶段采取一个最优决策,通过递推的方式得到问题的最优解。

建立动态规划数学模型的步骤主要包括以下几个方面。

第一步,明确问题:首先要明确要解决的问题是什么,分析问题的特点和要求,明确决策的目标和约束条件。

例如,我们可以考虑求解一个最优化问题,使一些目标函数取得最大(或最小)值。

第二步,定义状态:将问题的解表示为一个或多个状态变量。

状态是问题的一个关键特征,它描述了问题在每个阶段的情况,通常用一个或多个变量表示。

状态可以是离散的,也可以是连续的。

例如,假设我们要解决一个装箱问题,可以将状态定义为装箱剩余空间的大小。

第三步,确定决策变量:决策变量是问题中可以通过决策调整的变量,其取值将影响问题的解。

决策变量通常与状态有关,帮助我们在每个阶段做出最优决策。

继续以装箱问题为例,决策变量可以是选择放入的物品或物品的数量。

第四步,建立状态转移方程:通过分析问题的特点和约束条件,建立各个阶段之间的状态转移方程。

状态转移方程描述了问题中不同状态之间的关系,即通过做出一些决策后,当前状态如何转移到下一个状态。

状态转移方程通常由决策变量和前一阶段的状态变量表示。

在装箱问题中,状态转移方程可以描述为剩余空间等于前一阶段的剩余空间减去当前决策变量所占空间。

第五步,确定边界条件:边界条件是求解动态规划问题的关键,它们表示问题的起始状态和结束状态。

通常,起始状态是已知的,而结束状态需要根据问题的要求进行分析确定。

例如,装箱问题的起始状态可以是剩余空间等于货柜的总容量,结束状态可以是没有物品剩余可以放入货柜。

第六步,确定目标函数:目标函数是求解最优化问题时需要优化的目标。

在动态规划中,目标函数通常与状态有关,它表示在每个阶段的状态下所要最大(或最小)化的目标量。

例如,在装箱问题中,目标函数可以是放入货柜的物品总价值。

第七步,建立递推关系:根据状态转移方程和边界条件,可以利用递推的方法从起始状态逐步计算到结束状态。

数学模型的建立过程

数学模型的建立过程

数学模型方法函数关系可以说是一种变量相依关系的数学模型.数学模型方法是处理科学理论问题的一种经典方法,也是处理各类实际问题的一般方法.掌握数学模型方法是非常必要的.在此,对数学模型方法作一简述.数学模型方法(Mathematical Modeling)称为MM方法.它是针对所考察的问题构造出相应的数学模型,通过对数学模型的研究,使问题得以解决的一种数学方法.一、数学模型的含义数学模型是针对于现实世界的某一特定对象,为了一个特定的目的,根据特有的内在规律,做出必要的简化和假设,运用适当的数学工具,采用形式化语言,概括或近似地表述出来的一种数学结构.它或者能解释特定对象的现实性态,或者能预测对象的未来状态,或者能提供处理对象的最优决策或控制.数学模型既源于现实又高于现实,不是实际原形,而是一种模拟,在数值上可以作为公式应用,可以推广到与原物相近的一类问题,可以作为某事物的数学语言,可译成算法语言,编写程序进入计算机.二、数学模型的建立过程建立一个实际问题的数学模型,需要一定的洞察力和想像力,筛选、抛弃次要因素,突出主要因素,做出适当的抽象和简化.全过程一般分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型到现实对象的循环.可用流程图表示如下:表述根据建立数学模型的目的和掌握的信息,将实际问题翻译成数学问题,用数学语言确切地表述出来.这一个关键的过程,需要对实际问题进行分析,甚至要做调查研究,查找资料,对问题进行简化、假设、数学抽象,运用有关的数学概念、数学符号和数学表达式去表现客观对象及其关系.如果现有的数学工具不够用时,可根据实际情况,大胆创造新的数学概念和方法去表现模型.求解选择适当的方法,求得数学模型的解答.解释数学解答翻译回现实对象,给实际问题的解答.验证检验解答的正确性.例如,哥尼斯堡一条普雷格尔河,这条河有两个支流,在城中心汇合成大河,河中间有一小岛,河上有七座桥,如图1所示.18世纪哥尼斯堡的很多居民总想一次不重复地走过这七座桥,再回到出发点.可是试来试去总是办不到,于是有人写信给当时著名的数学家欧拉,欧拉于1736年,建立了一个数学模型解决了这个问题.他把A、B、C、D这四块陆地抽象为数学中的点,把七座桥抽象为七条线,如图2所示.CB图1 图2人们步行七桥问题,就相当于图2的一笔画问题,即能否将图2所示的图形不重复地一笔画出来,这样抽象并不改变问题的实质.哥尼斯堡七桥问题是一个具体的实际问题,属于数学模型的现实原型.经过理想化抽象所得到的如图2所示的一笔画问题便是七桥问题的数学模型.在一笔画的模型里,只保留了桥与地点的连接方式,而其他一切属性则全部抛弃了.所以从总体上来说,数学模型只是近似地表现了现实原型中的某些属性,而就所要解决的实际问题而言,它是更深刻、更正确、更全面地反映了现实,也正由此,对一笔画问题经过一定的分析和逻辑推理,得到此问题无解的结论之后,可以返回到七桥问题,得出七桥问题的解答,不重复走过七座桥回到出发点是不可能的.数学模型,从广义上讲,一切数学概念、数学理论体系、各种数学公式、各种方程式、各种函数关系,以及由公式系列构成的算法系统等等都可以叫做数学模型.从狭义上讲,只有那些反映特定问题或特定的具体事物系统的数学关系的结构,才叫做数学模型.在现代应用数学中,数学模型都作狭义解释.而建立数学模型的目的,主要是为了解决具体的实际问题.三、模型的建立研究数学模型,建立数学模型,进而借鉴数学模型,对提高解决实际问题的能力,以及提高数学素养都是十分重要的.建立模型的步骤可分为:(1) 分析问题中哪些是变量,哪些是常量,分别用字母表示;(2) 根据所给条件,运用数学或物理知识,确定等量关系;(3) 具体写出解析式)(x f y =,并指明定义域.例 重力为P 的物体置于地平面上,设有一与水平方向成α角的拉力F ,使物体由静止开始移动,求物体开始移动时拉力F 与角α之间的函数模型(图3).解 由物理知,当水平拉力与摩擦力平衡时,物体开始移动,而摩擦力是与正压力αsin F P -成正比的(设摩擦系数为μ),故有)sin (cos αμαF P F -=,即 αμαμsin cos +=P F (0°<α<90°)建立函数模型是一个比较灵活的问题, 无定法可循,只有多做些练习才能逐步掌握. 图3四、数学建模方法数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图).数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的数学模型的一种强有力的数学手段.常用的数学建模方法如下:(一) 机理分析法 从基本理论以及系统的结构数据来推导出数学模型的方法1. 比例分析法 —— 建立变量之间函数关系的最基本、最常用的方法.2. 代数方法——求解离散问题(离散的数据、符号、图形)的主要方法.3. 逻辑方法——是数学理论研究的重要方法,用以解决社会学和经济学等领域的实际问题,在决策论,对策论等学科中得到广泛应用.4. 常微分方程——解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式.5. 偏微分方程——解决因变量与两个以上自变量之间的变化规律.(二) 数据分析法 从大量的观测数据利用统计方法建立数学模型的方法1. 回归分析法——用于对函数()f x 的一组观测值(,())(1,2,)i i x f x i n ,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.2. 时序分析法——处理的是动态的相关数据,又称为过程统计方法.(三)仿真和其他方法1. 计算机仿真(模拟)——实质上是统计估计方法,等效于抽样试验.① 离散系统仿真——有一组状态变量.② 连续系统仿真——有解析表达式或系统结构图.2. 因子试验法——在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.3. 人工现实法——基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.五、几个数学模型1.如何预报人口的增长人口的增长是当前世界上引起普遍关注的问题,我们经常在报刊上看见关于人口增长的预报,说到未来某个时期全世界(或某地区)的人口将达到多少多少亿.你可能注意到不同报刊对同一时间人口的预报在数字上常有较大的差别,这显然是由于用了不同的人口模型计算的结果.建立模型的目的: 在对出生和死亡的概率作出适当假设的基础上,寻求人口X (t )的变化规律,用它描述人口的发展状况.先看一种最简单的计算方法.要预报未来若干年的人口,最重要的影响因素自然是今年的人口和今后这些年的增长率(即人口出生率减去死亡率),根据这两个数据进行人口预报是十分容易的.记今年人口为x 0,k 年后人口为x k ,年增长率为r ,则预报公式为x k =x 0(1+r )k显然,这个公式的基本前提是年增长率r 保持不变.这个条件在什么情况下才成立,如果不成立又该怎么办?历史上,人口模型的发展过程回答了这个问题.早在18世纪人们就开始进行人口预报工作了,一二百年来发展了许多模型,其中最简单的有两种.2.指数增长模型(马尔萨斯人口模型)英国人口学家马尔萨斯(Malthus l766—1834)根据百余年的人口统计资料,于1798年提出了著名的人口指数增长模型.这个模型的基本假设是:人口的增长率是常数,或者说,单位时间内人口的增长量与当时的人口成正比. 记时刻t 的人口为x (t ),初始时刻(t =0)的人口为x 0,人口增长率为r ,r 是单位时间内x x (t )的增量与x (t )的比例系数.根据r 是常数的基本假设,t 到t+Δt 时间内人口增量为x (t+Δt ))(t x - = r x (t )Δt于是x (t )满足如下的微分方程⎪⎪⎩⎪⎪⎨⎧==0)0(x x rxdt dx 由这个线性常系数微分方程容易解出rt e x t x 0)(=表明人口将按指数规律无限增长(r >0).将t 以年为单位离散化,人口以re 为公比的等比数列增长.因为这时r 表示年增长率,通常r <<1,所以可用近似关系r e r +≈1,那么 tr x t x )1()(0+≈可见,前面给出的预报公式不过是指数增长模型离散形式的近似表示.由rt e x t x 0)(= 给出的模型,与19世纪以前欧洲一些地区的人口统计数据可以很好地吻合.一些人口增长率长期稳定不变的国家和地区用这个模型进行预报,结果也令人满意.但是当人们用19世纪以后许多国家的人口统计资料与指数增长模型比较时,却发现了相当大的差异.显然,用这个模型预报的结果远远超过了实际人口的增长.引起误差的原因是10年增长率r 估计过高.人们还发现,在地广人稀的加拿大领土上,法国移民后代的人口比较符合指数增长模型,而同一血统的法国本土居民人口的增长却远低于这个模型.产生上述现象的主要原因是:随着人口的增加,自然资源、环境条件等因素对人口继续增长的阻滞作用越来越显著.如果当人口较少时(相对于资源而言)人口增长率还可以看作常数的话,那么当人口增加到一定数量后,增长率就会随着人口的继续增加而逐渐减少.许多国家人口增长的实际情况完全证实了这点.看来为了使人口预报特别是长期预报更好地符合实际情况,必须修改指数增长模型关于人口增长率是常数这个基本假设了.3.阻滞增长模型(Logistic 模型)将增长率r 表示为人口x (t )的函数r (t ) (即增长率相对于固定的人口数x 来说是常数),按照前面的分析r (x )应是x 的减函数.一个最简单的假定是设r (x )为x 的线性函数r (x )= r –sx , s >0,这里r 相当于x=0时的增长率,称固有增长率. 它与指数模型中的增长率r 不同(虽然用了相同的符号).显然对于任意的x >0,增长率r (x )<r .为了确定系数s ,引入自然资源和环境条件所能容纳的最大人口数量x m ,称最大人口容量.当x=x m 时增长率应为零,即r (x m )=0,由此确定出s .人口增长率函数r (x )可以表为 ⎪⎪⎭⎫ ⎝⎛-=m x x r x r 1)(其中r 、x m 是根据人口统计数据或经验确定的常数.因子⎪⎪⎭⎫ ⎝⎛-m x x 1体现了对人口增长的阻滞作用. 在此的假设下,指数增长模型应修改为⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-=0)0(1 x x x x x r dt dx m 称为阻滞增长模型.此非线性微分方程可用分离变量法求解,结果为rtm me x x x t x -⎪⎭⎫ ⎝⎛-+=11)(其阻滞增长模型x (t )的曲线如图本世纪初人们曾用这个模型预报美国的人口.直到1930年计算结果都能与实际数据较好地吻合.后来的误差越来越大,一个明显的原因是到1960年美国的实际人口已经突破了用过去数据确定的最大人口容量x m .由此看来,这个模型的缺点之一是x m 不易准确地得到.事实上,随着生产力的发展和人们认识能力的改变,x m 也是可以改变的.4. 随机性人口模型上面讨论的人口模型都是确定性的,已知初始人口并且给定了生育率、死亡率等数据后,可以确切地预测未来的人口.但是事实上,一个人的出生和死亡应该说是随机事件,无法准确预测.之所以能用确定性模型描述人口的发展,是因为考察的是一个国家或地区的数量很大的人口,用对总数而言的平均生育率、死亡率代替出生、死亡的概率,将人口作为连续变量处理.如果研究对象是一个自然村落或一个家族的人口,数量不大、需作为离散变量看待时,就要利用随机性人口模型来描述其变化过程了.时刻t 的人口用随机变量)(t X 表示,)(t X 只取整数值.记)(t P n 为n t X =)(的概率,=n 0,1,2,…,下面要在对出生和死亡的概率作出适当假设的基础上,寻求)(t P n 的变化规律,并由此得出人口)(t X 的期望和方差,用它们在随机意义下描述人口的发展状况.模型假设 若n t X =)(,对人口在t 到t t ∆+的出生和死亡作如下假设(t ∆很小):1.出生一人的概率与t ∆成正比,记作t b n ∆;出生二人及二人以上的概率为)(t o ∆.2.死亡一人的概率与t ∆成正比,记作t d n ∆;死亡二人及二人以上的概率为)(t o ∆.3.出生与死亡是相互独立的随机事件.4.进一步设n b 和n d 均与n 成正比,记n b n λ=,n d n μ=,λ和μ分别是单位时间内1=n 时一个人出生和死亡的概率.建模与求解 为了得到)(t P n 的方程,考察随机事件n t t X =∆+)(.根据假设1—3,与出生或死亡一人的概率相比、出生或死亡二人及二人以上的概率,出生一人且死亡一人的概率均可忽略.这样,n t t X =∆+)(可以分解为仅仅三个互不相容的事件之和:1)(-=n t X 且t ∆内出生一人,其概率为t b n ∆;1)(+=n t X 且t ∆内死亡一人,其概率为t d n ∆;n t X =)( 且t ∆内人口未变,其概率为P {人口未变}=1-P{人口增加或减少1人}=t d t b n n ∆-∆-1.按照全概率公式有P {时刻t t ∆+有n 个人}=P {t ∆增加1人}P{时刻t 有n-1个人}+P {t ∆减少1人}P{时刻t 有n+1个人}+P {t ∆人口未变}P{时刻t 有n 个人}.即)1)(()()()(111t d t b t P t d t P t b t P t t P n n n n n n n n ∆-∆-+∆+∆=∆++-- (1)即)()()()()()(111t P d b d t P b t P tt P t t P n n n n n n n n n +-+=∆-∆++--令0→∆t ,可得关于)(t P n 的微分方程:)()()()(1111t P d b t P d t P b dtdP n n n n n n n n +-+=++-- (2) 特别地,在假设4(n b n λ=,n d n μ=)下方程为)()()()1()()1(11t nP t P n t P n dtdP n n n n μλμλ+-++-=+- (3) 若初始时刻(0=t )人口为确定数量0n ,则)(t P n 的初始条件为⎩⎨⎧≠==. ,0, ,1)0(00n n n n P n (4) (3)式对于不同的n 是一组递推方程,在条件(4)下的求解过程非常复杂,并且没有简单的结果.幸而,通常人们对(3)式的解)(t P n 并不关心,感兴趣的只是)(t X 的期望)}({t X E .以下简记期望)(t E )}({t X E =, 0)0(n E =,方差)(t D )}({t X D =. 0)0(=D .而它们可以由(3)、(4)直接得到,因为按照定义,∑∞==1)()(n n t nP t E (5)对(5)求导并将(3)代人得∑∑∑∞=∞=+∞=-+-++-=121111)()()()1()()1(n n n n n n t P n t P n n t P n n dt dE μλμλ (6) 注意到∑∑∑∞=∞=∞=-+=+=-1111)()1()()1()()1(n n k k n n t P n n t P k k t Pn n ∑∑∑∞=∞=∞=+-=-=+1111)()1()()1()()1(n n k k n n t P n n t P k k t Pn n 代入(6)式 ∑∑∑∑∞=∞=∞=∞=-=+--++=11211)()()()()()1()()1(n n n n n n n n t nP t P n t P n n t P n n dt dE μλμλμλ 利用(5)式,则有)()()()(1t E t nP dt dE n n μλμλ-=-=∑∞= (7) 由于0)0(n E = (8)显然,方程(7)在(8)下的解为rt t e n e n t E 0)(0)(==-μλ,μλ-=r . (9)这个结果与1.4节(3)式表示的指数模型rt e x t x 0)(= (10)形式上完全一致.从含义上看,随机性模型(9)中出生概率λ与死亡概率μ之差r 可称为净增长概率,人口的期望值)(t E 呈指数增长.在人口数量很多的情况下如果将r 视为平均意义上的净增长率,那么)(t E 就可以看成确定性模型(10)中的人口总数)(t x 了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.2 商人们怎样安全过河
问题(智力游戏)
随从们密约, 在河的任一 岸, 一旦随从的人数比商 人多, 就杀人越货.

小船(至多2人) 3名商人
3名随从
但是乘船渡河的方案由商人决定. 商人们怎样才能安全过河?
问题分析
多步决策过程
决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员 要求~在安全的前提下(两岸的随从数不比商人多),经有 限步使全体人员过河.
( x y ) 30 750 ( x y ) 50 750
求解
x =20 y =5
答:船速每小时20千米/小时.
航行问题建立数学模型的基本步骤
• 作出简化假设(船速、水速为常数);
• 用符号表示有关量(x, y表示船速和水速); • 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程);
P0是不稳定平衡点
P3 f P0 P1 x0 x
P3
P2
曲线斜率
K f Kg
P1 x1 x
g
P4
y0 0
P2
K f Kg
x2 x0 x3
方程模型
在P0点附近用直线近似曲线
yk f ( xk )
yk y0 ( xk x0 ) ( 0) xk 1 x0 ( yk y0 ) ( 0)
r ( xm ) 0
x r ( x) r (1 ) xm
阻滞增长模型(Logistic模型)
dx rx dt
dx/dt
dx x r ( x) x rx(1 ) dt xm
x xm xm/2 x0
0
xm/2
xm x
0
x (t )
xm xm rt 1 ( 1)e x0
xk 1 h( yk )
k x x ( ) ( x1 x0 ) xk 1 x0 ( xk x0 ) k 1 0
1 ( 1 / )
xk x0 xk
P0稳定 K f K g P0不稳定 K f K g
1 ( 1 / )
1 经济稳定
结果解释
经济不稳定时政府的干预办法
模型求解
• 穷举法 ~ 编程上机
S={(x , y) x=0, y=0,1,2,3;
x=3, y=0,1,2,3; x=y=1,2}
y 3 2 1 0
• 图解法
状态s=(x,y) ~ 16个格点 允许状态 ~ 10个 点 允许决策 ~ 移动1或2格; k奇,左下移; k偶,右上移.
s1
d1
d1, ,d11给出安全渡河方案 d11
第一章
建立数学模型
1.1 从现实对象到数学模型
1.2 数学建模的重要意义
1.3 数学建模示例 1.4 数学建模的方法和步骤 1.5 数学模型的特点和分类 1.6 怎样学习数学建模
1.1
从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型 地图、电路图、分子结构图… … ~ 符号模型
方程模型与蛛网模型的一致
Kf
1/ , 的含义
xk~第k时段商品数量;yk~第k时段商品价格
yk y0 ( xk x0 )
~ 商品数量减少1单位, 价格上涨幅度
xk 1 x0 ( yk y0 )
~ 价格上涨1单位, (下时段)供应的增量 ~ 消费者对需求的敏感程度 ~ 生产者对价格的敏感程度 小, 有利于经济稳定 小, 有利于经济稳定
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
• 椅子位置
利用正方形(椅脚连线)的对称性
B´ B A´
用(对角线与x轴的夹角)表示椅子位置 • 四只脚着地 椅脚与地面距离为零 距离是的函数 四个距离 (四只脚) 两个距离
C

O


A
x
正方形 对称性
D
A,C 两脚与地面距离之和 ~ f()
r=0.2557, xm=392.1 专家估计
阻滞增长模型(Logistic模型)
模型检验
用模型计算2000年美国人口,与实际数据比较
x(2000 ) x(1990 ) x x(1990 ) rx(1990 )[1 x(1990 ) / xm ]
x(2000 ) 274.5
对任意, f() • g()=0 ;
且 g(0)=0, f(0) > 0.
证明:存在0,使f(0) = g(0) = 0.
模型求解
给出一种简单、粗糙的证明方法
将椅子旋转900,对角线AC和BD互换。 由g(0)=0, f(0) > 0 ,知f(/2)=0 , g(/2)>0. 令h()= f()–g(), 则h(0)>0和h(/2)<0.
t
x(t)~S形曲线, x增加先快后慢
阻滞增长模型(Logistic模型)
参数估计 用指数增长模型或阻滞增长模型作人口 预报,必须先估计模型参数 r 或 r, xm
• 利用统计数据用最小二乘法作拟合
例:美国人口数据(单位~百万)
1860 31.4 1870 38.6 1880 50.2 …… 1960 …… 179.3 1970 204.0 1980 226.5 1990 251.4
由 f, g的连续性知 h为连续函数, 据连续函数的基本性
质, 必存在0 , 使h(0)=0, 即f(0) = g(0) . 因为f() • g()=0, 所以f(0) = g(0) = 0.
评注和思考 建模的关键 ~ 和 f(), g()的确定
假设条件的本质与非本质 考察四脚呈长方形的椅子
实际为281.4 (百万)
模型应用——预报美国2010年的人口 加入2000年人口数据后重新估计模型参数 r=0.2490, xm=434.0 x(2010)=306.0
Logistic 模型在经济领域中的应用(如耐用消费品的售量)
差分方程模型
市场经济中的蛛网模型
市场经济中的蛛网模型
供大于求 价格下降
数学 建模
建立数学模型的全过程 (包括表述、求解、解释、检验等)
实际问题 在实际过程中用 那一种方法建模主要是
抽象、简化、假设 确定变量、参数 建立数学模型并数学、数值地 求解、确定参数
根据我们对研究对象的
了解程度和建模目的来 决定。建模的具体步骤 大致可见右图。
用实际问题的实测数据等 来检验该数学模型
模型构成
xk~第k次渡河前此岸的商人数 yk~第k次渡河前此岸的随从数 sk=(xk , yk)~过程的状态 xk, yk=0,1,2,3; k=1,2, S ~ 允许状态集合
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
uk~第k次渡船上的商人数
B,D 两脚与地面距离之和 ~ g()
正方形ABCD 绕O点旋转
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来 地面为连续曲面 椅子在任意位置 至少三只脚着地 f() , g()是连续函数
对任意, f(), g() 至少一个为0
数学 问题
已知: f() , g()是连续函数 ;
数学建模的具体应用
• 分析与设计
• 预报与决策

控制与优化
• 规划与管理
数学建模
如虎添翼
计算机技术
知识经济
1.3 数学建模示例
1.3.1 椅子能在不平的地面上放稳吗
放稳 ~ 四只脚着地
问题分析 通常 ~ 三只脚着地 模 型 假 设
• 四条腿一样长,椅脚与地面点接触,四脚 连线呈正方形; • 地面高度连续变化,可视为数学上的连续 曲面; • 地面相对平坦,使椅子在任意位置至少三 只脚同时着地。
常用的计算公式
k年后人口
今年人口 x0, 年增长率 r
xk x0 (1 r )
k
指数增长模型——马尔萨斯提出 (1798)
基本假设 : 人口(相对)增长率 r 是常数
x(t) ~时刻t的人口
dx rx, x(0) x0 dt
x(t t ) x(t ) rt x(t )
减函数
供应函数 xk 1 h( yk ) 增函数
yk g ( xk 1 )
f g P0 x0
f与g的交点P0(x0,y0) ~ 平衡点 一旦xk=x0,则yk=y0,
x
xk+1,xk+2,…=x0, yk+1,yk+2, …=y0
P P P P P P P P0 1 2 3 1 2 3 0
x(t ) x0 e
rt
x(t ) x0 (e ) x0 (1 r )
r t
t
随着时间增加,人口按指数规律无限增长
指数增长模型的应用及局限性
• 与19世纪以前欧洲一些地区人口统计数据吻合 • 适用于19世纪后迁往加拿大的欧洲移民后代
• 可用于短期人口增长预测
• 不符合19世纪后多数地区人口增长规律 • 不能预测较长期的人口增长过程 19世纪后人口数据 人口增长率r不是常数(逐渐下降)
不符合实际 符合实际
交付使用,从而可产生 经济、社会效益
建模过程示意图
1.2
数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
数学建模作为用数学方法解决实际问题的第一步, 越来越受到人们的重视。 • 在一般工程技术领域数学建模仍然大有用武之地; • 在高新技术领域数学建模几乎是必不可少的工具; • 数学进入一些新领域,为数学建模开辟了许多处女地。
相关文档
最新文档