函数与导数核心考点与题型:二阶导数

合集下载

高中数学二阶导数

高中数学二阶导数

高中数学二阶导数高中数学中,二阶导数是一个重要的概念。

它是指函数的导函数再次求导的结果。

在这篇文章中,我们将介绍二阶导数的概念、计算方法以及它在数学中的应用。

一、二阶导数的概念二阶导数是指函数的导函数再次求导的结果。

对于一个函数f(x),它的一阶导数可以表示为f'(x),二阶导数可以表示为f''(x),即对f'(x)再次求导。

二阶导数可以理解为函数的变化率的变化率,它描述了函数曲线的弯曲程度。

二、二阶导数的计算方法要计算一个函数的二阶导数,我们可以先求出它的一阶导数,然后再对一阶导数求导即可。

具体而言,如果一个函数f(x)的一阶导数为f'(x),那么它的二阶导数为f''(x) = (f'(x))'。

换句话说,我们可以对函数的导函数应用求导法则来计算二阶导数。

三、二阶导数的应用二阶导数在数学中有许多重要的应用。

以下是一些常见的应用场景:1. 函数的凸凹性判断:凸函数和凹函数是数学中重要的概念,它们在优化问题、经济学、物理学等领域有广泛的应用。

通过判断函数的二阶导数的正负可以判断函数的凸凹性。

若函数的二阶导数大于零,则函数是凸函数;若二阶导数小于零,则函数是凹函数。

2. 极值点的判断:函数的极值点是函数变化的临界点,也是优化问题中的关键。

通过求解函数的一阶导数为零的点,我们可以找到函数的极值点。

但是有时候一阶导数为零的点可能是极值点,也可能是拐点,此时我们需要进一步分析二阶导数的符号来判断。

3. 曲线的拐点判断:曲线的拐点是函数曲线从凹变凸或从凸变凹的点,它在物理学、经济学等领域有重要的应用。

通过求解函数的二阶导数为零的点,我们可以找到函数的拐点。

4. 泰勒级数展开:泰勒级数是一种将函数表示为无穷级数的方法,它在数学和工程学中有广泛的应用。

通过求解函数的二阶导数,我们可以计算出函数在某一点的泰勒级数展开式,从而近似计算出函数在该点附近的值。

二阶导函数

二阶导函数

二阶导函数二阶导函数是指函数的导函数再求导的结果。

它是微积分中一个重要的概念,可以帮助我们更好地理解函数的变化趋势和性质。

本文将从几个方面介绍二阶导函数的概念、性质以及应用。

我们来回顾一下导数的定义。

对于函数f(x)而言,它的导数f'(x)表示函数在某一点的切线斜率,即刻画了函数在该点的变化速率。

而二阶导数f''(x)则是对一阶导数f'(x)再次求导得到的结果,它反映了函数变化的加速度。

可以说,二阶导函数是对函数变化趋势的进一步描述。

二阶导函数具有一些重要的性质。

首先,如果函数f(x)的二阶导数f''(x)存在且连续,那么f(x)在某一点x处的函数值和一阶导数f'(x)的函数值都可以通过二阶导数f''(x)来推导。

这意味着二阶导函数可以帮助我们更好地理解函数的性质和特点。

二阶导函数还可以帮助我们判断函数在某一点的凹凸性。

具体来说,如果函数f(x)的二阶导数f''(x)大于零,那么函数在该点处是凹的;如果二阶导数f''(x)小于零,那么函数在该点处是凸的。

这个性质在优化问题中非常有用,可以帮助我们找到函数的极值点。

二阶导函数还可以用来判断函数的拐点。

拐点是指函数曲线由凹转凸或由凸转凹的点,也是函数变化趋势发生突变的点。

通过分析二阶导函数的零点,我们可以找到函数的拐点位置。

这个特性在曲线绘制和图形分析中非常有用。

除了以上的性质,二阶导函数还可以应用于泰勒级数的推导。

泰勒级数是将一个函数表示为无穷级数的形式,通过前几项的求和可以近似表示原函数。

而二阶导函数在泰勒级数中起到了重要的作用,它决定了函数在某一点附近的近似精度。

二阶导函数是对函数变化趋势的进一步描述,可以帮助我们判断函数的凹凸性和拐点位置。

它在数学分析、优化问题、曲线绘制和泰勒级数等领域都有广泛的应用。

通过研究二阶导函数,我们可以更深入地理解函数的性质和特点,并且在实际问题中得到更准确的解答。

专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)

专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)

专题17 函数与导数压轴解答题常考套路归类【命题规律】函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值; (2)函数的零点问题;(3)不等式恒成立与存在性问题; (4)函数不等式的证明. (5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.【核心考点目录】核心考点一:含参数函数单调性讨论 核心考点二:导数与数列不等式的综合问题 核心考点三:双变量问题 核心考点四:证明不等式 核心考点五:极最值问题 核心考点六:零点问题核心考点七:不等式恒成立问题核心考点八:极值点偏移问题与拐点偏移问题 核心考点九:利用导数解决一类整数问题 核心考点十:导数中的同构问题 核心考点十一:洛必达法则核心考点十二:导数与三角函数结合问题【真题回归】1.(2022·天津·统考高考真题)已知a b ∈R ,,函数()()sin ,x f x e a x g x =-=(1)求函数()y f x =在()()0,0f 处的切线方程; (2)若()y f x =和()y g x =有公共点, (i )当0a =时,求b 的取值范围; (ii )求证:22e a b +>.2.(2022·北京·统考高考真题)已知函数()e ln(1)x f x x =+. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性; (3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.3.(2022·浙江·统考高考真题)设函数e()ln (0)2f x x x x=+>. (1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭; (ⅰ)若1230e,a x x x <<<<,则22132e 112e e6e 6e a ax x a --+<+<-. (注:e 2.71828=是自然对数的底数)4.(2022·全国·统考高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.5.(2022·全国·统考高考真题)已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.6.(2022·全国·统考高考真题)已知函数()ln xf x x a xx e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <.7.(2022·全国·统考高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法技巧与总结】1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x xx x -+<-证明极值点偏移:①由题中等式中产生对数; ②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、 比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.【核心考点】核心考点一:含参数函数单调性讨论 【规律方法】1、导函数为含参一次型的函数单调性导函数的形式为含参一次函数时,首先讨论一次项系数为0,导函数的符号易于判断,当一次项系数不为雩,讨论导函数的零点与区间端点的大小关系,结合导函数图像判定导函数的符号,写出函数的单调区间.2、导函数为含参二次型函数的单调性当主导函数(决定导函数符号的函数)为二次函数时,确定原函数单调区间的问题转化为探究该二次函数在给定区间上根的判定问题.对于此二次函数根的判定有两种情况:(1)若该二次函数不容易因式分解,就要通过判别式来判断根的情况,然后再划分定义域; (2)若该二次函数容易因式分解,令该二次函数等于零,求根并比较大小,然后再划分定义域,判定导函数的符号,从而判断原函数的单调性.3、导函数为含参二阶求导型的函数单调性当无法直接通过解不等式得到一阶导函数的符号时,可对“主导”函数再次求导,使解题思路清晰.“再构造、再求导”是破解函数综合问题的强大武器.在此我们首先要清楚()()()f x f x f x '''、、之间的联系是如何判断原函数单调性的.(1)二次求导目的:通过()f x ''的符号,来判断()f x '的单调性;(2)通过赋特殊值找到()f x '的零点,来判断()f x '正负区间,进而得出()f x 单调性. 【典型例题】例1.(2023春·山东济南·高三统考期中)已知三次函数()()32111212322f x ax a x x =+---.(1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程, (2)讨论()y f x =的单调性.例2.(2023·全国·高三专题练习)已知函数()()2122ex f x x a x a -⎡⎤=+-+-⎣⎦,R a ∈,讨论函数()f x 单调性;例3.(2023·全国·高三专题练习)已知函数()()212ln 212f x a x x a x =+-+,a ∈R ,求()f x 的单调区间.例4.(2023·全国·高三专题练习)已知函数()()()22ln 211f x x ax a x a =---+∈R .求函数()f x 的单调区间;核心考点二:导数与数列不等式的综合问题 【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例5.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()1ln f x x a x x=--.(1)若不等式()0f x ≥在()1,+∞上恒成立,求实数a 的取值范围; (2)证明:()()()22211ln 21ni n n i i n n =+-⎛⎫>⎪+⎝⎭∑.例6.(2023春·重庆·高三统考阶段练习)已知函数()e (2)2,x f x x a ax a =-++∈R . (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若不等式()0f x ≥对0x ∀≥恒成立,求实数a 的范围; (3)证明:当111,1ln(21)23n n n*∈++++<+N .例7.(2023春·福建宁德·高三校考阶段练习)已知函数()e ax f x x =-(12a ≥). (1)(0,1)x ∈,求证:1sin ln 1x x x<<-;(2)证明:111sin sin sin()23f n n+++<.(ln20.693,ln3 1.099≈≈)核心考点三:双变量问题 【规律方法】破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. 【典型例题】例8.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()()ln 1R f x x ax a =-+∈. (1)若过原点的一条直线l 与曲线()y f x =相切,求切点的横坐标;(2)若()f x 有两个零点12x x ,,且212x x >,证明:①1228>e x x ; ②2212220+>e x x .例9.(2023春·湖南长沙·高三长郡中学校考阶段练习)已知函数2()e ,2xmx f x m =-∈R . (1)讨论()f x 极值点的个数;(2)若()f x 有两个极值点12,x x ,且12x x <,证明:()()122e f x f x m +<-.例10.(2023·全国·高三专题练习)巳知函数()ln(3)f x x x =+-. (1)求函数f (x )的最大值; (2)若关于x 的方程e ln3,(0)3x a a a x +=>+有两个不等实数根x x ₁,₂,证明: 122e e x xa+>.核心考点四:证明不等式 【规律方法】利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. (4)对数单身狗,指数找基友 (5)凹凸反转,转化为最值问题 (6)同构变形 【典型例题】例11.(2023·全国·高三校联考阶段练习)已知函数()()22ln ,f x x ax bx a b =-+∈R .(1)当0b =时,讨论()f x 的单调性;(2)设12,x x 为()f x 的两个不同零点,证明:当()0,x ∈+∞时,()()12212124sin 2e x x f x x x x +-+<++.例12.(2023·全国·高三校联考阶段练习)已知2()(ln 1)f x x x =+. (1)求()f x 的单调递增区间; (2)若124()()ef x f x +=,且12x x <,证明12ln()ln 21x x +>-.例13.(2023·江苏·高三专题练习)已知函数()ln m x nf x x+=在()()1,1f 处的切线方程为1y =. (1)求实数m 和n 的值;(2)已知()(),A a f a ,()(),B b f b 是函数()f x 的图象上两点,且()()f a f b =,求证:()()ln ln 1a b ab +<+.核心考点五:极最值问题 【规律方法】利用导数求函数的极最值问题.解题方法是利用导函数与单调性关系确定单调区间,从而求得极最值.只是对含有参数的极最值问题,需要对导函数进行二次讨论,对导函数或其中部分函数再一次求导,确定单调性,零点的存在性及唯一性等,由于零点的存在性与参数有关,因此对函数的极最值又需引入新函数,对新函数再用导数进行求值、证明等操作.【典型例题】例14.(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知函数()31,R 3f x x ax a a =-+∈.(1)当1a =-时,求()f x 在[]22-,上的最值; (2)讨论()f x 的极值点的个数.例15.(2023·江西景德镇·高三统考阶段练习)已知函数21()(2)e e,()2x f x x g x a x x ⎛⎫=-+=- ⎪⎝⎭,其中a 为大于0的常数,若()()()F x f x g x =-. (1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,求()g t 的最小值.例16.(2023·浙江温州·统考模拟预测)已知0a >,函数()()()F x f x g x =-的最小值为2,其中1()e x f x -=,()ln()g x ax =.(1)求实数a 的值;(2)(0,)∀∈+∞x ,有(1)1(e )f x m kx k g x +-≥+-≥,求2mk k -的最大值.核心考点六:零点问题 【规律方法】函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像; 第三步:结合图像判断零点或根据零点分析参数. 【典型例题】例17.(2023·全国·高三专题练习)已知函数()()2e 2x m f x x m =+∈R . (1)若存在0x >,使得()0f x <成立,求m 的取值范围;(2)若函数()()2e e x F x x f x =+-有三个不同的零点,求m 的取值范围.例18.(2023·全国·高三专题练习)设0a >,已知函数()e 2xf x a x =--,和()()ln 22g x x a x =-++⎡⎤⎣⎦.(1)若()f x 与()g x 有相同的最小值,求a 的值;(2)设()()()2ln 2F x f x g x a =++-有两个零点,求a 的取值范围.例19.(2023春·广西·高三期末)已知函数()()ln e axxf xg x x ax ==-,. (1)当1a =时,求函数()f x 的最大值;(2)若关于x 的方()()f x g x +=1有两个不同的实根,求实数a 的取值范围.核心考点七:不等式恒成立问题 【规律方法】1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈. (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f xg x <成立,则()()maxmin f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()maxmax f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()minmax f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x =成立,则()f x 的值域是()g x 的值域的子集.【典型例题】例20.(2023·广西南宁·南宁二中校考一模)已知函数()ln 1f x x =+.(1)若函数()()1g x mf x x =+-的图象在1x =处的切线与直线2y x =平行,求函数()g x 在1x =处的切线方程;(2)求证:当12a ≤时,不等式()1af x a +≤在[1,e]上恒成立.例21.(2023·上海·高三专题练习)已知函数()(1)e (R x f x x ax a =--∈且a 为常数). (1)当0a =,求函数()f x 的最小值;(2)若函数()f x 有2个极值点,求a 的取值范围;(3)若()ln e 1x f x x ≥-+对任意的,()0x ∈+∞恒成立,求实数a 的取值范围.例22.(2023·全国·高三专题练习)已知函数()()()e 1ln ln 0x f x a x a x a =+--⋅>.(1)若e a =,求函数()f x 的单调区间; (2)若不等式()1f x <在区间()1,+∞上有解,求实数a 的取值范围.核心考点八:极值点偏移问题与拐点偏移问题 【规律方法】1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性.若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210x x x +≠.如下图所示.图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏.【典型例题】例23.(2022•浙江期中)已知函数()f x x lnx a =--有两个不同的零点1x ,2x . (1)求实数a 的取值范围; (2)证明:121x x a +>+.例24.(2021春•汕头校级月考)已知,函数()f x lnx ax =-,其中a R ∈. (1)讨论函数()f x 的单调性; (2)若函数()f x 有两个零点, ()i 求a 的取值范围;()ii 设()f x 的两个零点分别为1x ,2x ,证明:212x x e >.例25.(2022•浙江开学)已知a R ∈,()ax f x x e -=⋅(其中e 为自然对数的底数). (ⅰ)求函数()y f x =的单调区间;(ⅰ)若0a >,函数()y f x a =-有两个零点x ,2x ,求证:22122x x e +>.核心考点九:利用导数解决一类整数问题 【规律方法】分离参数、分离函数、半分离 【典型例题】例26.已知函数()ln 2f x x x =--. (1)求函数在()()1,1f 处的切线方程(2)证明:()f x 在区间()3,4内存在唯一的零点;(3)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.例27.已知函数211()ln 2f x x x x a a ⎛⎫=+-+ ⎪⎝⎭,(0)a ≠. (1)当12a =时,求函数()fx 在点()()1,1f 处的切线方程;(2)令2()()F x af x x =-,若()12F x ax <-在()1,x ∈+∞恒成立,求整数a 的最大值.(参考数据:4ln 33<,5ln 44<).例28.已知函数()ln 2f x x x =--.(1)证明:()f x 在区间()3,4内存在唯一的零点;(2)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.核心考点十:导数中的同构问题【规律方法】1、同构式:是指除了变量不同,其余地方均相同的表达式2、同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系.可比较大小或解不等式.<同构小套路>①指对各一边,参数是关键;②常用“母函数”:()xf x x e =⋅,()xf x e x =±;寻找“亲戚函数”是关键;③信手拈来凑同构,凑常数、x 、参数;④复合函数(亲戚函数)比大小,利用单调性求参数范围. (3)在解析几何中的应用:如果()()1122,,,Ax y B x y 满足的方程为同构式,则,A B 为方程所表示曲线上的两点.特别的,若满足的方程是直线方程,则该方程即为直线AB 的方程(4)在数列中的应用:可将递推公式变形为“依序同构”的特征,即关于(),n a n 与()1,1n a n --的同构式,从而将同构式设为辅助数列便于求解【典型例题】例29.(2022·河北·高三阶段练习)已知函数()ln f x x x =. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且b a a b =,证明:2111e a b<+<.例30.(2022·河南郑州·二模(文))已知函数()e 21e xf x x =⋅-+,()ln 2xg x x=+. (1)求函数()g x 的极值;(2)当x >0时,证明:()()f x g x ≥例31.(2022·河南省浚县第一中学模拟预测(理))已知函数()()e x f x ax a =-∈R .(1)讨论f (x )的单调性.(2)若a =0,证明:对任意的x >1,都有()4333ln f x x x x x ≥-+.核心考点十一:洛必达法则 【规律方法】法则1、若函数()f x 和()g x 满足下列条件: (1)()lim 0x af x →=及()lim 0x ag x →=;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=',那么()()lim x a f x g x →=()()lim x a f x l g x →'='.法则2、若函数()f x 和()g x 满足下列条件:(1)()lim 0x f x →∞=及()lim 0x g x →∞=; (2)0A ∃>,()f x 和()g x 在(),A -∞与(),A +∞上可导,且()0g x '≠; (3)()()limx f x l g x →∞'=',那么()()limx f x g x →∞=()()limx f x l g x →∞'='.法则3、若函数()f x 和()g x 满足下列条件: (1)()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=', 那么()()limx af xg x →=()()limx af x lg x →'='. 注意:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: (1)将上面公式中的x a →,,x x →+∞→-∞,x a +→,x a -→洛必达法则也成立. (2)洛必达法则可处理00,∞∞,0⋅∞,1∞,∞,,∞-∞型.(3)在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,∞,,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止.()()()()()()limlimlimx ax ax a f x f x f x g x g x g x →→→'''==''',如满足条件,可继续使用洛必达法则. 【典型例题】例32.已知函数()=ln (,)f x a x bx a b R +∈在12x =处取得极值,且曲线()y f x =在点(1,(1))f 处的切线与直线10x y -+=垂直.(1)求实数,a b 的值;(2)若[1,)x ∀∈+∞,不等式()(2)mf x m x x≤--恒成立,求实数m 的取值范围.例33.设函数()1x f x e -=-.(1)证明:当1x >-时,()1xf x x ≥+; (2)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.例34.设函数sin ()2cos xf x x=+.如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.22sin 2sin 2sin (sin )x x x x x x =-=-核心考点十二:导数与三角函数结合问题 【规律方法】 分段分析法【典型例题】例35.(2023·河南郑州·高三阶段练习)已知函数()1sin e xx f x x -=+,ππ,2x ⎡⎤∈-⎢⎥⎣⎦. (1)求证:()f x 在ππ,2⎡⎤-⎢⎥⎣⎦上单调递增;(2)当[]π,0x ∈-时,()sin e cos sin xf x x x k x --⎡⎤⎣⎦恒成立,求k 的取值范围.例36.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()sin ()cos f x x x a x =-+(a 为常数),函数3211()32g x x ax =+.(1)证明:(i )当0x >时,sin x x >; (ii )当0x <时,sin x x <;(2)证明:当0a ≥时,曲线()y f x =与曲线()y g x =有且只有一个公共点.例37.(2023·全国·高三专题练习)已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.【新题速递】1.(2023·北京·高三专题练习)已知1x =是函数()()ln ln ln 21xf x x ax x=-+++的一个极值点. (1)求a 值;(2)判断()f x 的单调性;(3)是否存在实数m ,使得关于x 的不等式()f x m ≥的解集为()0,∞+?直接写出m 的取值范围.2.(2023春·广东广州·高三统考阶段练习)已知()214ln 2f x x x a x =-+. (1)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个极值点12,x x ,证明:()()1210ln f x f x a +>-+.3.(2023春·广东广州·高三统考阶段练习)已知函数()()2e 21xf x x ax =+-,其中R a ∈,若()f x 的图象在点()()0,0f 处的切线方程为210x by ++=. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[]3,1-上的最值.4.(2023·全国·高三专题练习)已知函数2()1f x x =-,()ln(1)g x m x =-,R m ∈. (1)若直线:20l x y -=与()y g x =在(0,(0))g 处的切线垂直,求m 的值;(2)若函数()()()h x g x f x =-存在两个极值点1x ,2x ,且12x x <,求证:()()1122x h x x h x >.5.(2023·北京·高三专题练习)已知函数()2e x f x =,直线:2l y x b =+与曲线()y f x =相切.(1)求实数b 的值;(2)若曲线()y af x =与直线l 有两个公共点,其横坐标分别为(,)m n m n <. ①求实数a 的取值范围; ②证明:()()1f m f n ⋅>.6.(2023春·陕西西安·高三统考期末)已知函数()()33ln af x x a x x=--+. (1)当0a =时,求函数()f x 的单调区间;(2)若[]1,e x ∀∈,()0f x <,求实数a 的取值范围.7.(2023·四川资阳·统考模拟预测)已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程; (2)当0a ≤时,对于任意0x >,证明:()cos f x x >.8.(2023·四川资阳·统考模拟预测)已知函数()22e xx f x ax +=++. (1)若()f x 单调递增,求a 的取值范围;(2)若()f x 有两个极值点12,x x ,其中12x x <,求证:2133x x a ->-.9.(2023·全国·高三专题练习)已知函数()()43,R,04a f x x ax bx ab a =--∈≠ (1)若0b =,求函数()f x 的单调区间;(2)若存在0R x ∈,使得()()00f x x f x x =+-,设函数()y f x =的图像与x 轴的交点从左到右分别为A ,B ,C ,D ,证明:点B ,C 分别是线段AC 和线段BD 的黄金分割点.(注:若线段上的点将线段分割成两部分,且其中较长部分与全长之比等于较短部分与较长部分之比,则称此点为该线段的黄金分割点)10.(2023·江西景德镇·统考模拟预测)已知函数()()2e e xf x x =-+,()()2112g x a x x ⎛⎫=-- ⎪⎝⎭,()()ln 1ln h x x x a =-+,其中a 为常数,若()()()()F x f x g x h x =-+.(1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,且()()f t mh t ≥恒成立,求实数m 的取值范围.11.(2023·全国·高三专题练习)已知抛物线C :24y x =的焦点为F ,过点P (2,0)作直线l 交抛物线于A ,B 两点.(1)若l 的倾斜角为π4,求△F AB 的面积;(2)过点A ,B 分别作抛物线C 的两条切线1l ,2l 且直线1l 与直线2l 相交于点M ,问:点M 是否在某定直线上?若在,求该定直线的方程,若不在,请说明理由.12.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知函数()21ln 2f x x ax =-,()()21e 112x g x x ax a x =--+-,(1)求函数()y f x =的单调区间;(2)若对于定义域内任意x ,()()f x g x ≤恒成立,求实数a 的取值范围.。

高考压轴题函数与导数考点

高考压轴题函数与导数考点

e
e
e
e
∴切线方程为 y-3=3(x-1),即 3x-ey=0. ee
例 2.求 f(x)=ex(1+2)在点(1,f(1))处的切线方程. x
解:由 f(x)=ex(1+2),得 f ′(x)=ex(- 1 +1+2)
x
x² x
由 f(1)=3e,得切点坐标为(1,3e),由 f ′(1)=2e,得切线斜率为 2e;
∴曲线 H(x0)=-2x03+3x0²-3 与直线 y=m 有三个不同交点,
H′(x0)=-6x0²+6x0=-6x0(x0-1) 令 H′(x0)>0,则 0<x0<1;令 H′(x0)<0,则 x0<0 或 x0>1 ∴H(x0)在(-∞,0)递减,在(0,1)递增,在(1,+∞)递减, ∴H(x0)的极小值=H(0)=-3,H(x0)的极大值=H(1)=-2, 由题意得-3<x<-2. 例 4.由点(-e,e-2)可向曲线 f(x)=lnx-x-1 作几条切线,并说明理由. 解:设切点为(x0,lnx0-x0-1),则切线斜率 f ′(x0)=x10-1,切线方程为
当 x0=x2 时,切线方程为ห้องสมุดไป่ตู้y-f(x2)=f ′(x0)(x-x2) 例 1.求 f(x)=1x3+4过点 P(2,4)的切线方程.
33 解:设切点为(x0,13x03+43),则切线斜率 f ′(x0)=x0²,
所以切线方程为:y-13x03+43=x0² (x-x0), 由切线经过点 P(2,4),可得 4-13x03+43=x0² (2-x0),整理得:x03-3x0²+4 =0,解得 x0=-1 或 x0=2 当 x0=-1 时,切线方程为:x-y+2=0; 当 x0=2 时,切线方程为:4x-y-4=0. 例 2.求 f(x)=x3-4x²+5x-4 过点 (2,-2)的切线方程. 解:设切点为(x0,x03-4x0²+5x0-4),则切线斜率 f ′(x0)=3x0²-8x0+5, 所以切线方程为:y-(x03-4x0²+5x0-4)=(3x0²-8x0+5) (x-x0), 由切线经过点 P(2,4),可得 4-(x03-4x0²+5x0-4)=(3x0²-8x0+5) (2-x0), 解得 x0=1 或 x0=2 当 x0=1 时,切线方程为:2x+y-2=0; 当 x0=2 时,切线方程为:x-y-4=0. 例 3.过 A(1,m)(m≠2)可作 f(x)=x3-3x 的三条切线,求 m 的取值范围. 解:设切点为(x0,x03-3x0),则切线斜率 f ′(x0)=3x0²-3,切线方程为

导数的基本公式与运算法则高阶求导

导数的基本公式与运算法则高阶求导

( f ( x)) lim f ( x x) f ( x)
x0
x
存在,则称( f ( x))为函数f ( x)在点x处的二阶导数.
记作
f ( x),
y,
d2 dx
y
2

d
2 f (x dx 2
)
.
d (dy) d x dx
y f (x) y f (x) y [ f (x)] f (x)
dx n
dx n
二阶和二阶以上的导数统称为高阶导数.
相应地, f ( x)称为零阶导数; f ( x)称为一阶导数.
二、 高阶导数求法举例

设 y arctan x, 求f (0), f (0).
( 1
1(xu21))
1(1u(112x2
x2 )2
)

y

1

y(n) ( 1)( n 1)xn (n 1)
若 为自然数n,则
y(n) ( xn )(n) n!, y(n1) (n!) 0.
注意:求n阶导数时,求出1-3或4阶后,不要急于合并, 分析结果的规律性,写出n阶导数.(数学归纳法)
例. 设 y eax , 求 y(n). 解: y aeax ,
y a2 eax , y a3eax , , y(n) an eax
特别有: (e x )(n) e x
例 设 y ln(1 x), 求y(n) .
[([(11(112xx1)x)3)2]](1[2[1(x1()12 x(1)x)3]2x]) 22(13(1x)x3 )4

0,

d2 y d x2

高中数学导数大题八类题型总结

高中数学导数大题八类题型总结

导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。

(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。

二阶导数的题型及解题技巧

二阶导数的题型及解题技巧

二阶导数的题型及解题技巧
二阶导数是指一个函数的导函数的导数,也可以理解为对函数的自变量求导两次。

以下是一些常见的二阶导数的题型及解题技巧:
1. 求给定函数的二阶导数:
- 首先求一阶导数;
- 然后将一阶导数再次求导。

2. 求函数的二阶导数后的特定值:
- 先求出二阶导数;
- 再将特定值代入二阶导数中进行计算。

3. 求函数的二阶导数为零或不存在的点:
- 先求出二阶导数;
- 然后将二阶导数等于零或不存在的情况求解。

4. 求曲线的凹凸性:
- 首先求出二阶导数;
- 然后将二阶导数的正负性讨论出曲线的凹凸性。

5. 求函数的极值点:
- 首先求出一阶导数,并令其等于零求解得到极值点;
- 然后再求出二阶导数,并将极值点代入二阶导数,判断其正负性来确定极值点的类型。

解题技巧:
- 在求解二阶导数时,要注意使用链式法则或换元法;
- 注意一阶导数的自变量的取值范围,以避免产生不符合题意的解;
- 在讨论函数的凹凸性时,要注意判别函数的二阶导数的正负性;
- 在求极值点时,要使用二阶导数的信息来判别极值的类型(极大值或极小值);
- 注意二阶导数不存在的情况,例如函数可能在某些点上不可导。

总之,解决二阶导数的题型需要熟练掌握求导法则和函数的一阶导数的性质,以及能够灵活应用这些知识来解题。

2阶导数求导公式

2阶导数求导公式

2阶导数求导公式概述:求导是微积分中的重要概念,它描述了函数在某一点的变化率。

而2阶导数求导公式则是对函数的二次导数进行求导的公式。

本文将介绍2阶导数的概念及其求导公式,并通过例题展示其应用。

一、2阶导数的概念在微积分中,导数描述了函数在某一点的斜率或变化率。

而2阶导数则是对一阶导数的导数,它描述了函数变化率的变化率。

换句话说,2阶导数可以帮助我们分析函数的曲率。

二、2阶导数求导公式对于函数f(x),其一阶导数为f'(x),二阶导数为f''(x)。

下面是常见函数的2阶导数求导公式:1. 常数函数:对于常数c,它的任意阶导数都为0,即f''(x) = 0。

2. 幂函数:对于幂函数f(x) = x^n,其中n为正整数,它的二阶导数为f''(x) = n(n-1)x^(n-2)。

3. 指数函数:对于指数函数f(x) = e^x,它的二阶导数仍为f''(x) = e^x。

4. 对数函数:对于对数函数f(x) = ln(x),它的二阶导数为f''(x) = -1/x^2。

5. 三角函数:对于三角函数f(x) = sin(x)和f(x) = cos(x),它们的二阶导数分别为f''(x) = -sin(x)和f''(x) = -cos(x)。

三、示例问题为了更好地理解2阶导数求导公式的应用,我们来看几个示例问题:1. 已知函数f(x) = x^3,求其二阶导数f''(x)。

根据幂函数的2阶导数求导公式,我们有f''(x) = 3(3-1)x^(3-2) = 6x。

2. 已知函数f(x) = e^x,求其二阶导数f''(x)。

根据指数函数的2阶导数求导公式,我们有f''(x) = e^x。

3. 已知函数f(x) = ln(x),求其二阶导数f''(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与导数核心考点与题型:二阶导数
高中数学中,导数最大的作用是判断复杂函数的单调性。

在很多题目中我们求一次导数之后无法求出导函数的根,甚至也不能直接得出导函数的正负,因此无法判断原函数的单调性。

可对“主导”函数再次求导,通过判断f ′′(x)的符号,来判断f ′(x)的单调性。

“再构造,再求导”是破解函数综合问题的强大武器。

例1.讨论函数f (x )=(x +1)lnx -x +1的单调性.
解析:f (x )的定义域为(0,+∞)
f ′(x )=lnx +x +1x -1=lnx +1x
令φ(x )=lnx +1x (x >0),则φ′(x )=1x -1x ²=x -1x ²
令φ(x )>0,则x >1;令φ(x )<0,则0<x <1, ∴φ(x )在(0,1)上递减,在(1,+∞)上递增.
∴φ(x )≥φ(0)=1>0,从而f ′(x )>0
∴f (x )在(0,+∞)上递增.
例2. 2()23x f x e x x =+-,当12x ≥时,25()(3)12f x x a x ≥+-+恒成立,求实数a 的取值范围。

解析:22255()(3)123(3)122
x f x x a x e x x x a x ≥+-+⇒+-≥+-+, 则2112x e x a x
--≤在12x ≥上恒成立 令2112()x e x g x x
--=,则2'21(1)12()x e x x g x x ---= 令21()(1)12
x h x e x x =---,则'()(1)x h x x e =- 当12x ≥时,'()0h x >
恒成立,即17()()028h x h ≥=> 所以'()0g x >,()g x 在1[,)2
+∞
上单调递增,min 19()g()24
g x ==
所以94
a ≤-
二阶导数的用法:
判断()f x 的单调性则需判断'()f x 的正负,假设'()f x 的正负无法判断,则把'()f x 或者'()f x 中不能判断正负的部分(通常为分子部分)设为新函数()g x ,如果通过对()g x 进行求导继而求最值,若min ()0g x >或max ()0g x <则可判断出'()f x 的正负继而判断()f x 的单调性,然后问题得解。

巩固练习:
1.求函数f (x )=xe 2-x +ex 的单调区间.
解:f (x )的定义域为R
f ′(x )=(1-x )e 2-x +e
令φ(x )=(1-x )e 2-x +e ,则φ′(x )=(x -2)e 2-x
当x ∈(-∞,2)时,φ′(x )<0,φ(x )在(-∞,2)上递减; 当x ∈(2,+∞)时,φ′(x )>0,φ(x )在(2,+∞)上递增; ∴φ(x )≥φ(2)=-1+e >0
∴f (x )单调增区间为R ,无减区间.
2.求函数f (x )=ln (x +1)x 的单调区间.
解:f (x )的定义域为(-1,0)∪(0,+∞)
f ′(x )=x -(x +1)ln (x +1)(x +1)x ²
令φ(x )=x -(x +1)ln (x +1),则φ′(x )=-ln (x +1)
当x ∈(-1,0)时,φ′(x )>0,则φ(x )在(-1,0)上递增 ∴φ(x )<φ(0)=0∴f ′(x )<0
∴f (x ) 在(-1,0)上递减
当x ∈(0,+∞)时,φ′(x )<0,φ(x )在(0,+∞)上递减; ∴φ(x )<φ(0)=0∴f ′(x )<0
∴f (x ) 在(0,+∞)上递减
综上所述:f (x )单调递减区间为(-1,0)和(0,+∞).。

相关文档
最新文档