大学物理-气体动理论必考知识点

合集下载

大学物理气体动理论基础

大学物理气体动理论基础

玻尔兹曼方程
玻尔兹曼方程是描述气体分子动理学行为的偏微分方程,它基于分子混沌 近似。
玻尔兹曼方程描述了气体分子速度分布随时间的变化,以及分子与器壁碰 撞后速度的改变。
通过求解玻尔兹曼方程,可以得到气体分子的速度分布、分子碰撞频率、 分子平均自由程等物理量。
输运过程的近似处理
01
输运过程是指气体分子通过器壁的传递过程,包括 扩散、热传导和粘性流动等。
气体动理论在新能源、环保、生物医 学等领域的应用前景广阔,为解决实 际问题提供了重要的理论基础。
THANKS
感谢观看
热传导的应用
在能源、化工、航空航天等领域,利用热传导原 理实现热量传递和热能利用。
气体扩散
扩散现象
气体分子在浓度梯度作用下,通过随机运动传递物质的过程。
扩散定律
扩散通量与浓度梯度成正比,与气体分子的扩散系数有关。
扩散的应用
在环保、化工、生物医学等领域,利用扩散原理实现物质的分离 和传输。
气体粘性
02
在处理输运过程时,可以采用近似方法来简化问题 ,如扩散系数近似、粘性系数近似等。
03
通过这些近似处理,可以得到输运过程的宏观规律 ,如菲克定律、斯托克斯定律等。
04
气体动理论的应用
气体热传导
热传导现象
气体分子在热能作用下,通过碰撞传递能量的过 程。
热传导定律
热能传递速率与温度梯度成正比,与气体分子间 的相互作用力有关。
粘性现象
01
气体分子在相对运动中,由于碰撞产生的阻力。
牛顿粘性定律
02
粘性力与速度梯度成正比,与气体分子的碰撞频率和分子间的
相互作用力有关。
粘性的应用
03

大学物理第六版第七章气体动理论基础总结

大学物理第六版第七章气体动理论基础总结

大学物理第六版第七章气体动理论基础总结
1. 气体分子模型:气体由大量无限小的分子组成,分子之间几乎没有相互作用,分子运动是无规则的。

2. 气体分子的运动:气体分子具有随机热运动,并遵循牛顿力学定律。

分子的速度和方向是随机的。

3. 气体的压强:气体分子与容器壁的碰撞会产生压强。

气体的压强与分子的速度、分子间平均自由程、分子总数等因素有关。

4. 理想气体状态方程:理想气体状态方程描述了气体的状态。

PV = nRT,其中P为气体压强,V为体积,n为物质的量,R为气体常数,T为温度。

5. 分子平均动能:气体分子的平均动能与气体的温度成正比。

分子平均动能与分子质量无关。

6. 温度和热力学温度:温度是描述物体热平衡状态的物理量。

热力学温度是温度的定量度量,它与分子平均动能的平方成正比。

7. 气体分子的速率分布:气体分子的速率分布服从麦克斯韦-波尔兹曼分布。

分子速率分布与温度相关,高温下分子速率分布图会变得更加平坦。

总结起来,第七章主要介绍了气体动理论的基本概念和定律,包括气体分子的运动、气体压强、气体状态方程、分子平均动能、温度和速率分布等内容。

气体动理论知识点总结

气体动理论知识点总结

气体动理论知识点总结注意:本章所有用到的温度指热力学温度,国际单位开尔文。

T=273.15+t 物态方程A NPV NkT P kT nkT VmPV NkT PV vN kT vRT RTM=→=='=→===(常用)一、 压强公式11()33P mn mn ==ρρ=22v v二、 自由度*单原子分子:平均能量=平均平动动能=(3/2)kT *刚性双原子分子:平均能量=平均平动动能+平均平动动能=325222kT kT kT += *刚性多原子分子:平均能量=平均平动动能+平均平动动能=33322kT kT kT +=能量均分定理:能量按自由度均等分布,每个自由度的能量为(1/2)kT 所以,每个气体分子的平均能量为2k ikT ε= 气体的内能为k E N =ε1 mol 气体的内能22k A i i E N N kT RT =ε== 四、三种速率p =≈v=≈v=≈ 三、 平均自由程和平均碰撞次数平均碰撞次数:2Z d n =v 平均自由程:zλ==v根据物态方程:p p nkT n kT=⇒=平均自由程:zλ==v练习一1.关于温度的意义,有下列几种说法:(1)气体的温度是分子平均平动动能的量度。

(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义。

(3)温度的高低反映物质内部分子热运动剧烈程度的不同。

(4)从微观上看,气体的温度表示每个气体分子的冷热程度。

(错) 解:温度是个统计量,对个别分子说它有多少温度是没有意义的。

3.若室内升起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了: 解:PV NkT =2112273150.9627327N T N T +===+ 1210.04N N N N ∆=-=则此时室内的分子数减少了4%.4. 两容器内分别盛有氢气和氦气,若他们的温度和质量分别相等,则:(A )(A )两种气体分子的平均平动动能相等。

大学物理第16章气体动理论

大学物理第16章气体动理论
N2
pA
lim N
NA N

1 2
抛硬币的 统计规律
2020/1/15
DUT 余 虹
4
16.1 理想气体的压强
一、分子的作用力与压强
总数N 个,分子质量m ,摩尔质量,
体积V,温度T。
F
气体分子频繁碰撞 容器壁——给容器
壁冲量。大量分子在t 时间内给予I
的冲量,宏观上表现为对器壁的平均
vf
v
d
v

0
f
vd v


0
vf
v d
v
麦克斯韦分布律
v 1.60 RT

2020/1/15
DUT 余 虹
21
(3)方均根速率 v 2
一段速率区间v1~v2的方均速率
f v
v122
v2 v 2 d N N v v2 2 f v d v
v1 v2 d N
作用力
F I t
气体对容器壁的压强
P F I S S t
2020/1/15
DUT 余 虹
5
二、P 与微观量 的关系
分子按速度区 间分组
第i 组: 速度 近vi 似~ 认vi 为 都dv是i v i
分子数N
i ,分子数密度
ni

Ni V
考察这组分子给面元A的冲量
一 碰壁前速度 vix viy viz
一、速率分布函数
处于平衡态的气体,每个分子 朝各个方向运动的概率均等。
可是大量分子速度分 量的方均值相等。
一个分子,某一时刻速度
v
通常 v xv y v z

v

大学物理第五章 气体动理论总结

大学物理第五章 气体动理论总结

三种速率比较:
vp
2kT m0
2RT M mol
f (v)
v 8kT 8RT
m0
M mol
v
v 2
3kT
3RT
m0
M mol
O
v p
v
v2
温度一定,同种气体
vp温度。
1
T2 T1
M mol 一定
2
T2 T1
v p2 v p1
v o
f (v)
5. 速率分布函数
f (v) dN
Ndv
dv
v
速率分布函数
f (v) 速率分布函数物理意义---
在速率v 的附近,单位速率间隔内的 分子数占总分子数的百分比 .
f (v)dv dN N
归一化条件
代表速率v 附近dv (或v~v+dv)区间的分子数概率
0
f
(v)dv
dN N
1
---曲线下面积
f (v)
2. 氢气分子的最概然速 率是多少?
0
1000
2
vm / s
v pHe
2RT 4 103
1000 m / s
2RT v pH2 2 103
2 1000
m/s
麦克斯韦速率分布律
例* 已知f()为麦克斯韦速率分布函数,p为分子 的最可几速率,则
p f ()d 表示 速率小于 p的分子数占总分子数的百分比
0
或分子速率小于 p的概率。
f ()d 表示 速率大于 p的分子数占总分子数的百分比
p
或分子速率大于 p的概率。
0
1 2
m0
2
f
(
)d

气体流动知识点总结

气体流动知识点总结

气体流动知识点总结一、气体流动的基本特性1.1 气体的基本特性气体是一种物态,具有一些特殊的基本性质,如可压缩性、弹性、可扩散性等。

这些特性决定了气体在流动过程中表现出的独特行为。

在理想气体状态下,气体具有简单的状态方程,即PV=RT,其中P为压力,V为体积,T为温度,R为气体常数。

这个方程描述了理想气体的状态,但在实际工程中,气体流动往往还受到多种因素的影响,因此需要更复杂的流动方程来描述。

1.2 气体的流动特性气体流动具有一些与其特性相关的基本规律。

首先是密度的不连续性。

在压缩气体流动的过程中,气体密度会发生突变,导致流场中密度的不连续性。

此外,由于气体分子的热运动,气体流动具有一定的湍流性质,因此在实际的气体流动过程中,需要考虑湍流的影响。

1.3 气体流动的基本方程描述气体流动的基本方程为流体力学方程,即连续性方程、动量方程和能量方程。

这些方程描述了气体流动的守恒性质,分别描述了质量、动量和能量在流动过程中的传递和转化关系。

了解这些方程对于分析和控制气体流动具有重要意义。

二、气体流动的流动方程2.1 连续性方程连续性方程描述了流场中流体的质量守恒关系,它可以用来描述气体流动中流体的流动速度和密度的变化关系。

连续性方程的数学表达形式为:∂ρ/∂t + ∇·(ρu) = 0其中,ρ为流体密度,t为时间,u为流速矢量。

这个方程表明了流体密度的变化与流速的关系,对于描述气体流动的密度分布和流速分布具有重要意义。

2.2 动量方程动量方程描述了流场中流体的动量守恒关系,它可以用来描述气体流动中流体的受力和流动的加速度关系。

动量方程的数学表达形式为:∂(ρu)/∂t + ∇·(ρuu) = -∇p + ∇·τ + ρg其中,p为压力,τ为应力张量,g为重力加速度。

这个方程描述了流体在流动过程中受到的压力、应力和重力等力的作用,对于描述气体流动的力学特性具有重要意义。

2.3 能量方程能量方程描述了流场中流体的能量守恒关系,它可以用来描述气体流动中能量的传递和转化关系。

大学物理复习-第五六章

大学物理复习-第五六章

E与(1) 相同.
W = Q E=417 J
4分
(3)
Q =0,E与(1) 同
W = E=623 J (负号表示外界作功)
3分
28
10、一定量的理想气体,由状态a经b到达c. (如图,abc为一直线)求此过程中 (1) 气体对外作的功; (2) 气体内能的增量; (3) 气体吸收的热量.(1 atm=1.013×105 Pa)
件___0 _f_(__) _d___1__,此条件的物理意义是:
分子速率处于(0~∞ )区间的分子数占总分子数
的百分比为1 .
2.若f()为气体分子速率分布函数,N为气体分子
总数,m为分子质量,则
2 1m 2Nf ( )d的物理
1 2
意义为速__率__在__速_率__间__隔___1~___2_之_内__的__分__子_平__均__动__能_之__和_。
到50%,若低温热源保持不变,则高温热源的温度应增加
___K.
500
100
8、1 mol 理想气体(设 Cp/CV为已知)的循环过程如T -V图所示,其中CA为绝热过程,A点状态参量(T1, V1)和B点的状态参量(T2,V2)为已知.试求C点的状 态参量:
Vc=____V,2
Tc=___(_V1_/ V_2_) _1 T_1 _____,
解: N22N, M1 2M2, T2 5T1
E2 E1
m
M2 m
M1
3 2
RT2
5 2
RT1
3 5
M1T2 M 2T1
6
第六章 热力学基础
一、热力学第一定律
二、四个过程
内能增量
E
m' M

大学物理学(下册)第10章 气体动理论

大学物理学(下册)第10章 气体动理论
分子力f与分子间距离r的关系
分子力 f 与分子之间的距离r有关 存在一个r0——平衡位置
r= r0≈10-10m时,分子力为零 r < r 0分子力表现在排斥力 r > r0分子力表现在吸引力
10.1.2 统计规律 ⑴.统计规律
在一定的条件下,大量的偶然事件存在着一种必然的规 律性,这种规律性称为统计规律。气体分子热运动服从统 计规律。 ⑵.几率(概率) 定义:一定条件下,某个偶然事件出现可能性的大小。 ⑶.研究统计规律性的一个著名实验是伽尔顿板实验
同数量的分子。即在标准状态下,1摩尔任何气体所占有
的体积都为22.4升。
2. 理想气体的物态方程
形式1

pV m RT M
pVRT
m——气体质量 M ——气体摩尔质量 R=8.31J·mol-1·K-1——摩尔气体常量
形式2
p1V1 = p2V2
T1
T2
10.3 理想气体的压强
10.3.1 理想气体的微观模型
① 1cm3的空气中包含有2.7×1019 个分子 ②水和酒精的混合 2. 组成物质的分子(或原子)在不停地运动着,这种运动 是无规则的,其剧烈程度与物体的温度有关 ① 布朗运动 ②气体、液体、固体的扩散
3. 分子(或原子)之间存在相互作用力
如: 铅柱重新接合、流体很难压缩 吸引力——固、液体聚集在一起 排斥力——固、液体较难压缩
10.3.2 理想气体压强公式
1. 气体压强产生原理
压强是大量分子 对容器壁发生碰 撞, 从而对容器 壁产 生冲力的 宏观效果。
气体压强产生原理
压强是大量分子对容器壁发生 碰撞,从而对容器壁产生冲力的宏 观效果。
单个分子
多个分子
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 气体动理论主要内容
一.理想气体状态方程: m PV RT M
'=; P nkT = 8.31J R k mol =;231.3810J k k -=⨯;2316.02210A N mol -=⨯;A R N k =
二. 理想气体压强公式
23kt p n ε= ε=213=22kt mv kT 分子平均平动动能
三. 理想气体温度公式
21322kt mv kT ε==
四.能均分原理
1. 自由度:确定一个物体在空间位置所需要的独立坐标数目。

2. 气体分子的自由度
单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i =
3. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为1
2
kT
五. 理想气体的内能(所有分子热运动动能之和)
1.1mol 理想气体=⋅=22A i i E N kT RT 3. 一定量理想气体()2i m E RT M
νν'==
六.麦克斯韦速率发布函数(可能会命题计算题,各种表达式的物理含义要牢记) 1()N
f v N v =d d , 速率在v 附近,单位速率区间内分子数占总分子数的百分率。

归一化条件:0()1f v v ∞=⎰d ,
=
=≈
平均速率:v ==≈ 最概然速率
:p v =≈
七.碰撞频率:
2z d nv =
平均自由程:λ=。

相关文档
最新文档