第七章 刚体的简单运动

合集下载

理论力学课件07第七章-刚体的简单运动PPT课件

理论力学课件07第七章-刚体的简单运动PPT课件

26n03n01n0(rad) /s
α与方向一致为加速转动, α与 方向相反为减速转动。
3.匀速转动和匀变速转动 当 =常数,为匀速转动;当α =常数,为匀变速转动。
常用公式
0 t
0
t
1t2
精选2பைடு நூலகம்
与点的运动相类似。
9
§7-3 转动刚体内各点的速度和加速度
一、速度
z
S R
v
dS dt
Rddt
2avr2
av 2 r2
av2
2 r3
精选
17
(例2)
升降机装置由半径R=50cm的鼓轮带动,被升降物体M 的运动方程为x=5t2(t:时间,秒;x:高度,米),求: (1)鼓轮的角速度和角加速度; (2)任一时刻轮缘上一点的全加速度大的大小。
解: (1) 轮缘上任一点的速度和切向加速度分别为:
1
4
公式,有:
3
i12
n1 n2
Z2 Z1
n1
i 34
n3 n4
Z4 Z3
两式相乘,得:
精选
25
n1n3 Z2Z4
n2n4
Z1Z3
因 n2= n3 ,所以有:
i14 n n 1 4Z Z 2 1Z Z 3 4131 6 1 3 22 2 1 8.4 2
n4in 1141 14 2 .450 117(r/min)

ω α
θ a3
精选
12
〔例1〕画点的速度和加速度
试画出图中刚体上M、N两点在图示位置时的速度和
加速度。 (O 1 A O 2 B , O 1 O 2 A)B
ω为常数 αα
精选
13

第7章刚体的简单运动

第7章刚体的简单运动
2 =0.2 × (-2)=-0.4 m/s aM= r
B
vM
M
aM
r A
aMn

O
aMn = r = 0.2×12= 0.2 m/s2
2
vA
B
vM
M
aM
r
vA = vM = 0.2m/s aA = aM = - 0.4m/s
2
aMn
O
aA
A
vA
作业: 7- 1,4 ,6 ,7
d d 2 2 dt dt
0 t 0 t 匀变速运动: 2 2 2 1 2 0 0 0 t t 2
二.解题步骤及注意问题
1.解题步骤:
①弄清题意,明确已知条件和所求的问题。 ②选好坐标系:直角坐标法,自然法。 ③根据已知条件进行微分,或积分运算。 对常见的特殊运动, ④用初始条件定积分常数。 可直接应用公式计算。 2.注意问题: ①几何关系和运动方向。 ②求轨迹方程时要消去参数“t”。 ③坐标系(参考系)的选择。
第七章
刚体的简单运动
刚体运动的分类:
1、平行移动;
2、定轴转动;
3、平面运动;
4、定点运动;
5、一般运动。
§7-1刚体的平行移动(平动)
1 定义 刚体内任一直线在运动过程中始终平行于
初始位置,称为平动。

2
速度和加速度
rA rB BA
d rA d rB d BA dt dt dt
三.例题 [例1]列车在R=300m的曲线上匀变速行驶。轨道上曲线部分长
l=200m,当列车开始走上曲线时的速度v0=30km/h,而将要离开
曲线轨道时的速度是v1=48km/h。 求列车走上曲线与将要离开曲线时的加速度?

(7)刚体的简单运动

(7)刚体的简单运动

ϕ
ϕ = ϕ(t )
转动.exe
A B
dϕ & 角速度 ω = =ϕ dt
dω d 2 ϕ && 角加速度 α = = 2 =ϕ dt dt
注意它们都是代数量. 同号, 注意它们都是代数量 如果 ω 与 α 同号 转动是加速 异号, 则转动是减速的. 的; 如果 ω 与 α 异号 则转动是减速的
§7 – 3 转动刚体内各点的速度和加速度分布
Q 磁带不可伸长 ∴ ω 1 r1 = ω 2 r2
r1 ω 2 = ω1 r2
& & r1 r2 − r2 r1 α2 = ⋅ ω1 2 r2
O1 A
r1
O2 B
r2
ω1
ω2
又 ,由题意可得 θ θ r1 = r10 + 1 b r2 = r20 − 2 b 2π 2π b b br & & r1 = ω1 r2 = − ω 2 = − 1 ω1 2π 2π 2πr2 ∴ 最后可得
B
r A = r B + r BA (1)
为运动的参考点, 取O为运动的参考点 有: 为运动的参考点
∴ r A (t ) , r B (t ) 属于同一函数族 , 表示同一族曲线 .
故 A 点和 B 点描绘的曲线的形状相 同.
式两边同时对t 将 ( 1 ) 式两边同时对 求导 :
dr A drB , = dt dt
第七章
刚体的简单运动
平动和转动. 本章将研究刚体的两种最基本的运动 ——— 平动和转动 注 意这两种运动在概念上的独立性和不相容性, 意这两种运动在概念上的独立性和不相容性 以及实现这两种 的约束条件. 运动 的约束条件

理论力学第七章刚体的简单运动

理论力学第七章刚体的简单运动

解:1) aτ = α R = a M ⋅ sin θ a M sin θ 40 × sin 30° ∴α = = = 50 rad/s 2 0.4 R 1 Q ω 0 = 0 ,∴ ϕ = ω 0 t + α t 2 = 25 t 2 2
转动方程 = 25t 2 ϕ ∴
& Q 2) ω = ϕ = 50 t ∴ v M = Rω = 20 t = 100 m / s
逆时针为正
顺时针为负
dω d 2ϕ & = = ϕ& = f ′′(t ) (代数量) α= 2 dt dt 角加速度表征角速度变化的快慢。单位:rad/s 角加速度表征角速度变化的快慢。单位:rad/s2
同号,则是加速转动; 如果ω与α同号,则是加速转动; 异号,则是减速转动。 如果ω与α异号,则是减速转动。
⇒ ω 1 R1 = ω 2 R2 ⇒ ω 1 = R2 ω2 R1
齿轮传动比: 齿轮传动比: ——主动轮和从动轮的角速度的比值。 主动轮和从动轮的角速度的比值。
i 12 R2 Z2 ω1 = = = ω2 R1 Z1
14
7-4
轮系的传动比
2.外啮合 2.外啮合
当各轮规定有正向时,角 当各轮规定有正向时, 取代数值, 速度ω 取代数值,传动比也 取代数值。 取代数值。
第七章 刚体的简单运动
7-1 刚体的平行移动 刚体有两种简单的运动: 1 刚体有两种简单的运动: )刚体的平行移动 2)刚体的定轴转动 一.刚体平动的定义: 刚体平动的定义: 刚体内任一直线,在运动过程中始终平 刚体内任一直线, 行于初始位置。 行于初始位置。 当刚体平行移动时,其上各点的轨迹形状相同; 当刚体平行移动时,其上各点的轨迹形状相同; 在每一瞬时,各点的速度相同,加速度也相同。 在每一瞬时,各点的速度相同,加速度也相同。

第七章 刚体的简单运动

第七章 刚体的简单运动

=200mm,R=450mm,α=60o,A , =
aAτ
aA
解:由于A,B两点到固定点 的 由于 两点到固定点O的 两点到固定点 距离保持不变,因此,AB杆的 距离保持不变,因此,AB杆的 运动为绕O轴的定轴转动 轴的定轴转动。 运动为绕 轴的定轴转动。 将A点的加速度在切向和法向投影
2 aAn = ( r + R) ωAB = aA cos60o 1
已知:OA= 已知:OA=O1B=l=2r, AB=OO1 ,A点 ,A点 的加速度水平且为a 齿轮B AB焊接在一起 焊接在一起。 的加速度水平且为aA,齿轮B与AB焊接在一起。 求:此时轮O1角速度和角加速度 此时轮O aA
例 题6
aτ A
A
n aA
B C O1
解:将A点的加速度分解
n aτ = aA sin ϕ, aA = aA cosϕ A
点是将速度矢量大小的变化率和方向变 化率区分开来,使得数学表达式的含义 化率区分开来, 更加清晰。 更加清晰。
结论与讨论
点的运动学应用的两类问题
第一类问题: 第一类问题:
已知运动轨迹,确定速度与加速度; 已知运动轨迹,确定速度与加速度; 给定约束条件,确定运动轨迹、速度、加速度。 给定约束条件,确定运动轨迹、速度、加速度。
dvτ v & + τ& a = vτ vτ= + n τ τ dt dt ρ a = aτ + an
速度大小的变化率 速度方向的变化率
2 τ
hv0 dϕ ω= = 2 22 dt h + v0t 2hv t dω =− 2 α= dt (h + v t )
3 0 2 2 2 0
例题 4

第7章 刚体的简单运动

第7章 刚体的简单运动
s R (逆时针为正)
自然法
2.点的速度
s R
v ds R d R
dt dt
v 指向为刚体转动的方向或与 ω 的转动方向一致。
刚体绕定轴转动 (逆时针为正)
刚体绕定轴转动
2.点的加速度
s R (逆时针为正)
切向加速度
a
dv dt
R d
dt
R
aτ 指向沿轨迹的切线与α 的转
动方向一致。
点M的全加速度大小。
解: M点的速度为
vM
vM
vA
dx dt
10t
m/s
M点的加速度为
aMt aMt
aMn
vM2 R
aA 200t 2
d2x dt 2 m/s2
10
m/s2
aM
aMt
2
aMn
2
10
1 400t 4
m/s2
三、轮系的传动比
刚体绕定轴转动
齿轮系
带轮系
刚体绕定轴转动
同一瞬时荡木上各点的速度、加速 度相等 vM vA aM aA
点A绕圆心O1,作半径为 l 的圆弧 运动
自然法: 假设弧坐标s向右为正,
s
l
l0
sin
4
t
刚体的平行移动
运动方程:
s
l
l0
sin
4
t
任一瞬时t, v ds l0 cos t
dt 4 4
, 0 sin t 4aΒιβλιοθήκη dv dt2l0 16
解: d 1681t 2 rad/s dt 162t rad/s2 4 0 时,即 16 81t2 0 时,解得 t 9 s 此时刚体改变转向。容易算得:在此之前,ω>0,刚体 逆时针转动;在此之后,ω<0,刚体顺时针转动。

07 刚体的简单运动

07 刚体的简单运动

v
M点的切向加速度 M点的法向加速度
B
dv at = = a. dt
2 2as + v0 an = = ρ R
v2
M点的总加速度 s
A
2 a = at2 + an =178 m/ s2
23
例题
刚体的基本运动
例 题 5
如图a 如图a,b分别表示一对外
O1 Ⅰ (a) O2 Ⅱ
啮合和内啮合的圆柱齿轮。 啮合和内啮合的圆柱齿轮。已 知齿轮Ⅰ 的角速度是ω 知齿轮 Ⅰ 的角速度是 ω1 , 角 加速度是α 试求齿轮Ⅱ 加速度是 α1, 试求齿轮 Ⅱ的角 速度ω 和角加速度α 速度ω2和角加速度α2 ,齿轮Ⅰ 齿轮Ⅰ 和Ⅱ的节圆半径分别是R1和R2, 的节圆半径分别是R 齿数分别是z 齿数分别是z1和z2。
π sA = lϕ = lϕ0 sin t 4
dv π2 π = − lϕ0 sin t at = dt 16 4
ds π π vA = = lϕ0 cos t dt 4 4
v2 π2 2 2 π an = = lϕ0 cos t l 16 4
6
例题
刚体的基本运动
例 题 1
O1 φ l A O
(+)
9
4.角加速度 4.角加速度
定义:刚体转动的角加速度等于角速度对时间的一次导数, 定义:刚体转动的角加速度等于角速度对时间的一次导数, 转角对时间的二次导数
dω d 2ϕ = 2 α= dt dt
物理意义: 物理意义:说明了角速度变化的快慢 如ω 、α 同号 如ω 、α 异号 刚体作加速转动 刚体作减速转动
11
例题
刚体的基本运动
例 题 2
导杆机构如图所示。 已知曲柄OA 导杆机构如图所示 。 已知曲柄 OA 以匀角速度ω 以匀角速度 ω 绕 O轴转动 , 其转动方程 轴转动, φ=ωt,通过滑块带动摇杆O1B绕O1轴摆 ωt,通过滑块带动摇杆O OA= 求摇杆O 动 。 设 OA=r , OO1=l=2r , 求摇杆 O1B 的转动方程。 的转动方程。 假设任意时刻, 解:假设任意时刻,机构处于图示 位置,由几何关系可知: 位置,由几何关系可知: AD O E OO1 −OE tanθ = = 1 = O D AE AE 1

刚体的简单运动

刚体的简单运动

rA = rA( t), rB = rB (t)

r B = r A + r AB
d rB d drA d rAB ∴v B = = ( rA + rAB ) = = v A (Q = 0) dt dt dt dt
d 2 rB d 2 d 2 rA 同理 :a B = 2 = 2 ( rA + rAB ) = 2 = a A dt dt dt
2πn πn n ω= = ≈ (rad/s) 60 30 10
2.角加速度 角加速度: 角加速度 设当t 时刻为ω , t +△t 时刻为ω+△ω
∆ω = dω = d 2ϕ =ϕ& = f ′′( t ) & ∴角加速度 :ε = lim 单位:rad/s2 (代数量 代数量) 单位 代数量 dt dt 2 ∆t → 0 ∆ t
§7.1 刚体的平行移动
刚体平移的定义: 一.刚体平移的定义 刚体平移的定义 刚体在运动中,其上任意两点的连线始终保持方向不变。 刚体在运动中,其上任意两点的连线始终保持方向不变。 [例]
它的轨迹
可以是直线 可以是曲线
动画
平移实例
二. 刚体平移的特点: 刚体平移的特点 平移刚体在任一瞬时各点的运动轨迹,速度 加速度都一样 平移刚体在任一瞬时各点的运动轨迹 速度,加速度都一样。 速度 加速度都一样。 AB在运动中方向和大小始 在运动中方向和大小始 终不变。 终不变。
aτ εR ε tg α = = 2 = 2 an ω R ω
结论: 结论 ① v方向与ω 相同时为正 , ⊥R ,与 R 成正比。 方向与 与 成正比。 都一致,且 ②各点的全加速度方向与各点转动半径夹角α 都一致 且 小于90 在同一瞬间的速度和加速度的分布图为: 小于 o , 在同一瞬间的速度和加速度的分布图为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
在刚体运动过程中,若其上有一条直线始终平行于它的初始位置,这种刚体的运动
就是平动。

()
2
刚体平动时,若刚体上任一点的运动已知,则其它各点的运动随之确定。

()3
在任意初始条件下,刚体不受力的作用、则应保持静止或作等速直线平动。

()
4
平动刚体上各点的运动轨迹可以是直线,可以是平面曲线,也可以是空间任意曲线。

( ) 5
平动刚体上点的运动轨迹不可能是空间曲线。

( )
6
刚体作平动时,其上任意点的轨迹可以是直线,也可以是曲线。

( )
7
如图所示机构在某瞬时A点和B点的速度完全相同(等值,同向)则AB板的运动是平动。

( )
8
如果刚体上每一点轨迹都是圆曲线,这刚体一定作定轴转动。

( )
9
如图所示定轴轮系,中间齿轮对主、从动轮的传动比和对从动轮的轮向有影响。

( )
1
020601A070101AB##B###2602
下列刚体运动中,作平动的刚体是。

A.沿直线轨道运动的车箱;B.沿直线滚动的车轮;
C.在弯道上行驶的车厢;D.直线行驶自行车脚蹬板始终保持水平的运动;E.滚木的运动;F.发动机活塞相对于汽缸外壳的运动;
G.龙门刨床工作台的运动。

2
图中AB、BC、CD、DA段皮带上各点的速度大小,加速度大小,皮带上和轮接触和A点和轮上与A接触的点的速度,它们的加速度。

(1)相等;(2)不相等。

3
平行四连杆机构如图所示:AB O O =21=2L ,O B O A O 21==DC=L 。

A O 1杆以ω绕1O 轴匀速转动。

在图示位置,C 点的加速度为 。

A.0 B.2
ωL C.2
2ωL D.2
5ωL
4
时钟上分针转动的角速度等于( )
A.1/60rad/s B.π/30rad/s C.2πrad/s 5
圆盘绕O 轴作定轴转动,其边缘上一点M 的全加速度a 如图(a)、(b)、(c)所示。

在 情况下,圆盘的角加速度为零。

A.(a)种; B.(b)种; C.(c)种。

1
齿轮半径为r ,绕定轴O 转动,并带动齿条AB 移动。

已知某瞬时齿轮的角速度为ω,角加速度为ε,齿轮上的C 点与齿条上的C '点相接触,则C 点的加速度大小为 ;C '点的加速度大小为 。

(方向均应表示在图上)。

2
如图所示的搅拌机构中,A O 1= B O 2= R , 21O O = AB . A O 1的转速n 为常量。

则BAM 上的一点M 的轨迹为 , A v = , A a = .
3
如图所示机构中,刚体1作 ,刚体2作 。

4
如图所示机构中,刚体1作 ,刚体2作 。

图中A O 1= B O 2, 21O O = AB 。

5
如图所示机构中A O 1平行等于B O 2,则刚体1作 , 刚体2作 。

1
图示曲柄滑杆机构中,滑杆上有一圆弧形滑道,其半径100R mm =,圆心1O 在导杆BC 上。

曲柄长100OA mm =,以等角速度4/rad s ω=绕O 轴转动。

求导杆BC
的运动规律以及当曲柄与水平线间的交角ϕ为30︒时,导杆BC 的速度和加速度。

2
图示为把工件送入干燥炉内的机构,叉杆 1.5OA m =在铅垂面内转动,杆0.8AB m =,A 端为铰链,B 端有放置工件的框架。

在机构运动时。

工件的速度恒为0.05/m s ,杆AB 始终铅垂。

设运动开始对,角0ϕ=。

求运动过程中角ϕ与时间的关系,以及点B 的轨迹方程。

3
机构如图所示,假定杆AB 以匀速v 运动,开始时0ϕ=,求当4
π
ϕ=时,摇杆OC
的角速度和角加速度。

4
如图所示,曲柄CB 以等角速度0ω绕C 轴转动,其转动方程为0t ϕω=。

滑块B 带动摇杆OA 绕轴O 转动,设,OC h CB r ==。

求摇杆的转动方程。

相关文档
最新文档