第一章建立数学模型

合集下载

第1章 动态数学模型概述-v1.

第1章 动态数学模型概述-v1.
(1)古典辨识法(非参数模型) ① 阶跃响应h(t)
主要形式: ② 脉冲响应g(t) ③ 频率响应G(jω )
2019/7/16
化工过程动态数学模型(化工与环境学院)
30
第1章 过程动态数学模型概述
(2)现代辨识方法 特点:① 从概率统计的观点对系统进行辨识, 尽可能抑制噪声影响; ② 需要处理大量数据,计算量大,只能 采用计算机进行; ③ 数学模型表达式,限于离散型,例如 差分方程(脉冲传递函数)。
化工过程动态数学模型(化工与环境学院)
5
第1章 过程动态数学模型概述
(3)化工过程
按照物质、能量内部联系的性质,所有的化工过程一般可分 为:流体力学过程、传热过程、扩散过程、化学过程和机械过 程。
按其性质,过程还可分为确定过程和随机过程。 在确定过程中,输入值是按确定的规律连续变化的。确定过 程可用经典的解析方法和数值方法描述。如带搅拌器的混合均 匀的流通式反应器就是确定过程的一个例子。 在随机过程中,输入值的变化是不规则的,且往往是不连续 的。此时,输出值与输入值并无一定的对应关系。描述随机过 程要用概率统计的方法。在接触催化过程中,产品的产率随催 化剂的活性而变,而催化剂的活性与它的老化程度有关。
2019/7/16
化工过程动态数学模型(化工与环境学院)
14
第1章 过程动态数学模型概述
(8)生产过程自动监控系统
2019/7/16
化工过程动态数学模型(化工与环境学院)
15
第1章 过程动态数学模型概述
基本概念(二)
(1)建立动态数学模型的目标及意义 建立数学模型对新工艺的研究、工艺过程的放大
开发、过程设计、生产过程的技术改造、产品的质 量管理与生产控制、操作人员的训练,以及控制系 统的设计与分析等具有重要的意义。

数学模型姜启源 ppt课件

数学模型姜启源 ppt课件
6
《数学模型》 姜启源 主编
数学模型
9 五 5-6 6.4种群的相互依存
2
7.1市场经济中的蛛网模型
10 五 5-6 7.2减肥计划-节食与运动
2
8.3层次分析模型
12 五 5-6 8.4效益的合理分配
2
9.2报童的诀窍(讨论课)
13 五 5-6 9.5随机人口模型
2
9.6航空公司的预定票策略
14 五 5-6 10.1牙膏的销售量
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
2020/11/13
12
《数学模型》 姜启源 主编
第一章 建立数学模型
1.2 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
1.3 数学建模示例
1.4 数学建模的方法和步骤
1.5 数学模型的特点和分类
1.6 怎样学习数学建模
2020/11/13
8
《数学模型》 姜启源 主编
第一章 建立数学模型
1.1 从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
《数学模型》 姜启源 主编
数学模型
数学模型
2020/11/13
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称 数学模型与数学建模 Mathematical Modeling
先修课程 微积分、线性代数、概率论与数理统计 课程简介

《数学建模》课程教学大纲

《数学建模》课程教学大纲

《数学建模(公选)》课程教学大纲一、课程基本信息课程代码:12130541课程英文名称: Mathematical Modelling课程面向专业:理工类专业课程类型:选修课先修课程:高等数学、线性代数、概率论与数理统计学分:2.5总学时:48 (其中理论学时:48 ;实验学时:0)二、课程性质与目的本课程主要介绍用数学知识解决实际问题的手段——建立数学模型。

通过教学,使学生掌握数学模型的基本知识;培养学生认识问题,用数学模型和计算机分析解决实际问题的初步能力;增强学生学习数学的兴趣和自学的能力,了解数学的一些应用分支的理论,会建立相应的简单模型,并能对模型进行分析。

三、课程教学内容与要求第一章建立数学模型1、教学内容与要求主要内容:学习数学建模课程的意义;数学模型的定义及分类;建立数学模型的方法及步骤;数学建模示例。

基本要求:了解数学模型的意义及分类,理解建立数学模型的方法及步骤。

2、教学重点:数学建模的基本方法和步骤。

3、教学难点:数学建模初步能力的培养。

第二章初等模型1、教学内容与要求主要内容:比例方法建模;类比方法建模;定性分析方法建模;量纲分析方法建模;初等模型举例。

基本要求:掌握比例方法,类比方法,定性分析方法及量纲分析方法建模的基本特点。

能运用所学知识建立数学模型,并对模型进行综合分析。

2、教学重点:比例方法建模,类比方法建模。

3、教学难点:量纲分析法建模第三章简单的优化模型1、教学内容与要求主要内容:存贮模型;生猪的出售时机;森林救火;冰山运输;量纲分析法基本要求:理解优化模型的一般意义,能运用高等数学的知识解决简单的优化模型。

掌握较简单的优化模型的建立和解法。

2、教学重点:比例方法建模,类比方法建模3、教学难点:量纲分析法建模第四章数学规划模型1、教学内容与要求主要内容:奶制品的生产与销售;自来水输送与货机装运;汽车生产与原油采购;接力队的选拔与选课策略;饮料厂的生产与检修;钢管和易拉罐下料基本要求:理解线性规划、整数规划模型和非线性规划模型的基本特点,能熟练利用数学软件进行数学规划模型的求解与灵敏度分析。

数学建模习题--第一章

数学建模习题--第一章

数学建模第一章 习题1.举出两三个实例说明建立数学模型的必要性。

包括实际问题的背景,建模目的,需要大体上什么样的模型以及怎样应用这种模型等。

2.怎样解决下面的实际问题。

包括需要哪些数据资料,要作些什么观察、试验以及建立什么样的数学模型等]21[。

①估计一个人体内血液的总量。

②为保险公司制定人寿保险金计划(不同年龄的人应缴纳的金额和公司赔偿的金额)。

③估计一批日光灯管的寿命。

④确定火箭发射至最高点所需的时间。

⑤决定十字路口黄灯亮的时间长度。

3.在1.2节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。

试构造模型并求解。

4.模仿1.3节商人过河问题中的状态转移模型作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。

试设计一安全过河方案,并使渡河次数尽量地少。

5.1650年世界人口为5亿,当时的年增长率为0003。

用指数增长模型计算什么时候世界人口达到10亿(实际上1850年前已超过10亿)。

1970年世界人口为36亿,年增长率为21000。

用指数增长模型预测什么时候世界人口会翻一番(这个结果可信吗)。

你对用两样的模型得到的两结果有什么看法。

6.利用 1.4节表1-1给出的1790~1980年的美国实际人口资料建立下列模型:①分段的指数增长模型。

譬如按时间分三段,分别确定增长率r 。

②阻滞增长模型。

重新确定固有增长率r 和最大容量m x 。

7.假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,t 到t t ∆+时间内人口的增量与m x )(t x -成正比(其中m x 为最大容量)。

试建立模型并求解。

作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。

8.为了培养想象力、洞察力和判断力,考察对象时除了从正面分析外,还常常需要从侧面或反面思考。

试尽可能迅速地回答下面的问题:①某甲早8时从山下旅店出发沿一条路径上山,下午5时到达山顶并留宿。

姜启源 数学模型第五版-第1章

姜启源 数学模型第五版-第1章

1.3
问题
建模示例之一 包饺子中的数学
通常,1kg馅, 1kg面, 包100个饺子. 今天,馅比 1kg多, 1kg面不变, 要把馅包完.
应多包几个(每个小些), 还是少包几个(每个大些)?
分析
直观认识——“大饺子包的馅多”! 但是:“用的面皮也多”!
需要比较:饺子从小变大时馅和面增加的数量关系.
C
C´ B´ B A´
O

A
x

D
A,C 两脚与地面距离之和 ~ f() B,D 两脚与地面距离之和 ~ g()
正方形ABCD 绕O点旋转
模型建立
地面为连续曲面 椅子在任意位置 至少三只脚着地 椅子旋转900, 对 角线AC和BD互换 f() , g()是连续函数 对任意, f(), g() 至少一个为0 g(0)=0,f(0) > 0, f(/2)=0, g(/2)>0.
不平的地面上的椅子, 通常三只脚着地—— 放不稳! 挪动几下,使四只脚着地——椅子放稳!
讨论椅子能放稳的条件.
椅子能在不平的地面上放稳吗
模型假设
四腿一样长,椅脚与地面点接触,四脚连线呈正方形. 地面高度连续变化,可视为数学上的连续曲面. 地面相对平坦,椅子在任意位置至少三只脚着地.
模型建立
椅子位置 利用正方形(椅脚连线)的对称性. 用表示椅子位置. 四只脚着地 椅脚与地面距离为零 距离是的函数. 四个距离 (四只脚) 对称性 两个距离
模 型 构 成
尽量采用简单的数学工具
数学建模的一般步骤 模型 求解 模型 分析 模型 检验 各种数学方法、软件和计算机技术. 如结果的误差分析、统计分析、 模型对数据的稳定性分析. 与实际现象、数据比较, 检验模型的合理性、适用性.

《数学模型电子教案》课件

《数学模型电子教案》课件

《数学模型电子教案》PPT课件第一章:数学模型概述1.1 数学模型的定义与分类1.2 数学模型的构建步骤1.3 数学模型在实际应用中的重要性1.4 数学模型与数学建模的区别与联系第二章:数学模型建立的基本方法2.1 直观建模法2.2 解析建模法2.3 统计建模法2.4 计算机模拟建模法第三章:线性方程组与线性规划模型3.1 线性方程组的求解方法3.2 线性规划的基本概念与方法3.3 线性规划模型的应用案例3.4 线性规划模型的求解算法第四章:微分方程与差分方程模型4.1 微分方程的基本概念与分类4.2 微分方程的求解方法4.3 差分方程的基本概念与分类4.4 差分方程的求解方法与应用第五章:概率论与统计模型5.1 概率论基本概念与随机变量5.2 概率分布与数学期望5.3 统计学基本概念与推断方法5.4 统计模型的应用案例第六章:最优化方法与应用6.1 无约束最优化问题6.2 约束最优化问题6.3 最优化方法的应用案例6.4 遗传算法与优化问题第七章:概率图与贝叶斯模型7.1 概率图的基本概念7.2 贝叶斯定理及其应用7.3 贝叶斯网络与推理方法7.4 贝叶斯模型在实际应用中的案例分析第八章:时间序列分析与预测模型8.1 时间序列的基本概念与分析方法8.2 自回归模型(AR)与移动平均模型(MA)8.3 自回归移动平均模型(ARMA)与自回归积分滑动平均模型(ARIMA)8.4 时间序列预测模型的应用案例第九章:排队论与网络流量模型9.1 排队论的基本概念与模型构建9.2 排队论在服务系统优化中的应用9.3 网络流量模型的基本概念与方法9.4 网络流量模型的应用案例第十章:随机过程与排队网络模型10.1 随机过程的基本概念与分类10.2 泊松过程与Poisson 排队网络10.3 马克威茨过程与随机最优控制10.4 排队网络模型的应用案例第十一章:生态学与种群动力学模型11.1 生态学中的基本概念11.2 种群动力学模型的构建11.3 差分方程在种群动力学中的应用11.4 种群动力学模型的案例分析第十二章:金融数学模型12.1 金融市场的基本概念12.2 金融数学模型概述12.3 定价模型与风险管理12.4 金融数学模型在实际应用中的案例分析第十三章:社会经济模型13.1 社会经济系统的基本特征13.2 经济数学模型的构建方法13.3 宏观经济模型与微观经济模型13.4 社会经济模型的应用案例第十四章:神经网络与深度学习模型14.1 人工神经网络的基本概念14.2 深度学习模型的构建与训练14.3 神经网络在数学建模中的应用案例14.4 当前神经网络与深度学习的发展趋势第十五章:数学模型在工程中的应用15.1 工程问题中的数学建模方法15.2 数学模型在结构工程中的应用15.3 数学模型在流体力学中的应用15.4 数学模型在其他工程领域中的应用案例重点和难点解析本《数学模型电子教案》PPT课件涵盖了数学模型概述、建模方法、线性方程组与线性规划、微分方程与差分方程、概率论与统计、最优化方法、概率图与贝叶斯模型、时间序列分析、排队论与网络流量模型、随机过程、生态学与种群动力学模型、金融数学模型、社会经济模型、神经网络与深度学习模型以及数学模型在工程中的应用等多个领域。

数学建模课教案数学建模的基本步骤与方法

数学建模课教案数学建模的基本步骤与方法

数学建模课教案数学建模的基本步骤与方法一、教学内容本节课我们将学习《数学建模》的第一章“数学建模的基本步骤与方法”。

具体内容包括数学模型的构建、数学模型的求解、数学模型的检验和优化等。

二、教学目标1. 理解数学建模的基本概念,掌握数学建模的基本步骤。

2. 学会运用数学方法解决实际问题,培养解决问题的能力。

3. 培养学生的团队协作能力和创新精神。

三、教学难点与重点教学难点:数学模型的构建和求解。

教学重点:数学建模的基本步骤及方法。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:数学建模教材、计算器、草稿纸。

五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中的数学问题,激发学生的兴趣,引入数学建模的概念。

2. 理论讲解(15分钟)讲解数学建模的基本步骤:问题分析、模型假设、模型建立、模型求解、模型检验和优化。

3. 例题讲解(20分钟)以一个简单的实际问题为例,带领学生逐步完成数学建模的过程。

4. 随堂练习(15分钟)学生分组讨论,针对给定的问题,完成数学建模的练习。

5. 小组展示与讨论(15分钟)6. 知识巩固(10分钟)六、板书设计1. 数学建模的基本步骤1.1 问题分析1.2 模型假设1.3 模型建立1.4 模型求解1.5 模型检验和优化2. 例题及解答七、作业设计1.1 问题:某城市现有两个供水厂,如何合理调配水源,使得居民用水成本最低?1.2 作业要求:列出模型的假设、建立模型、求解模型并检验。

2. 答案:见附件。

八、课后反思及拓展延伸1. 反思:本节课学生对数学建模的基本步骤和方法掌握程度如何?哪些环节需要加强?2. 拓展延伸:引导学生关注社会热点问题,尝试用数学建模的方法解决实际问题。

重点和难点解析1. 实践情景引入2. 例题讲解3. 教学难点:数学模型的构建和求解4. 作业设计一、实践情景引入情景:某城市准备举办一场盛大的音乐会,门票分为三个档次:VIP、一等座和二等座。

线性规划问题及其数学模型

线性规划问题及其数学模型

第一章线性规划问题及其数学模型一、问题旳提出在生产管理和经营活动中常常提出一类问题,即怎样合理地运用有限旳人力、物力、财力等资源,以便得到最佳旳经济效果。

例1 某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需旳设备台时及A、B两种原材料旳消耗,如表1-1所示。

表1-1该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应怎样安排计划使该工厂获利最多?这问题可以用如下旳数学模型来描述,设x1、x2分别表达在计划期内产品I、II旳产量。

由于设备旳有效台时是8,这是一种限制产量旳条件,因此在确定产品I、II旳产量时,要考虑不超过设备旳有效台时数,即可用不等式表达为:x1+2x2≤8同理,因原材料A、B旳限量,可以得到如下不等式4x1≤164x2≤12该工厂旳目旳是在不超过所有资源限量旳条件下,怎样确定产量x1、x2以得到最大旳利润。

若用z表达利润,这时z=2x1+3x2。

综合上述,该计划问题可用数学模型表达为:目旳函数 max z =2x 1+3x 2 满足约束条件 x 1+2x 2≤84x 1≤16 4x 2≤12 x 1、x 2≥0例2 某铁路制冰厂每年1至4季度必须给冷藏车提供冰各为15,20,25,10kt 。

已知该厂各季度冰旳生产能力及冰旳单位成本如表6-26所示。

假如生产出来旳冰不在当季度使用,每千吨冰存贮一种季度需存贮费4千元。

又设该制冰厂每年第3季度末对贮冰库进行清库维修。

问应怎样安排冰旳生产,可使该厂整年生产费用至少?解:由于每个季度生产出来旳冰不一定当季度使用,设x ij 为第i 季度生产旳用于第j 季度旳冰旳数量。

按照各季度冷藏车对冰旳需要量,必须满足:⎪⎪⎩⎪⎪⎨⎧++++++33231343221242114144x x x x x x x x x x 。

,,,25201510==== 又每个季度生产旳用于当季度和后来各季度旳冰旳数量不也许超过该季度旳生产能力,故又有⎪⎪⎩⎪⎪⎨⎧++++++33232213121143424144x x x x x x x x x x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



求解 (演绎) 世
界 现实对象的解答
数学模型的解答 界
解释
表述 求解 解释 验证
根据建模目的和信息将实际问题“翻译”成数学问 题选择适当的数学方法求得数学模型的解答 将数学语言表述的解答“翻译”回实际对象
用现实对象的信息检验得到的解答
实践 理论 实践
1.5 数学模型的特点和分类
数学模型的特点
模型的逼真性和可行性 模型的渐进性 模型的强健性
用 (对角线与 x 轴的夹角)表示椅子位置
B´ B
• 四只脚着地 椅脚与地面距离为零 距离是的函数
C O

A
x
四个距离 (四只脚)
正方形 对称性
两个距离
A,C 两脚与地面距离之和 ~ f ()
B,D 两脚与地面距离之和 ~ g ()
C ´ D D´
正方形ABCD 绕O点旋转
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
• 作出简化假设(船速、水速为常数); • 用符号表示有关量(x, y表示船速和水速); • 用物理定律(匀速运动的距离等于速度乘以
时间)列出数学式子(二元一次方程); • 求解得到数学解答(x=20, y=5);
• 回答原问题(船速每ห้องสมุดไป่ตู้时20千米/小时)。
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling)
•机理分析 根据对客观事物特性的认识,找出反映
内部机理的数量规律
•测试分析 将对象看作“黑箱”,通过对量测数据的
统计分析,找出与数据拟合最好的模型
•二者结合 用机理分析建立模型结构,用测试分析确
定模型参数
机理分析没有统一的方法,主要通过实例研究 (Case Studies)来学习。以下建模主要指机理分析。
数学建模与其说是一门技术,不如说是一门艺术
技术大致有章可循 艺术无法归纳成普遍适用的准则
想像力
洞察力
判断力
• 学习、分析、评价、改进别人作过的模型 • 亲自动手,认真作几个实际题目
模型的非预制性 模型的条理性 模型的技艺性
模型的可转移性
模型的局限性
数学模型的分类
应用领域 人口、交通、经济、生态 … …
数学方法 初等数学、微分方程、规划、统计 … …
表现特性 建模目的
确定和随机
静态和动态
离散和连续
线性和非线性
描述、优化、预报、决策 … …
了解程度 白箱
灰箱
黑箱
1.6 怎样学习数学建模
x(20)0027.54 实际为281.4 (百万)
模型应用——预报美国2010年的人口 加入2000年人口数据后重新估计模型参数
r=0.2490, xm=434.0
x(2010)=306.0
Logistic 模型在经济领域中的应用(如耐用消费品的售量)
1.4 数学建模的方法和步骤
数学建模的基本方法
第一章建立数学模型
1.1 从现实对象到数学模型
我们常见的模型 玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
地图、电路图、分子结构图… … ~ 符号模型 模型是为了一定目的,对客观事物的一部分 进行简缩、抽象、提炼出来的原型的替代物 模型集中反映了原型中人们需要的那一部分特征
你碰到过的数学模型——“航行问题”
甲乙两地相距750千米,船从甲到乙顺水航行需30小时, 从乙到甲逆水航行需50小时,问船的速度是多少?
用 x 表示船速,y 表示水速,列出方程:
(x y)30750
x =20
(x y)50750求解 y =5
答:船速每小时20千米/小时.
航行问题建立数学模型的基本步骤
中国人口增长概况
年 1908 1933 1953 1964 1982 1990 1995 2000 人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0
研究人口变化规律
控制人口过快增长
常用的计算公式 今年人口 x0, 年增长率 r
k年后人口
x x(1r)k
k
0
指数增长模型——马尔萨斯提出 (1798)
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
1.2 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
数学建模作为用数学方法解决实际问题的第一步, 越来越受到人们的重视。
数学建模的一般步骤
模型准备
模型假设
模型构成
模型检验
模型分析
模型求解
模型应用
模 型
形成一个
了解实际背景 明确建模目的 比较清晰
准 搜集有关信息 掌握对象特征 的‘问题’

数学建模的一般步骤

针对问题特点和建模目的


作出合理的、简化的假设
设 在合理与简化之间作出折中
模 用数学的语言、符号描述问题

~状态转移律
多步决策 问题
求dkD(k=1,2, n), 使skS, 并按转 移律由 s1=(3,3)到达 sn+1=(0,0).
模型求解
• 穷举法 ~ 编程上机 • 图解法 状态s=(x,y) ~ 16个格点 允许状态 ~ 10个 点 允许决策 ~ 移动1或2格; k 奇,左下移; k偶,右上移.
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
uk~第k次渡船上的商人数
uk, vk=0,1,2;
vk~第k次渡船上的随从数
k=1,2,
dk=(uk , vk)~决策 D={(u , v) u+v=1, 2} ~允许决策集合
sk+1=sk +(-1)k dk
基本假设 : 人口(相对)增长率 r 是常数
x(t) ~时刻t的人口
x(tt)x(t) rt
x(t)
dxrx, dt
x(0)x0
x(t)xert 0
x(t)x0(er)t x0(1r)t
随着时间增加,人口按指数规律无限增长
指数增长模型的应用及局限性
• 与19世纪以前欧洲一些地区人口统计数据吻合 • 适用于19世纪后迁往加拿大的欧洲移民后代 • 可用于短期人口增长预测 • 不符合19世纪后多数地区人口增长规律 • 不能预测较长期的人口增长过程

发挥想像力
使用类比法

尽量采用简单的数学工具
数学建模的一般步骤
模型 求解
各种数学方法、软件和计算机技术
模型 分析
如结果的误差分析、统计分析、 模型对数据的稳定性分析
模型 检验
与实际现象、数据比较, 检验模型的合理性、适用性
模型应用
数学建模的全过程
现 现实对象的信息 表述

(归纳)

验证
数学模型
r(xm) 0
s r xm
r(x) r(1 x ) xm
阻滞增长模型(Logistic模型)
dx rx dt
dx/dt
dxr(x)xrx(1 x)
dt
xm
xxm
xm/2
x0
0 xm/2
xm x
x(t)
xm
1( xm 1)ert
x0
0
t
x(t)~S形曲线,
x增加先快后慢
阻滞增长模型(Logistic模型)
19世纪后人口数据 人口增长率r不是常数(逐渐下降)
阻滞增长模型(Logistic模型)
人口增长到一定数量后,增长率下降的原因:
资源、环境等因素对人口增长的阻滞作用
且阻滞作用随人口数量增加而变大
r是x的减函数
假设 r(x)rsx (r,s0) r~固有增长率(x很小时)
xm~人口容量(资源、环境能容纳的最大数量)
专家估计
r=0.2557, xm=392.1
阻滞增长模型(Logistic模型) 模型检验
用模型计算2000年美国人口,与实际数据比较
x ( 2) 0 x ( 1 0 ) 9 x 0 x 9 ( 1) 0 9 r ( 1 x 9 ) 1 9 [ x 0 ( 1 9 ) / 9 x m 0 ]
问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
模 型
• 四条腿一样长,椅脚与地面点接触,四脚连 线呈正方形;
假 • 地面高度连续变化,可视为数学上的连续面;

• 地面相对平坦,使椅子在任意位置至少三只
脚同时着地。
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
• 椅子位置 利用正方形(椅脚连线)的对称性
3名商人 3名随从
决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员
要求~在安全的前提下(两岸的随从数不比商人多),经有限 步使全体人员过河.
模型构成
xk~第k次渡河前此岸的商人数 yk~第k次渡河前此岸的随从数 sk=(xk , yk)~过程的状态
xk, yk=0,1,2,3; k=1,2, S ~ 允许状态集合
• 在一般工程技术领域数学建模仍然大有用武之地;
• 在高新技术领域数学建模几乎是必不可少的工具; • 数学进入一些新领域,为数学建模开辟了许多处女地。
数学建模的具体应用
• 分析与设计
• 预报与决策
• 控制与优化
• 规划与管理
数学建模 如虎添翼 计算机技术
相关文档
最新文档