建立数学模型的方法、步骤、特点及分类 ()
数学建模的基本步骤与方法

数学建模的基本步骤与方法数学建模是利用数学方法和技巧对实际问题进行数学化描述和分析的一门学科。
它在现代科学和工程领域有着广泛的应用。
本文将介绍数学建模的基本步骤与方法。
一、问题的分析与理解在进行数学建模之前,首先要对问题进行充分的分析与理解。
这包括对问题的背景、目标和约束条件的明确,以及对问题所涉及的各个因素和变量的了解。
只有充分理解问题,才能设计合理的数学模型。
二、建立数学模型建立数学模型是数学建模的核心步骤。
模型是对实际问题的一种抽象和简化,通过数学表达来描述问题的关系和规律。
建立数学模型的关键是要确定问题的输入、输出和中间变量,以及它们之间的函数关系或约束条件。
在建立数学模型时,可以使用各种数学方法和技巧。
例如,可以利用微分方程描述物理过程的变化,利用优化方法求解最优化问题,利用概率统计模型描述随机现象的规律等。
根据具体问题的特点和要求,选择合适的数学方法是十分重要的。
三、模型的求解与分析建立数学模型后,需要对模型进行求解和分析。
这包括利用数值方法或解析方法求解模型,得到问题的解析解或近似解。
在模型求解的过程中,可能需要编写计算程序、进行数值计算和统计分析等。
模型求解过程中,还需要对模型的解进行评估和分析。
例如,可以对模型的稳定性、收敛性、误差估计等进行分析,以确定模型的可行性和有效性。
四、模型的验证与应用在对模型进行求解和分析之后,需要对模型进行验证和应用。
验证是指将模型的结果与实际数据进行比较,以检验模型的准确性和可靠性。
如果模型的结果与实际数据吻合较好,说明模型是可信的。
模型的应用是指将模型的结果用于解决实际问题或做出决策。
根据模型的目标和应用场景,可以对模型的结果进行解释和解读,提出合理的建议和决策。
五、模型的改进与扩展建立数学模型是一个动态的过程,模型的改进与扩展是不可缺少的环节。
通过对模型的不断改进和扩展,可以提高模型的准确性和适用性,更好地描述和解决实际问题。
模型的改进与扩展可以从多个方面入手。
关于数学建模方面的知识

关于数学建模⽅⾯的知识关于数学建模⽅⾯的知识⼀、数学模型的定义现在数学模型还没有⼀个统⼀的准确的定义,因为站在不同的⾓度可以有不同的定义.不过我们可以给出如下定义:“数学模型是关于部分现实世界和为⼀种特殊⽬的⽽作的⼀个抽象的、简化的结构.”具体来说,数学模型就是为了某种⽬的,⽤字母、数学及其它数学符号建⽴起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式.⼀般来说数学建模过程可⽤如下框图来表明:数学是在实际应⽤的需求中产⽣的,要解决实际问题就必需建⽴数学模型,从此意义上讲数学建模和数学⼀样有古⽼历史.例如,欧⼏⾥德⼏何就是⼀个古⽼的数学模型,⽜顿万有引⼒定律也是数学建模的⼀个光辉典范.今天,数学以空前的⼴度和深度向其它科学技术领域渗透,过去很少应⽤数学的领域现在迅速⾛向定量化,数量化,需建⽴⼤量的数学模型.特别是新技术、新⼯艺蓬勃兴起,计算机的普及和⼴泛应⽤,数学在许多⾼新技术上起着⼗分关键的作⽤.因此数学建模被时代赋予更为重要的意义.⼆、建⽴数学模型的⽅法和步骤1. 模型准备要了解问题的实际背景,明确建模⽬的,搜集必需的各种信息,尽量弄清对象的特征.2. 模型假设根据对象的特征和建模⽬的,对问题进⾏必要的、合理的简化,⽤精确的语⾔作出假设,是建模⾄关重要的⼀步.如果对问题的所有因素⼀概考虑,⽆疑是⼀种有勇⽓但⽅法⽋佳的⾏为,所以⾼超的建模者能充分发挥想象⼒、洞察⼒和判断⼒,善于辨别主次,⽽且为了使处理⽅法简单,应尽量使问题线性化、均匀化.3. 模型构成根据所作的假设分析对象的因果关系,利⽤对象的内在规律和适当的数学⼯具,构造各个量间的等式关系或其它数学结构.这时,我们便会进⼊⼀个⼴阔的应⽤数学天地,这⾥在⾼数、概率⽼⼈的膝下,有许多可爱的孩⼦们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱⼤国,别有洞天.不过我们应当牢记,建⽴数学模型是为了让更多的⼈明了并能加以应⽤,因此⼯具愈简单愈有价值.4. 模型求解可以采⽤解⽅程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学⽅法,特别是计算机技术.⼀道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运⾏情况⽤计算机模拟出来,因此编程和熟悉数学软件包能⼒便举⾜轻重.5. 模型分析对模型解答进⾏数学上的分析. “横看成岭侧成峰,远近⾼低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更⾼的档次.还要记住,不论那种情况都需进⾏误差分析,数据稳定性分析.三、数模竞赛出题的指导思想传统的数学竞赛⼀般偏重理论知识,它要考查的内容单⼀,数据简单明确,不允许⽤计算器完成.对此⽽⾔,数模竞赛题是⼀个“课题”,⼤部分都源于⽣产实际或者科学研究的过程中,它是⼀个综合性的问题,数据庞⼤,需要⽤计算机来完成.其答案往往不是唯⼀的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯⼀的),呈报的成果是⼀编“论⽂” .由此可见“数模竞赛”偏重于应⽤,它是以数学知识为引导计算机运⽤能⼒及⽂章的写作能⼒为辅的综合能⼒的竞赛.四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分:1. 实际问题背景涉及⾯宽——有社会,经济,管理,⽣活,环境,⾃然现象,⼯程技术,现代科学中出现的新问题等.⼀般都有⼀个⽐较确切的现实问题. 若⼲假设条件有如下⼏种情况:1)只有过程、规则等定性假设,⽆具体定量数据;2)给出若⼲实测或统计数据;3)给出若⼲参数或图形;4)蕴涵着某些机动、可发挥的补充假设条件,或参赛者可以根据⾃⼰收集或模拟产⽣数据.要求回答的问题往往有⼏个问题,⽽且⼀般不是唯⼀答案。
数学模型与数学建模

数学模型与数学建模数学模型数学模型(Mathematical Model)是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。
它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。
一、建立数学模型的要求:1、真实完整。
1)真实的、系统的、完整的,形象的映客观现象;2)必须具有代表性;3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。
2、简明实用。
在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。
3、适应变化。
随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。
根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM 方法。
数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。
数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。
在体育实践中常常提到优秀运动员的数学模型。
如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。
数学建模简介

●模型求解和分析
在模型构成中建立的数学模型可以采用解方程、推理、图 解、计算机模拟、定理证明等各种传统的和现代的数学方法对 其进行求解,其中有些可以用计算机软件来做这些工作。建模 的目的是解释自然现象、寻找规律以解决实际问题。要达到此 目的,还要对获得结果进行数学上的分析,如分析变量之间的 依赖关系和稳定状况等,这一过程称为模型求解与分析。
( x y) 30 750 ( x y) 50 750
实际上方程组就是上述航行问题的数学模型。列 出方程组,原问题已转化为纯粹的数学问题。方程的 解x=20km/h、y=5km/h,最终给出了航行问题的答案。
大家都做过数学应用题,比如说“树上有十只鸟,开枪打死一 只,还剩几只?”,这样的问题就是一道数学应用题,正确答案应 该是0只。这样的题同样是数学建模题,不过答案就不重要了,重 要是过程。 真正的数学建模选手会这样回答这道题。 “是无声手枪吗?”“您确定那只鸟真的被打死啦?” “树上的鸟里有没有聋子?”“有没有关在笼子里的?” “边上还有没有其他的树,树上还有没有其他鸟?” “有没有残疾的或饿的飞不动的鸟?”“算不算怀孕肚子里的小 鸟?”“打鸟的人眼有没有花?保证是十只?” “有没有傻的不怕死的?”“会不会一枪打死两只?” “所有的鸟都可以自由活动吗?”“如果您的问题没有骗人,打死 的鸟要是挂在树上没掉下来,那么就剩一只,如果掉下来,就一只 不剩。”
分析:设甲桶中有x个红球,乙桶中有y个蓝球,因为对
甲桶来说,甲桶中的蓝球数加上乙桶中的蓝球
数等于10000,所以
10000-x+y=10000
即 x=y
故甲桶中的红球和乙桶中的蓝球一样多。
问题2、哥哥和妹妹分别在离家2km和1km且方向相反的两 所学校上学,每天同时放学后分别以4km/h和2km/h的速度 步行回家。一小狗以6km/h的速度由男孩处奔向女孩,又 从女孩处奔向男孩,如此往返直至回到家中,问小狗奔跑 了多少路程?
数学建模介绍

数学建模介绍1.1 数学模型及其分类数学建模作为用数学方法解决问题的第一步,它与数学本身有着同样悠久的历史。
一个羊倌看着他的羊群进入羊圈,为了确信他的羊没有丢失,他在每只羊进入羊圈时,则在旁边放一颗小石子,如果每天羊全部入圈而他那堆小石子刚好全部放完,则表示他的羊和以前一样多。
究竟羊倌数的是石子还是羊,那是毫无区别的,因为羊的数目同石子的数目彼此相等。
这实际上就使石子与羊“联系”起来,建立了一个使石子与羊一一对应的数学模型。
(1)什么是数学模型人们在认识研究现实世界里的客观对象时,常常不是直接面对那个对象的原形,有些是不方便,有些甚至是不可能直接面对原形,因此,常常设计、构造它的各种各样的模型。
如各式各样的玩具模型、展览厅里的三峡大坝模型、化学上的分子结构模型等。
这些模型都是人们为了一定目的,对客观事物的某一部分进行简化、抽象、提炼出来的原形替代物,集中反映了原形中人们需要的那一部分特征,因而有利于人们对客观对象的认识。
数学模型也是反映客观对象特征的,只不过它刻画的是事物在数量方面的特征或数学结构及其变化规律。
数学模型是人们为了认识客观对象在数量方面的特征、定量地分析对象的内在规律、用数学的语言和符号去近似地刻画要研究的那一部分现象时,所得到的一个数学表述。
建立数学模型的过程称为数学建模。
(2) 数学模型的重要作用进入20世纪以来,数学以空前的广度和深度向一切领域渗透,作为数学的应用,数学建模也越来越受到人们的重视。
在一般工程技术领域,数学模型仍是工程技术人员定量研究有关工程技术问题的重要工具;而随着数学与其他学科领域诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生;计算机的发展给数学及作为数学应用的数学建模带来了前所未有的机遇和挑战。
计算机改变了人类的生活方式、思考方式和研究方式,极大地提高了人们的计算能力、搜索和分析海量数据和信息的能力。
数学建模简介1

数学建模的方法和步骤
模型假设
在明确建模目的,掌握必要资料的基础上, 通过对资料的分析,根据对象的特征和建 模目的,找出起主要作用的因素,对问题 进行必要的、合理的简化,用精确的语言 提出若干符合客观实际的合理假设。
数学建模的方法和步骤
模型假设
作出合理假设,是建模至关重要的一步。 如果对问题的所有因素一概考虑,无疑是 一种有勇气但方法欠佳的行为,所以高超 的建模者能充分发挥想象力、洞察力和判 断力 ,善于辨别主次,而且为了使处理方 法简单,应尽量使问题线性化、均匀化。
看谁答得快
1、某甲早8时从山下旅店出发沿一路径上山,下 午5时到达山顶并留宿。次日早8时沿同一路径下 山,下午5时回到旅店。某乙说,甲必在两天中 的同一时刻经过路径中的同一地点,为什么?
2、两兄妹分别在离家2千米和1千米且方向相反 的两所学校上学,每天同时放学后分别以4千米/ 小时和2千米/小时的速度步行回家,一小狗以6千 米/小时的速度从哥哥处奔向妹妹,又从妹妹处奔 向哥哥,如此往返直至回家中,问小狗奔波了多 少路程?
四、模型的特点:
逼真性和可行性 渐进性 强健性 可移植性 非预测性 条理性 技艺性 局限性
五、建模能力的培养:
具有广博的知识(包括数学和各种实际知 识)、丰富的经验、各方面的能力、注意 掌握分寸。
具有丰富的想象力和敏锐的洞察力
类比法和理想化方法
直觉和灵感
实例研究法
学 习 、 分 析 别 人 的 模 型 亲 手 去 做
模型集中反映了原型中人们需要的那一部分特征
什么是数学建模
什么是数学模型?
简单地说:数学模型就是对实际问题的一种 数学表述。
具体一点说:数学模型是以部分现实世界为某 种研究目的的一个抽象的、简化的数学结构。 这种数学结构可以是数学公式、算法、表格、 图示等。
建立数学模型的方法

建立数学模型的方法数学模型是指用数学语言和符号描述现实世界中某个问题的方法。
它是一种把复杂的现实问题转化为数学问题来进行研究和解决的手段。
建立数学模型的过程不仅需要数学知识,还需要对实际问题的深刻理解和把握。
本文将从以下几个方面介绍建立数学模型的方法。
一、分析问题建立数学模型的第一步是分析问题,要明确问题的性质、特点、目的和限制条件。
在分析问题的过程中,需要了解问题的背景和相关知识,明确问题的主要矛盾和关键因素,确定问题的量化指标和评价标准,以及考虑问题的可行性和实际性。
例如,对于一个生产企业来说,它需要分析如何提高生产效率,减少成本,同时保证产品质量和员工安全。
这就需要考虑生产设备的利用率、员工的工作效率、原材料的采购成本、产品的质量检测等因素,以及企业的资源和技术条件。
二、建立数学模型在分析问题的基础上,可以建立数学模型。
数学模型是用数学语言和符号来描述现实问题的形式化表达。
数学模型可以是代数方程、微分方程、差分方程、概率统计模型、图论模型、优化模型等等。
例如,对于上述生产企业的问题,可以建立一个生产效率的数学模型。
设生产效率为E,设生产设备的利用率为x1,员工的工作效率为x2,原材料的采购成本为x3,产品的质量检测为x4,则可以建立以下数学模型:E=f(x1,x2,x3,x4)其中,f为生产效率的函数。
可以根据实际情况选择不同的函数形式,例如线性函数、指数函数、对数函数、多项式函数等等。
三、模型求解建立数学模型后,需要进行模型求解。
模型求解是指利用数学方法和计算机技术来求解数学模型,得到问题的解答或决策。
例如,对于上述生产效率的数学模型,可以利用优化方法来求解。
假设企业的目标是最大化生产效率,同时满足设备利用率≥80%、员工工作效率≥90%、采购成本≤100万元、产品合格率≥95%等限制条件。
则可以建立以下优化模型:Max E=f(x1,x2,x3,x4)s.t. x1≥0.8, x2≥0.9, x3≤100, x4≥0.95其中,s.t.表示限制条件。
数学教学中的模型建构方法

数学教学中的模型建构方法数学教学是培养学生数学思维和解决问题能力的重要途径。
为了提高学生的学习效果,教师需要采用有效的教学方法。
其中,模型建构方法被认为是一种高效的数学教学方法。
本文将介绍数学教学中的模型建构方法,并分析其优势和应用。
一、模型建构方法的概念模型建构方法是指教师通过引导学生运用数学知识与技能来构建数学模型,以解决实际问题的过程。
模型是对事物本质特征的简化和抽象,可以帮助学生理解和分析问题。
模型建构方法有助于培养学生的数学思维,提高他们的问题解决能力。
二、模型建构方法的步骤模型建构方法可以分为以下几个步骤:1. 问题分析:教师引导学生深入分析实际问题的背景和要求,确定需要构建模型的数学关系。
2. 建立假设:学生根据问题的特点和要求,提出合理的假设,并对模型中的变量和参数进行定义。
3. 模型构建:学生运用数学知识和技能,建立数学模型,表达出问题的数学关系。
4. 模型求解:学生运用数学方法和技巧,对所建立的模型进行求解,得出问题的数学解。
5. 解释和验证:学生解释和验证数学解的意义和正确性,对模型的建立和求解进行评价。
三、模型建构方法的优势模型建构方法具有以下几点优势:1. 激发学生的学习兴趣:通过引导学生解决实际问题,模型建构方法能够使学生主动参与学习,提高他们对数学的兴趣和学习动力。
2. 培养学生的综合运用能力:模型建构方法要求学生综合运用数学知识和技能,培养他们的综合运用能力和问题解决能力。
3. 增强学生的数学思维:通过构建数学模型,学生需要深入思考问题的本质和数学关系,从而培养和提高他们的数学思维能力。
4. 促进跨学科融合:模型建构方法通常需要结合其他学科的知识和技能,如物理、经济等,有助于促进跨学科融合。
四、模型建构方法的应用模型建构方法在数学教学中有着广泛的应用。
它可以应用于各个年级和不同层次的数学教学中,丰富教学内容,提高教学效果。
例如,在小学数学教学中,可以通过引导学生观察和探索简单问题,培养他们建立数学模型的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§16.3建立数学模型的方法、步骤、特点及分类[学习目标]1.能表述建立数学模型的方法、步骤;2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理性、技艺性和局限性等特点;;3.能表述数学建模的分类;4.会采用灵活的表述方法建立数学模型;5.培养建模的想象力和洞察力。
一、建立数学模型的方法和步骤—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。
测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。
这种方法称为系统辨识(SystemIdentification).将这两种方法结合起来也是常用的建模方法。
即用机理分析建立模型的结构,用系统辨识确定模型的参数.可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。
那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。
建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示.图16-5建模步骤示意图模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料.模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏.模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种传统的和近代的数学方法,特别是计算机技术.模型分析对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等.模型检验把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性.这一步对于建模的成败是非常重要的,要以严肃认真的态度来对待.当然,有些模型如核战争模型就不可能要求接受实际的检验了.模型检验的结果如果不符合或者部分不符合实际,问题通常出在模型假设上,应该修改、补充假设,重新建模.有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意.模型应用应用的方式自然取决于问题的性质和建模的目的,这方面的内容不是本书讨论的范围。
应当指出,并不是所有建模过程都要经过这些步骤,有时各步骤之间的界限也不那么分明.建模时不应拘泥于形式上的按部就班,本书的建模实例就采取了灵活的表述方式.二、数学模型的特点我们已经看到建模是利用数学工具解决实际问题的重要手段。
数学模型有许多优点,也有弱点。
建模需要相当丰富的知识、经验和各方面的能力,同时应注意掌握分寸.下面归纳出数学模型的若干特点,以期在学习过程中逐步领会.模型的逼真性和可行性一般说来总是希望模型尽可能逼近研究对象,但是一个非常逼真的模型在数学上常常是难于处理的,因而不容易达到通过建模对现实对象进行分析、预报、决策或者控制的目的,即实用上不可行.另一方面,越逼真的模型常常越复杂,即使数学上能处理,这样的模型应用时所需要的“费用”也相当高,而高“费用”不一定与复杂模型取得的“效益”相匹配.所以建模时往往需要在模型的逼真性与可行性,“费用”与“效益”之间做出折衷和抉择.模型的渐进性稍微复杂一些的实际问题的建模通常不可能一次成功,要经过上一节描述的建模过程的反复迭代,包括由简到繁,也包括删繁就简,以获得越来越满意的模型.在科学发展过程中随着人们认识和实践能力的提高,各门学科中的数学模型也存在着一个不断完善或者推陈出新的过程.从19世纪力学、热学、电学等许多学科由牛顿力学的模型主宰,到20世纪爱因斯坦相对论模型的建立,是模型渐进性的明显例证.模型的强健性模型的结构和参数常常是由对象的信息如观测数据确定的,而观测数据是允许有误差的.一个好的模型应该具有下述意义的强健性:当观测数据(或其他信息)有微小改变时,模型结构和参数只有微小变化,并且一般也应导致模型求解的结果有微小变化.模型的可转移性模型是现实对象抽象化、理想化的产物,它不为对象的所属领域所独有,可以转移到另外的领域.在生态、经济、社会等领域内建模就常常借用物理领域中的模型.模型的这种性质显示了它的应用的极端广泛性.模型的非预制性虽然已经发展了许多应用广泛的模型,但是实际问题是各种各样、变化万千的,不可能要求把各种模型做成预制品供你在建模时使用。
模型的这种非预制性使得建模本身常常是事先没有答案的问题(Open—endproblem).在建立新的模型的过程中甚至会伴随着新的数学方法或数学概念的产生.模型的条理性从建模的角度考虑问题可以促使人们对现实对象的分析更全面、更深入、更具条理性,这样即使建立的模型由于种种原因尚未达到实用的程度,对问题的研究也是有利的。
模型的技艺性建模的方法与其他一些数学方法如方程解法、规划解法等是根本不同的,无法归纳出若干条普遍适用的建模准则和技巧.有入说。
建模目前与其是一门技术、不如说是一种艺术.是技艺性很强的技巧.经验、想象力、洞察力、判断力以及直觉、灵感等在建模过程中起的作用往往比一些具体的数学知识更大.模型的局限性这里有几方面的含义.第一,由数学模型得到的结论虽然具有通用性和精确性,但是因为模型是现实对象简化、理想化的产物,所以一旦将模型的结论应用于实际问题,就回到了现实世界,那些被忽视、简化的因素必须考虑,于是结论的通用性和精确性只是相对的和近似的.第二,由于人们认识能力和科学技术包括数学本身发展水平的限制,还有不少实际问题很难得到有着实用价值的数学模型.如一些内部机理复杂、影响因素众多、测量手段不够完善、技艺性较强的生产过程,像生铁冶炼过程,需要开发专家系统,与建立数学模型相结合才能获得较满意的应用效果.专家系统是一种计算机软件系统,它总结专家的知识和经验,模拟人类的逻辑思维过程,建立若干规则和推理途径,主要是定性地分析各种实际现象并做出判断.专家系统可以看成计算机模拟的新发展.第三,还有些领域中的问题今天尚未发展到用建模方法寻求数量规律的阶段,如中医诊断过程,目前所谓计算机辅助诊断也是属于总结着名中医的丰富临床经验的专家系统.建模过程是一种创造性思维过程,除了想象、洞察、判断这些属于形象思维、逻辑思维范畴的能力之外,直觉和灵感往往也起着不可忽视的作用。
当由于各种限制利用已有知识难以对研究对象做出有效的推理和判断时,凭借相似、类比、猜测、外推等思维方式及不完整、不连续、不严密的,带启发性的直觉和灵感,去“战略性”地认识对象,是人类创造性思维的特点之一,也是人脑比按程序逻辑工作的计算机、机器人的高明之处.历史上不乏在科学家的直觉和灵感的火花中诞生的假说、论证和定律.当然,直觉和灵感不是凭空产生的,它要求人们具有丰富的背景知识,对问题进行反复思考和艰苦探索,对各种思维方法运用娴熟.相互讨论和思想交锋,特别是不同专业的成员之间的探讨,是激发直觉和灵感的重要因素.所以由各种专门人才组成的所谓团队工作方式(Teamwork)越来越受到重视.前面说过,建模可以看成一门艺术.艺术在某种意义下是无法归纳出几条准则或方法的.一名出色的艺术家需要大量的观摩和前辈的指教,更需要亲身的实践.类似地,掌握建模这门艺术培养想象力和洞察力,一要大量阅读、思考别人做过的模型,二要亲自动手,认真做几个实际题目.三、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分.如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等.范畴更大一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济学、数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分.如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型取决于是否考虑时间因素引起的变化.线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的、动态的、非线性的,但是由于确定性、静态、线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性、静态、线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分.有描述模型、分析模型、预报模型、优化模型、决策模型、控制模型等.5.按照对模型结构的了解程度分.有所谓白箱模型、灰箱模型、黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学、热学、电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态、气象、经济、交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理、化学原理,但由于因素众多、关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白、灰、黑之间并没有明显的界限,而且随着科学技术的发展,箱子的“颜色”必然是逐渐由暗变亮的.习题16.3为了培养想象力、洞察力和判断力,考察对象时除了从正面分析外还常常需要从侧面或反面思考.试尽可能迅速地回答下面的问题:1、某甲早8时从山下旅店出发沿一条路径上山,下午5时到达山顶并留宿.次日早8时沿同一路径下山,下午5时回到旅店.某乙说,甲必在两天中的同一时刻经过路径中的同一地点.为什么?2、37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者进入下一轮,直至比赛结束。