2014年秋八年级上数学复习试卷(一)【新课标人教版】
2013--2014新人教版八年级数学上期末测试题及答案免费下载

2013--2014新人教版八年级数学上期末测试题一.选择题(共12小题,满分36分,每小题3分)1.以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.2.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D AD=DE4.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°5.下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=16.如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x 7.(3分)下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6 D.x2﹣5x+6=(x+2)(x+3)8.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠09.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x10.下列各式:①a0=1;②a2?a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的 2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.12.如图,已知∠1=∠2,要得到△ABD≌△ACD,从下列条件中补选一个,则错误选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C二.填空题(共5小题,满分20分,每小题4分)13.(4分)分解因式:x3﹣4x2﹣12x=_________.14.(4分)若分式方程:有增根,则k=_________.15.(4分)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________.(只需填一个即可)16.(4分)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=_______度.17.(4分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________.三.解答题(共7小题,满分64分)其中a=,b=﹣.18.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),19.(6分)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.20.(8分)解方程:.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.22.(10分)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.。
2013-2014学年八年级数学上学期期末复习试题 (新人教版 第6套)

天津学大教育信息咨询有限公司2013-2014学年八年级上学期期末复习数学试题 新人教版一、选择题(每题3分)1.在以下四个图形中,对称轴条数最多的一个图形是( )A. B. C. D.2.点(1,-2)关于原点的对称点的坐标是( )A .(1,2)B .(-1,2)C .(-1,-2)D .(1,-2)3.到三角形三个顶点距离相等的点是( )A .三角形三条角平分线的交点B .三角形的三条中线的交点C .三角形三边垂直平分线的交点D .三角形三条高线的交点4.下列运算中,计算结果正确的是( )A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a +=5.在△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( )A .30°B .36°C .45°D .70°6.若分式2a a b+中的a 、b 的值同时扩大到原来的10倍,则分式的值( ). A .是原来的20倍 B .是原来的10倍 C .是原来的110D .不变 7.解分式方程2x 23x 11x ++=--时,去分母后变形为 A .()()2x 23x 1++=- B .()2x 23x 1-+=-C .()()2x 231 x -+=-D .()()2x 23x 1-+=-8.如图所示,在△ABC 中,AB =AC ,∠ABC、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:①△BCD≌CBE; ②△BAD≌△BCD; ③△BDA≌△CEA;④△BOE≌COD; ⑤△ACE≌△BCE,上述结论一定正确的是( )A .①②③ B.①③④ C.①③⑤ D.②③④9.若20 10a b b c ==,,则a b b c++的值为( ). (A )1121 (B )2111 (C )11021 (D )2101110.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足【 】A .a=52bB .a=3bC .a=72b D .a=4b二、填空题(每题3分)11.如果分式33x x --的值为1,则x 的取值范围为________________. 12.在实数范围内分解因式:226x -=________________.13.如图,∠ACD 是△ABC 的外角,若∠ACD=135°,∠A=75°,则∠B= 度;14.已知△ABC ≌△DEF ,△ABC 的周长为100cm ,DE =30cm ,DF =25cm ,那么BC =_______.15.若7m n +=,11mn =,则22m mn n -+的值是________. 16.化简:22x 4x 4x x 4x 2++-=-- . 17.△ABC 中,点 A 、B 、C 坐标为(0,1),(3,1),(4,3),如果要使△ABD 与△ABC 全等,18.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当ODP △是腰长为5的等腰三角形时,点P 的坐标为 。
人教课标版2013--2014学年度八年级数学上期末测试题及答案

2013--2014学年度八年级数学上册期末测试题一.选择题(共12小题,满分36分,每小题3分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.B. C. D.C. D.D.2.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A. 0根 B. 1根 C. 2根 D. 3根A. 0根 B. 1根 C. 2根 D. 3根0根 B. 1根 C. 2根 D. 3根B. 1根 C. 2根 D. 3根1根 C. 2根 D. 3根C. 2根 D. 3根2根 D. 3根D. 3根3根3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A. AB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEA. AB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEAB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEB. ∠BAE=∠CAD C. BE=DC D. AD=DE∠BAE=∠CAD C. BE=DC D. AD=DEC. BE=DC D. AD=DEBE=DC D. AD=DED. AD=DEAD=DE4.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. 180° B. 220° C. 240° D. 300°A. 180° B. 220° C. 240° D. 300°180° B. 220° C. 240° D. 300°B. 220° C. 240° D. 300°220° C. 240° D. 300°C. 240° D. 300°240° D. 300°D. 300°300°5.下列计算正确的是()A. 2a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1A. 2a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=12a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1(x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1C. (ab3)2=ab6 D. (﹣1)0=1(ab3)2=ab6 D. (﹣1)0=1D. (﹣1)0=1(﹣1)0=16..黄帅拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()A. B. C. D. 7.下列式子变形是因式分解的是()B. C. D. 7.下列式子变形是因式分解的是()C. D. 7.下列式子变形是因式分解的是()D. 7.下列式子变形是因式分解的是()7.下列式子变形是因式分解的是()7.下列式子变形是因式分解的是()A. x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3)A. x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3)x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3)B. x2﹣5x+6=(x﹣2)(x﹣3)x2﹣5x+6=(x﹣2)(x﹣3)C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)(x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)D. x2﹣5x+6=(x+2)(x+3)x2﹣5x+6=(x+2)(x+3)有意义,则a的取值范围是()8.若分式A. a=0 B. a=1 C. a≠﹣1 D. a≠0 9、下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A . a=0B . a=1C . a ≠﹣1D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( ) a=0 B . a=1 C . a ≠﹣1 D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )B . a=1C . a ≠﹣1D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )a=1 C . a ≠﹣1 D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )C . a ≠﹣1D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )a ≠﹣1 D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )A . ①②③B . ①③⑤C . ②③④D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )A . ①②③B . ①③⑤C . ②③④D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )①②③ B . ①③⑤ C . ②③④ D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )B . ①③⑤C . ②③④D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )①③⑤ C . ②③④ D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )C . ②③④D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )②③④ D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( ) 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( ) 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值 C .当∠β为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A . B . C . D .A .B .C .D .B .C .D . B . C . D .C .D . C . D .D . D .12.如图,A 、C 、B 三点在同一条直线上,△DAC 和△EBC 是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N 结论:①△ACE ≌△DCB ;②CM=CN ;③AC=DN .其中,正确结论的个数是( A .3个 B .2个 C .1个 D .0二.填空题(共5小题,满分20分,每小题4分)13.分解因式:x 3﹣4x 2﹣12x= _________ .14.若分式方程:有增根,则k= _________ .15.如图所示,已知点A 、D 、B 、F 在一条直线上,AC=EF ,AD=FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是 _________ .(只需填一个即可)三.解答题(共7小题,满分64分)18.(5分)先化简,再求值:5(3a 2b ﹣ab 2)﹣3(ab 2+5a 2b ),其中a= ,b=﹣.19.(5分)给出三个多项式: x 2+2x ﹣1, x 2+4x+1,x 2﹣2x .请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解. 20.(5分)解方程:.21.(5分)作图.(1)已知△ABC ,在△ABC 内求作一点P ,使点P 到△ABC 三条边的距离相等.(2)要在高速公路旁边修建一个飞机场,使飞机场到A 、B 两个城市的距离之和最小,请作出飞机场的位置.22、(7分)△ABC 为正三角形,点M 是射线BC 上任意一点,点N 是射线CA 上任意一点,且BM=CN ,BN 与AM 相交于Q 点,∠AQN 等于多少度?23、(7分)如图,①AB=DE 、②CB=CE 、③∠1=∠2、④CA=CD 结论,写出所有成立的命题,并选择其中一个加以证明.24、(8分)已知:如图,△ABC中,∠A的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F.求证:AB-AC=2CF.25.(10分)(2012•百色)某县为了落实中央的“需天数是规定天数的1.55天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?26、(12分)如图1,小明将一张矩形纸片沿对角线剪开,得到两张全等直角三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、F、D在同一条直线上,F为公共直角顶点.(1)将图3中的△ABF绕点F顺时针方向旋转30°到图4的位置,A1F交DE于点G,请你求出线段FG的长度;.(2)将图附加题;1、(1)在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:①DC=BC;②AD+AB=AC.请你证明结论②;(2)在图2中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.2、将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.3、如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)如图1,请你写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点O,连接AP,BO.猜想并写出BO与AP 所满足的数量关系和位置关系,并说明理由;(3)将△EFP沿直线l继续向左平移到图3的位置时,EP的延长线交AC的延长线于点O,连接AP,BO.此时,BO与AP还具有(2)中的数量关系和位置关系吗?请说明理由.2013--2014新人教版八年级数学上期末测试题带详细讲解(超经典)参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)(2012•湛江)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D. 考点: HYPERLINK"/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .B. C. D. 考点: HYPERLINK"/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .C. D. 考点: HYPERLINK"/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .D. 考点: HYPERLINK"/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .考点: HYPERLINK "/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .考点: HYPERLINK "/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)(2011•绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A. 0根 B. 1根 C. 2根 D. 3根A. 0根 B. 1根 C. 2根 D. 3根0根 B. 1根 C. 2根 D. 3根B. 1根 C. 2根 D. 3根1根 C. 2根 D. 3根C. 2根 D. 3根2根 D. 3根D. 3根3根考点: 三角形的稳定性. 专题: 存在型. 分析: 根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,三角形的稳定性. 专题: 存在型. 分析: 根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,专题:存在型.分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,专题: 存在型. 分析: 根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,存在型. 分析: 根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD 中具有了稳定的△ACD及△ABC,分析: 根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.点评: 本题考查的是三角形的稳定性在实际生活中的应用,比较简单.点评:本题考查的是三角形的稳定性在实际生活中的应用,比较简单.点评: 本题考查的是三角形的稳定性在实际生活中的应用,比较简单.本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A. AB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEA. AB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEAB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEB. ∠BAE=∠CAD C. BE=DC D. AD=DE∠BAE=∠CAD C. BE=DC D. AD=DEC. BE=DC D. AD=DEBE=DC D. AD=DED. AD=DEAD=DE考点: 全等三角形的性质. 分析: 根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,全等三角形的性质. 分析: 根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,分析:根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,分析: 根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D. 点评: 本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.点评:本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.点评: 本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键. 4.(3分)(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. 180° B. 220° C. 240° D. 300°A. 180° B. 220° C. 240° D. 300°180° B. 220° C. 240° D. 300°B. 220° C. 240° D. 300°220° C. 240° D. 300°C. 240° D. 300°240° D. 300°D. 300°300°考点: 等边三角形的性质;多边形内角与外角. 专题: 探究型. 分析: 本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,等边三角形的性质;多边形内角与外角. 专题: 探究型. 分析: 本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,专题:探究型.分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,专题: 探究型. 分析: 本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,探究型. 分析: 本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,分析: 本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,解答:解:∵等边三角形的顶角为60°,解答: 解:∵等边三角形的顶角为60°,解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C. 点评: 本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题点评:本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题点评: 本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题5.(3分)(2012•益阳)下列计算正确的是()A. 2a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1A. 2a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=12a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1(x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1C. (ab3)2=ab6 D. (﹣1)0=1(ab3)2=ab6 D. (﹣1)0=1D. (﹣1)0=1(﹣1)0=1考点: 完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂. 分析: A、不是同类项,不能合并;完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂. 分析: A、不是同类项,不能合并;分析:A、不是同类项,不能合并;分析: A、不是同类项,不能合并;A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1. 解答: 解:A、不是同类项,不能合并.故错误;解答:解:A、不是同类项,不能合并.故错误;解答: 解:A、不是同类项,不能合并.故错误;解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选D. 点评: 此题考查了整式的有关运算公式和性质,属基础题.点评:此题考查了整式的有关运算公式和性质,属基础题.点评: 此题考查了整式的有关运算公式和性质,属基础题.此题考查了整式的有关运算公式和性质,属基础题.6.(3分)黄帅拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()A. B. C. D. 考点: HYPERLINK"/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .B. C. D. 考点: HYPERLINK"/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .C. D. 考点: HYPERLINK"/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .D. 考点: HYPERLINK"/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .考点: HYPERLINK "/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .考点: HYPERLINK "/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .分析:本题主要考查学生的动手能力及空间想象能力.解答:解:严格按照图中的顺序向右下对折,向左下对折,从直角顶点处剪去一个直角三角形,展开得到结论.故选C.点评:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.7.(3分)(2012•济宁)下列式子变形是因式分解的是()A. x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3) C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)A. x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3) C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3) C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)B. x2﹣5x+6=(x﹣2)(x﹣3) C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)x2﹣5x+6=(x﹣2)(x﹣3) C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)(x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)D. x2﹣5x+6=(x+2)(x+3)x2﹣5x+6=(x+2)(x+3)考点: 因式分解的意义. 分析: 根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断. 解答: 解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;因式分解的意义. 分析: 根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断. 解答: 解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;分析:根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答:分析: 根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断. 解答: 解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断. 解答: 解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;解答:解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;解答: 解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B. 点评: 本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.点评:本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.点评: 本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.有意义,则a的取值范围是()8.(3分)(2012•宜昌)若分式A. a=0 B. a=1 C. a≠﹣1 D. a≠0A. a=0 B. a=1 C. a≠﹣1 D. a≠0a=0 B. a=1 C. a≠﹣1 D. a≠0B. a=1 C. a≠﹣1 D. a≠0a=1 C. a≠﹣1 D. a≠0C. a≠﹣1 D. a≠0a≠﹣1 D. a≠0D. a≠0a≠0考点: 分式有意义的条件. 专题: 计算题. 分析: 根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,分式有意义的条件. 专题: 计算题. 分析: 根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,专题: 计算题. 分析: 根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,计算题. 分析: 根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,分析: 根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,解答:解:∵分式有意义,解答: 解:∵分式有意义,解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C. 点评: 本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:点评: 本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;9.(3分)(2011•鸡西)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A. ①②③ B. ①③⑤ C. ②③④ D. ②④⑤A. ①②③ B. ①③⑤ C. ②③④ D. ②④⑤①②③ B. ①③⑤ C. ②③④ D. ②④⑤B. ①③⑤ C. ②③④ D. ②④⑤①③⑤ C. ②③④ D. ②④⑤C. ②③④ D. ②④⑤②③④ D. ②④⑤D. ②④⑤②④⑤考点: 负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂. 专题: 计算题. 分析: 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误;负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂. 专题: 计算题. 分析: 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误;专题:计算题.分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误;专题: 计算题. 分析: 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误;计算题. 分析: 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误;分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误; 分析: 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误; 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误; 解答:解:①当a=0时不成立,故本小题错误;解答: 解:①当a=0时不成立,故本小题错误;解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2= ,根据负整数指数幂的定义a ﹣p = (a ≠0,p 为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确; ⑤x 2+x 2=2x 2,符合合并同类项的法则,本小题正确.故选D . 点评: 本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键. 10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )点评:本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键. 10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )点评: 本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键. 10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键. 10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( ) 10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK "/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 . B .当∠α为定值时,∠CDE 为定值 C .当∠β为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 .B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 .C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 . C .当∠β为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 . D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 .D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 . 考点: HYPERLINK "/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 .考点: HYPERLINK "/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 .专题: HYPERLINK "/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 压轴题 .分析:问题即是判断∠CDE 与∠α、∠β、∠γ有无确定关系,通过等边对等角及外角与内角的关系探索求解. 解答: 解:由AB=AC 得∠B=∠C ,由AD=AE 得∠ADE=∠AED=γ,根据三角形的外角等于不相邻的两个内角的和可知,∠AED=∠C+∠CDE ,∠ADC=∠B+∠BAD ,即γ=∠C+∠CDE ,γ+∠CDE=∠B+α,代换得2∠CDE=α.故选B .点评:本题充分运用等腰三角形的性质,三角形的外角的性质,列等式代换,得出结论.11.(3分)(2012•本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A . B . C . D .A .B .C .D .B .C .D .B .C .D .C .D .C .D .D .。
2014年秋季学期八年级数学上学期期末试题-2- (1)

D C(图3)CBA2014秋季学期八年级(上)期末试卷一班级 姓名 学号 评分一、选择题:(每小题3分,共24分,每小题只有一个答案,请你把正确的选择填在表格中)1、81的平方根是( )A 、3B 、9C 、3±D 、9±2、下列说法:(1)无限小数都是无理数;(2)实数与数轴上的点一一对应;(3)任何实数都有平方根。
(4)无理数就是带根号的数。
其中说法错误的有( )A 、1个B 、2个C 、3个D 、4个 3、估算65(误差小于0.1)的大小是( )A 、8B 、8.3C 、8.8D 、8.0~8.1 4、直角坐标系中,点(-2,3)与(2,-3)关于( )A 、原点中心对称B 、Y 轴轴对称C 、X 轴轴对称D 、以上都不对 5、若方程x +y=3,x -y=5和x +ky=2有公共解,则k 的值是( )A 、2B 、-2C 、1D 、3 6、将△ABC 的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形( )A 、与原图形关于Y 轴对称B 、与原图形关于X 轴对称C 、与原图形关于原点对称D 、向X 轴的负方向平移了一个单位7、已知正比例函数y=kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y=x -k 的图象大致是( )8、某校八年级(2)班50名学生参加体育考试,平均分为60分,60分以上(含60分)为及格,及格人数人均70分,不及格人数人均45分,则及格人数为( ) A 、10 B 、20 C 、30 D 、35二、填空题:(每小题3分,共24分) 9、36的平方根是 ,64的立方根是 ,2-的绝对值是 。
10、已知三角形三边长分别是6,8,10,则此三角形的面积为 。
11、一次函数图象如图1所示,则函数关系式是 。
12、如图2,等腰梯形ABCD 中,∠ADC=60°,AB=2,CD=6,则各顶点的坐标是A (2,32),B ,C ,D (0,0)。
2014新人教版八年级数学上册第一次月考试卷.doc

科右前旗第六中学第一次月考八年级数学试题一、选择题(每小题3分,共30分)1.下列所给的各组线段,能组成三角形的是: ( ) A.10cm、20cm、30cm B.20cm、30cm、40cmC.10cm、20cm、40cm D.10cm、40cm、50cm2.如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是: ( ) A.带①去 B.带②去 C.带③去 D.①②③都带去3.如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2011个三角形,那么这个多边形是: ( ) A.2012边形 B.2013边形 C.2014边形 D.2015边形4.一个正多边形的一个内角等于144°,则该多边形的边数为: ( ) A.8 B.9 C.10 D.115、等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为()A.150°B.80°C.50°或80°D.70°6.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线7.如图所示,在下列条件中,不能作为判断△ABD≌△BAC的条件是()A. ∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC8.如图所示,E、B、F、C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B. DF∥AC C. ∠E=∠ABC D. AB∥DE9.若一个多边形的内角和与外角和相加是1800°,则此多边形是()A.八边形B.十边形C.十二边D.十四边形10.已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角 B.∠A=∠2C.△ABC≌△CED D.∠1=∠2二、填空题(每小题3分,共30分)11. 如图,△ABC ≌△DEF ,A 与D ,B 与E 分别是对应顶点,∠B=32°,∠A=68°,AB=13cm ,则∠F= 度,DE= cm .12.如图所示,则∠1=_____ .第11题图13.一个等腰三角形有两边分别为5和8厘米,则周长是 厘米。
2013-20141年度八年级上期期末数学考试(新人教)

2013-2014学年度上期七年级期末调研考试数学试卷考试形式;闭卷 考试时间100分 分值120分一、选择题(每题3分,共18分)1.下列运算正确的是…………………………………………………………( )A. 3412a a a ⋅=B. 3362a a a +=C.320a a ÷=D.2353515x x x ⋅=2.若分式2xx y+中的x , y 都扩大3倍,则分式的值是…………………………( ) A. 不变 B 扩大3倍 C 缩小3倍 D. 扩大9倍3已知(x+m )与(x+3)的乘积中不含x 的一次项,则m 的值是………………( ) A. -3 B . 3 C. 0 D. 14.如图1,P 点在三角形纸片ABC 边上,将点A 折至点P 时,出现折线BD ,其点D 在AC 边上,如图2所示,若△ABC 的面积为8,△DBC 的面积为5,则BP 与PC 的长度之比是( )A. 3:2B. 5:3C. 3: 5D. 13:85.如图,∠MON=40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上一点,则当△PAB 的周长取最小值时,∠APB 的度数是………………………………………………………………………( ) A .80° B .100° C . 110° D .120°6.某班同学学习整式乘除这一章后,要带领本组的成员共同研究课题学习,现在全组同学有4个能够完全重合的长方形,长,宽分别为a,b ,在研究的过程中,一位同学用这4个长方形摆成了一个大的正方形,如图所示,由左图至右图,利用其面积的不同表示方法写出一个代数恒等式( ) A 2222=)a ab b a b +++( B. 224()()ab a b a b =+-- C. 2222()a ab b a b -+=- D 22()()=a b a b a b +--.题号 一 二 三总分 16 17 18 19 20 21 22 23得分得 分 评卷人图1 BACPP CA图2OB PANM第4题图第5题图B D学校___________ 班级_____________ 姓名___________ 考试号___________………………………………密…………封…………线…………内…………不…………得…………答…………题………………………………7.如图,是一台球桌面的示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,再经桌边反弹,最后进入球洞的序号是…………………………( )A.1 B .2 C . 5 D. 68.甲做360个零件与乙做480个零件所用的时间相同,已知两个人每天共做140个零件,若设甲 每天做x 个零件,则可列方程……………………………………………………( )A.360480140x x =- B.360480140x x =- C. 360480140x x += D.360480140x x-=二.填空题(每小题3分,共21分)9. 0.00000000098用科学计数法表示为_________________.10.计算:(23)(23)x x +-+= __________________; 11. 已知113x y -=,则2322x xy yx xy y+---= ___________ 12. 若225(3)9a k a +-+是一个完全平方式,则k 的值是_____________________13.某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转。
最新人教版2013-2014学期八年级数学上期末试卷(经典四套)

ABCD21DECBA2013-2014学年第一学期八年级数学期末模拟测试卷班级姓名 分数第Ⅰ卷(共100分)一、选择题(每题3分,共30分)1.下列平面图形中,不是轴对称图形的是 ( )2.一个三角形任意一边上的高都是这边上的中线,则对这个三角形的形状最准确的判断是( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形3.如右图,△ABC 与△DEF 是全等三角形,则图中相等的线段的组数是 ( )A .3B . 4C .5D .64、如右图:在△ABC 中,DE 垂直平分AB,AE 平分∠BAC,若∠C=90°, 则∠B 的度数为( ) A.30° B.20° C.40° D.25° 4. 已知m6x =,3n x =,则2m nx-的值为( )A 、9B 、43 C 、12 D 、345. 下列各式由左边到右边的变形中,是分解因式的为( )。
A 、a (x + y) =a x + a y B 、x 2-4x+4=x(x -4)+4C 、10x 2-5x=5x(2x -1)D 、x 2-16+3x=(x -4)(x+4)+3x 6.下列各式中计算正确的是 ( )A 、(2p+3q )(-2p+3q)=4p 2-9q 2B 、( 12a 2b -b)2=14a 4b 2-12a 2b 2+b 2C 、(2p -3q )(-2p -3q)=-4p 2+9q 2D 、 ( -12a 2b -b)2=-14a 4b 2-a 2b 2-b 27.分式方程2114339x x x +=-+-的解是( ) A .x=±2 B .x=2 C .x=-2 D .无解 8.若224x x +-=0,则 x 值为( ) A .2 B .-2 C .±2 D .不存在10.炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( ) A .66602x x =- B .66602x x =- C .66602x x =+ D .66602x x=+二、填空题(每题3分,共18分) 11、计算())43(82b a ab ⋅-=________12、已知(a+b)2=16,ab=6,则a 2+b 2的值是13、如右图,在△ABC 中,∠C=900,AD 平分∠CAB ,BC =8cm ,BD =5cm ,那么D 点到直线AB 的距离是 cm .14、当x 时,分式3912++x x 的值是负数15、若分式方程4142-=--x ax 有增根,则a= . 16、如右图,已知∠1=∠2,AC=AD ,增加一个条件能使△ABC ≌△AED三、解答题(共52分)17、因式分解(每题4分,共8分)(1)3x x - (2)3269a a a -+18、解下列分式方程(每题5分,共10分)(1)511x =+(2)0324256=++-++x x x xABECFD EBCAED19、(10分) 先化简再求值:[]y y x y x y x 4)4()2)(2(2÷+--+,其中x =5,y=220、(12分)已知:如图,∠1=∠2,,3=∠4,求证:△ABE ≌△ADE4321BAEDC21、(12分)A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?第Ⅱ卷(共50分)22、(12分)下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程.解:设x 2-4x =y原式=(y +2)(y +6)+4 (第一步) = y 2+8y +16 (第二步) =(y +4)2 (第三步) =(x 2-4x +4)2 (第四步) 回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式 (2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x +2)+1进行因式分解.23、(12分)观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯, 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)直接写出下列各式的计算结果:1111122334(1)n n ++++=⨯⨯⨯+ . (2)猜想并写出:)2(1+n n = .24、(12分)海珠区在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程. 已知甲工程队比乙工程队每天能多铺设20米. 甲工程队铺设350米所用的天数与乙工程队铺设250 米所用的天数相同.⑴甲、乙工程队每天各能铺设多少米?⑵如果要求完成该工程的工期不超过10天,且各队的工程量恰好为100的整数倍,那么应为两工程队分配工作量的方案有几种?请你帮忙设计出来.25、(14分)在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.2013-2014八年级数学上期末复习试卷一、选择题(本大题共有8题,每题3分,共24分)1、已知6x y+=,2xy=-,则2211x y+=.2、以下五家银行行标中,是轴对称图形的有()A、1个 B. 2个 C. 3个 D. 4个3、下列条件中,不能确定....△ABC≌△CBA'''的是()A、BC= B'C',AB=A'B',∠B=∠B'B、∠B=∠B'AC=A'C'AB= A'B'C、∠A=∠A',AB= A'B', ∠C=∠C'D、BC= B'C'4、若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11㎝B.7.5㎝C. 11㎝或7.5㎝D.以上都不对5、下列计算中正确的是()A、a2+a3=a5 B.a4÷a=a4 C.a2×a4=a8 D.(—a2)3=—a66、△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,最长边AB的长为()A.9cmB. 8 cmC. 7 cmD.6 cm7、在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b)B. (a+b)2=a+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-ab=a(a-b)8、.若关于x的分式方程233x mmx x-=--无解,则m的值为.二、填空题(本大题共6题,每题3分,共18分,请将正确答案直接写在题后的横线上。
2013-2014年新版人教版八年级上数学期中复习试卷

O
E
B
14.等腰三角形的一边长是 6,另一边长是 12,则周长为( )
A
A.24 B.30 C.24或 30 D.18
15.如图:DE是 ABC中 AC边的垂直平分线,若 BC=8厘米,AB=10厘米,则 E
D
EBC的周长为( )厘米 A.16 B.18 C.26 D.28
B
C
16.下列关于等边三角形的说法正确的有(
2013-2014学年度第一学期八年级数学期中复习试卷
一.选择题
1.如图所示,图中不是轴对称图形的是( )
2、下列图形:①三角形,②线段,③正方形,④
直角.其中是轴对称图形的个数是( )
A.4 个 B.3 个 C.2 个 D.1 个
3、下列图形是轴对称图形的有
(
)
A:1 个 B:2 个 C:3 个 D:4 个
正确的有( )A.1个 B.2个 C.3个 D.4个
5.如图,在△ABC中,AB=AC,∠A=40°,CD⊥AB于 D,则∠DCB等于( )
A.70°B.50°C.40°D.20°
6.AD是△ABC的角平分线且交 BC于 D,过点 D 作 DE⊥AB于 E,DF⊥AC于 F•,则下列结论
不一定正确的是( ) A.DE=DF B.BD=CD C.AE=AF D.∠ADE=∠ADF
论还成立吗?请你在图 15(2)中完 成图形,并给予证明。
27、如图,已知:E 是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D 是垂足,连接 CD,且交 OE于点 F. (1)求证:OE是 CD的垂直平分线. (2)若∠AOB=60º,请你探究 OE,EF之间有什么数量关系?并证明你的 结论。
28、如图 15,(1)P是等腰三角形 ABC底边 BC上的一人动点,过点 P 作 BC的垂线,交 AB于点 Q, 交 CA的延长线于点 R。请观察 AR与 AQ,它们有何关系?并证明你的猜想。 (2)如果点 P 沿着底边 BC所在的直线,按由 C 向 B 的方向运动到 CB的延长线上时,(1)中所得的结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 ③
②
①
第7题
2014秋八年级数学复习测试(一)
班级: 姓名:
一、精心选一选(每小题3分,共36分)
1、图中的图形中是常见的安全标记,其中是轴对称图形的是( )
2、平面内点A (-1,2)和点B (-1,-2)的对称轴是( ) A .x 轴 B .y 轴 C .直线y=4 D .直线x=-1
3、只有以下元素对应相等,不能判定两个三角形全等的是( ) A. 两角和一边 B. 两边及夹角 C. 三个角 D. 三条边
4、下列图形中对称轴最多的是( )
A.等腰三角形
B.正方形
C.圆
D.线段
5、已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为( ) A .2 ㎝ B . 4 ㎝ C . 6 ㎝ D . 8㎝
6、如图所示,∠B=∠D=90°,BC=CD ,∠1=40°,则∠2=( ) A 、40° B 、50° C 、45° D 、60°
7、如图,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )
A.带①去
B.带②去
C.带③去
D.带①和②去
8、如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是 ( )
9、如图,把长方形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么,有下列说法: ①△EBD 是等腰三角形,EB=ED ②折叠后∠ABE 和∠CBD 一定相等 ③折叠后得到的图形是轴对称图形 ④△EBA 和△EDC 一定是全等三角形其中正确的有( ) A.1个 B.2个 C.3个 D.4个
10、△ABC 中,AB=AC,AB 的垂直平分线与直线AC 相交所成锐角为40°则此等腰三角形的顶角为( ) A. 50° B. 60° C. 150° D. 50°或150°
11、点 P(a+b,2a-b)与点Q (-2,-3)关于X 轴对称,则 a+b=( )
A.
B C. -2 D. 2
12、如图,已知MB=ND,∠MBA=∠NDC ,下列条件中不能 判定△ABM ≌△CDN 的是( )
A.∠M=∠N
B.AM=CN
C.AB=CD
D.AM ∥CN 二、细心填一填(每小题3分,共18分)
13、点P (1,-1)关于x 轴对称的点的坐标为P ′______。
14、小明从平面镜子中看到镜子对面电子钟示数的像如图所示 ,这时的时刻应是_______________。
15、如图,已知AD =BC ,根据“SSS ”,还需要一个条件_______________,可证明ΔABC ≌ΔBAD ;根据“要SAS ”,还需要一个条件_____________,可证明ΔABC ≌ΔBAD 。
16、如图,在等腰Rt △ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于D ,若AB =10,则△BDE 的周长等于 。
17、等腰三角形一腰上的高与另一边的夹角为80°,则顶角的度数为 。
18、在△ABC 中,∠C=90°,BC=16cm ,∠BAC 的平分线交BC 于D ,且BD ︰DC=5︰3,则D 到AB 的距离为_____________.
三、解答题(共66分)
19、(8分)要在燃气管道L 上修建一
个泵站P ,分别向A ,B 两镇供气,泵 站修在管道的什么地方,可使所用的输 气管线最短?在图上画出P 点位置,不 写作法,保留痕迹。
O
D
C
B
A 第15题
3
1
3
2
E
A
B C
D
第9题
A B
D
C
M
N
第12题
第14题
第16题
E D
C
B
A
2
20、(10分)如图,写出△ABC 的各顶点坐标,并 画出△ABC 关于Y 轴对称的△A 1B 1C 1,写 出△ABC 关于X 轴对称的△A 2B 2C 2的各点 坐标。
21、(10分)如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O . (1)求证:AB =DC ;
(2)试判断△OEF 的形状,并说明理由.
22、(8分)如图:△ABC 和△ADE 是等边三角形.证明:BD=CE.
23、(8分)已知:如图,AB =AE ,BC =ED ,AF 是CD 的垂直平分线, 求证:∠B =∠E .
24、(10分)如图,已知:△ABC 中,AB=AC ,BD 和CE 分别是∠ABC 和∠ACB 的角平分线,且相交于O 点。
⑴ 试说明△OBC 是等腰三角形;
⑵ 连接OA ,试判断直线OA 与线段BC 的关系?并说明理由。
25、(12分)已知:点O 到△ABC 的两边AB 、AC 所在直线的距离相等,即OD ⊥AB 于点D ,OE ⊥AC 于点E , OD=OE ,且OB =OC 。
(1)如图,若点O 在BC 上,求证:AB =AC ;
(2)如图,若点O 在△ABC 的内部,求证:AB =AC ;
(3)若点O 在△ABC 的外部,AB =AC 成立吗?请画图表示。
A
D
B
E
F
C
O
A
B
C
D
E
C
O
A
B
D
E
A
C
B
O
E
D。