2021年分数乘法单位1的确定
六年级分数应用题·寻找单位一

的几分之几?
3 1 ×( 1+ 5 4
)=
3 4
拓展1:
4 甲的年龄是乙的 ,乙的年 5 2 龄是丙的 。求:甲的年龄是丙 3
的几分之几?
练习1 有一批货物,第一天运走了这 批货物的
1 4
,第二天运的是第
3 一天的 ,还剩下180吨没有 5
运。这批货物有多少吨?
阜阳昂立•博佳
分数应用题
找准单位一 确定用乘法还是用除法
加加
一、部分数和总数 在同一整体中,部分数和总数作比较关系时,部分数通 常作为比较量,而总数则作为标准量,那么总数就是单 位“1”。 例如:食堂买来100千克白菜,吃了2/5,吃了多少千克?
在这里,食堂一共买来的白菜是总数, 吃掉的是部分数,所以100千克白菜就是单位“1”。
二、两种数量比较
1、比后面的那个数量通常就作为标准量,也就是单位“1”。 例如:六1班男生比女生多1/2。
2、在另外一种没有比字的两种量相比的时候,我们通常找 到分率,看“占”谁的,“相当于”谁的,“是”谁的几分 之几。 例如:一个长方形的宽是长的5/12。 今年的产量相当于去年的4/3倍。
一.指出下面每组中的两个量,应把 谁看做单位“1”。
(1)男生人数占女生人数的4/5。( (2)甲的6/7相当于乙。( ) (3)乙的5/9与甲相等。 ( ) (4)男工人数比女工人数少1/8。(
)
)
1 1、“一桶油的 3
重6千克”,把( )看作 单 位 “1”,( )×=( )
1 2、1 3、“鸭只数的3
”,把( )×=( )
)看
第一单元寻找单位“1”和列出等量关系式“提高型”专项练习(解析版)人教版

【分析】我们通常把“比”后的量看作单位“1”,求比一个数多几分之几的数是多少,用乘法计算。据此解答。
【详解】由分析可知:
“红花有90朵,黄花的朵数比红花的朵数多 ”是把红花的朵数看作单位“1”。
黄花的数量是:
90×(1+ )
=90×
=120(朵)
【点睛】本题考查分数乘法的计算,找准单位“1”是解题的关键。
【详解】童话书比故事书多 ,是把故事书的本数看作单位“1”,并把单位“1”平均分成7份。童话书比故事书多的本数相当于其中的1份。
【点睛】本题考查判断单位“1”的方法,关键是找清楚分率比赛的是“谁”的几分之几,“谁”就是单位“1”。
12.“小强的身高是 m,比妈妈的身高矮 ”。这句话中把( )看作单位“1”,数量关系式是( )。
240÷ =420(棵)
则梨树棵树的 与桃树同样多,是将梨树的棵数看作单位“1”,如果桃树有240棵,则梨树有420棵。
【点睛】本题考查已知一个数的几分之几是多少,求这个数,明确用除法是解题的关键。
16.学校图书室今年新进图书300本,今年比去年增长了 ,是把()看作单位“1”,今年是去年的 。
【答案】去年新进图书的数量;
【点睛】在确定单位“1”,一般是“谁、占谁”是单位“1”。
11.童话书比故事书多 ,是把( )看作了单位“1”,并把单位“1”平均分成( )份。童话书比故事书多的本数相当于其中的( )份。
【答案】 故事书的本数 7 1
【分析】根据题意,童话书比故事书多 ,童话书比故事书多的数量是故事书的 ,所以是把故事书看作单位“1”,结合题意分析解答即可。
【分析】根据判断单位“1”的方法:一般是把“比、占、是、相当于”后面的量看作单位“1”,即分数“的”字前面的量看作单位“1”,进行解答即可。
分数乘除法应用题解题方法总结汇总

分数乘除法应用题解题方法总结汇总在小学数学中,分数乘除法应用题是一个重点和难点。
很多同学在面对这类题目时,常常感到困惑,不知道如何下手。
其实,只要掌握了正确的解题方法和思路,这类问题就能迎刃而解。
接下来,我将为大家详细总结分数乘除法应用题的解题方法。
一、分数乘法应用题1、求一个数的几分之几是多少这是分数乘法应用题中最常见的类型。
例如:“小明有 120 元零花钱,花去了 1/3,花了多少钱?”解题思路:单位“1”的量×分率=对应量在这个例子中,单位“1”的量是小明原有的 120 元零花钱,分率是1/3,所以用 120×1/3 = 40(元),即小明花了 40 元。
2、连续求一个数的几分之几是多少例如:“果园里有苹果树 180 棵,梨树的棵数是苹果树的 2/3,桃树的棵数是梨树的 3/4,桃树有多少棵?”解题思路:先求出梨树的棵数,即 180×2/3 = 120(棵),再求出桃树的棵数,120×3/4 = 90(棵)。
二、分数除法应用题1、已知一个数的几分之几是多少,求这个数例如:“一本书,已经看了 1/4,正好是 50 页,这本书共有多少页?”解题思路:对应量÷分率=单位“1”的量在这里,对应量是 50 页,分率是 1/4,所以用 50÷1/4 = 200(页),即这本书共有 200 页。
2、已知比一个数多(或少)几分之几的数是多少,求这个数例如:“一件衣服,现价 120 元,比原价降低了 1/5,原价是多少元?”解题思路:如果单位“1”的量未知,设单位“1”的量为 x,根据数量关系列出方程求解。
设原价为 x 元,则(1 1/5)x = 120,解得 x = 150 元。
三、解题关键1、找准单位“1”单位“1”是分数乘除法应用题中的关键。
通常情况下,“是”“比”“占”后面的量就是单位“1”。
例如“男生人数是女生人数的3/4”,这里女生人数就是单位“1”。
分数乘分数的计算算理

分数乘分数的计算算理较难理解,是学习的重点也是难点,关键是要明白分数乘分数中,第一个分数是第二个分数的单位“1”。
例如23×35,先涂23就是把一个长方形看作单位“1”,23就表示把它平均分成3份,把2份涂色,这就表示出了23,然后再以涂色的部分,也就是23为单位“1”,把它再分成5份,取其中的3份涂上另一种颜色,这块涂另一种颜色的就表示23的35是多少。
操作过程还能看出,两次平均分,相当于把长方体平均分成了3×5=15份,最后涂色的部分占整个长方形的25。
如右图:一个数乘分数的意义,就是求(这个数的几分之几是多少)。
反过来求一个数的几分之几是多少?就用乘法解决。
例如:35千克的25是( )千克,120米的13是( )米。
答案:35×25=14(千克),120×13=40(米)分数乘除法应用题解题思路解题技巧:一抓,二找,三确定,四对应。
1、一抓:抓住关键句——分率句:(含几分之几的句子)2、二找:找准单位“1”的量;(“的”前,“是、比、占等”后的量)3、三确定:确定单位“1”是已知还是未知(单位“1”已知用乘法,单位“1”未知用除法)4、四对应:找出相对应得数量于分率,列出算式。
(单位“1”的量×分率=分率对应量;分率对应量÷分率=单位“1”的量)以上四点难点在于如何找准单位“1”,除了(“的”前,“是、比、占、相当于”后的量);还可以通过分率是谁的,谁就是单位“1”来确定。
甚至当遇到如:某单位上个月计划用水43.5吨,实际节约了110,实际用水多少吨?之类的问题是,还可以用语文上的扩句,将“分率句”实际节约了110,扩成实际用水比计划用水节约了110,就出现了“比”字,进而快速断定计划用水是单位“1”。
2021-2022学年吉林省长春市榆树市北师大版六年级上册期末测试数学试卷(含答案解析)

2021-2022学年吉林省长春市榆树市北师大版六年级上册期末测试数学试卷学校:___________姓名:___________班级:___________考号:___________一、填空题1.1.5=()(填分数)=()%=()÷()=()∶()。
2.实际参加的人数比计划的多310,这里是把()作单位“1”,实际相当于计划的()。
3.在2:7中,如果比的前项增加6,要使比值不变,后项应增加()。
4.一个圆有()条对称轴,()是圆的对称轴。
5.一个立体图形从上面看到的形状是,从左面看到的形状是,搭这个立体图形至少需要()个,最多需要()个。
6.我们观察物体时,距离物体较近时,物体显得________;相反,距离物体较远时,物体显得________。
7.一个正方形的周长是47米,它的面积是()平方米。
8.小圆半径6厘米,大圆半径8厘米,大圆和小圆直径的比是(),周长的比是(),面积的比是()。
9.15千克比25千克少()%,比28吨多14是()吨。
10.五年一班有50人,今天缺席2人,出勤率是()%。
11.如图,有一辆小汽车在平坦的大路上行驶,前方有两座建筑物。
当小汽车行驶到位置①时,司机只能看到建筑物________,如果想看到另一个建筑物。
司机应把小汽车往________开。
二、判断题12.把11:23化成最简比是3:2,比值是32。
()13.从条形统计图中,可以清楚地看出各种数量的变化趋势。
()14.走同样的路,小红用了3小时,小兰用了4小时,小红和小兰的速度比是4:3。
()15.将一个圆通过切拼,转化成一个长方形,面积和周长没有变化。
()16.甲工厂人数比乙工厂多13,乙工厂人数就比甲工厂少13。
()17.如图,梯形的高是3厘米。
()三、选择题18.下面不可以写成百分数的是()。
A .王强的一步约长25米B .正方形的边长是周长的14C .甲数是乙数的1.5倍19.一袋大米吃掉30%后,还剩21千克,这袋大米共有()千克。
2021年北师大版数学五下第三单元《分数乘法》章节知识点、达标训练附解析

北师大版数学五年级下册章节复习知识点、达标训练附解析第三单元《分数乘法》知识点一:分数乘整数1.分数乘整数的意义:与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
2.分数乘整数的计算方法:分数的分子与整数相乘的积做分子,分母不变。
3. 分数乘整数,当整数与分母有共同的因数时,先约分,再计算比较简便。
4.一个整数乘一个真分数,积比这个整数小。
5.整数乘法中积与乘数的变化规律同样适用于分数乘法。
6.整数乘分数的意义:求一个数的几分之几是多少,用乘法计算。
7.整数乘分数的计算方法与分数乘整数的计算方法相同。
知识点二:解决“一个数比另一个数多(少)几分之几”的问题1.解决此类题的关键是理解“一个数比另一个数多(少)几分之几”的意思,即把另一个数看作单位“1”,多或少的部分占另一个数的几分之几。
2. 在解决多个单位“1”的实际问题时,首先要清楚每个分数分别对应的单位“1”的量,找准数量关系后再列式解答。
3. 打几折就是按原价的十分之几销售,即几折就是原价的十分之几。
已知原价和打几折,求现价,就是求原价的十分之几是多少,用乘法计算。
知识点三:分数乘以分数1.分数乘分数的意义:求一个分数的几分之几是多少,用乘法计算。
2.分数乘分数的计算方法:分子相乘的积做分子,分母相乘的积做分母,能约分的要约分。
3. 一个数(不为0)乘一个小于1的分数,积就小于这个数;乘等于1的分数,积就等于这个数;乘大于1的分数,积就大于这个数。
知识点四:倒数1.倒数是相对于两个数来说的,它们互相依存,可以说一个数是另一个数的倒数,不能孤立地说某一个数是倒数。
2.乘积为1的两个数互为倒数。
3.求一个数的倒数的方法:分子、分母交换位置。
求整数的倒数,可以先把整数看成分母是1的分数,再交换分子、分母的位置。
求小数的倒数,可以先把小数化成分数。
4. 1的倒数是它本身,0没有倒数。
一、精挑细选(共5题;每题2分,共10分)1. 两个相同的分数相乘,积是,这个分数是()。
如何确定单位“1”的方法
如何确定分数乘除法应用题中的单位1(只要找出关键字,关键字后面的就是单位1)正确找准单位“1”,是解答分数(百分数)应用题的关键,每一道分数应用题中总是有关键句(含有分率的句子)。
如何从关键句中找准单位“1”,我觉得可以从以下这些方面进行考虑。
一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。
再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。
解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。
二、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”、“正好”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多1/2。
就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。
在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
例如,一个长方形的宽是长的5/12。
在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。
又如,今年的产量相当于去年的4/3倍。
那么相当于后面的去年的产量就是标准量,也就是单位“1”。
三、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。
象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。
分数乘除法应用题解题方法总结汇总(全面完整)
(4)如果白兔有 48 只,灰兔比白兔多 3 ,灰兔比白兔多多少只? 4
2
3、求比一个数多几分之几是多少。
几 单位“1”的量×(1+ 几 )(分率)=是多少(分率对应的量)。
4 (1)人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳 75 次,婴儿每分钟心跳的次数比青少年多5 。婴
几 5、求比一个数少几分之几是多少。单位“1”的量×(1- 几 )(分率)=是多少(分率对应的量)。
(1)学校有 20 个足球,篮球比足球少
1 5
,篮球有多少个?
2 (2)一种服装原价 105 元,现在降价7 ,现在售价多少元?
(3)某校计划每月用水 120 吨,实际比计划节约 1 ,实际每月用水多少吨? 6
3、已知一个数比另一个数多几分之几是多少,求这个数。 几
是多少(分率对应的量)÷(1+几 )(分率)=单位“1”的量。 1
例 1:学校有 20 个足球,足球比篮球多 4 ,篮球有多少个?
4、已知一个数比另一个数少几分之几少多少,求这个数。 几
少多少(分率对应的量)÷几 (分率)=单位“1”的量。 例 1:某工程队修筑一条公路。第一天修了 38 米,第二天了 42 米。第一天比第二天少修的是这条公路全长的 1 28 。这条公路全长多少米?
。小新储蓄多少钱?
2、求比一个数多几分之几多多少。
几 单位“1”的量×几 (分率)=多多少(分率对应的量)。
(1)人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳 75 次,婴儿每分钟心跳的次数比青少年多45 。婴
儿每分钟心跳比青少年多多少次?
(2)学校有足球 20 个,篮球比足球多 1 ,篮球比足球多多少个? 2
《用单位“1”解决实际问题》教案-2021-2022学年数学六年级上册人教版
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“单位‘1’在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
最后,针对本节课的教学难点和重点,我会继续关注学生的学习进度,不断调整教学方法,力求让每个学生都能真正掌握用单位“1”解决实际问题的方法。同时,我也将鼓励学生们在日常生活中多观察、多思考,将所学知识运用到实际中,提高他们的数学素养。
今天的学习,我们了解了单位“1”的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对单位“1”解决实际问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天我们在课堂上一起探讨了《用单位“1”解决实际问题》,回顾整个教学过程,我觉得有几个方面值得反思。
4.激发学生的合作意识,通过小组讨论与交流,培养团队协作解决问题的能力。
5.引导学生体验数学与生活的紧密联系,增强数学学习的兴趣,树立正确的数学观念。
三、教学难点与重点
1.教学重点
(1)理解单位“1”的概念:通过实例让学生明白单位“1”可以表示任何相等的整体,如1个苹果、1米绳子等,以此为基础进行分数的运算。
《用单位“1”解决实际问题》教案-2021-2022学年数学六年级上册人教版
一、教学内容
《用单位“1”解决实际问题》教案-2021-2022学年数学六年级上册人教版。本节课我们将学习以下内容:
1.理解单位“1”的概念,掌握将一个整体平均分成若干份,用分数表示的方法。
分数乘除法问题的解决策略
180分数乘除法问题的解决策略★ 任广慧在我们的小学数学的学习过程中,分数乘除法解决问题是其中的重点,又是难点。
它不仅在小学数学中起到非常重要的作用,也是初中深层次知识学习的基础,它对逻辑思维能力和解题能力都有很高的要求,所以很多同学在遇到这类问题时,经常混淆计算方法,找不到解题思路。
下面老师就来介绍几种解决策略,帮助大家突破难点,化繁为简。
一、找准单位“1”是基础找单位“1”是解决分数乘除法问题的基础,只有找准了单位“1",才能明确题目的数量关系,找到解决问题的方法。
那怎样来找单位“1"呢?单位“1”都藏在含有分率的句子中,我们把这个句子叫关键句。
它可以分为以下三种情况:1、标准句式直接找2、一般在“的”字前,“是”、“占”、“比”、“相当于”等字词后面的量是单位“1”。
这几个字叫关键字。
3、省略句式补充找如:现价降低4/7,没有关键字,我们就要根据这句话的意思补充成“现价(比原价)降低4/7",这时就回到了前面说的标准句式,“比”后面是“原价”就是单位“1”。
4、特殊句式慎重找5、有些关键句比较特殊,就像“吃去的比剩下的多总量的2/ 5”,这个关键句中,既出现了“的”,又出现了“比”,这就要仔细思考了。
当“比”和“的”都出现时,以“的”优先,所以单位“1”是总量,而不是剩下的量。
二、分清类型是关键找准单位“1”,就进入了解决问题的重要环节,分清类型,根据类型写出数量关系式,确定解题方法。
通过学习,我们知道分数乘除法解决问题可以分为三大类型,把它整理在下表格中。
通过表格,我们就可以看出第一种类型是分数乘法,后两种是分数除法,它们都有三个量单位“1”、比较量和对应分率,并已知其中两个量,求第三个。
那如何才能区分类型,确定方法呢?老师有妙招,只要区分问题,就能确定方法。
三、多种策略要灵活在解决实际问题时,除了上面的策略,还得学会从不同的方法入手,灵活解题。
1、从“量率对应”入手找出解题方法分数乘除法解决问题中,有“量率对应”的明显特点,对一个单位“1”来说,每个分率都对应着一个具体的数量,而每一个具体的数量,也同样对应着一个分率,因此,正确确定“量率对应”是解题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.李庄共有小麦地320公亩,水稻地比小麦地多1/4,这个庄的水稻地比小麦地多多少公亩?有水稻地多少公亩?
7.修一条公路,长1000米,甲队已经修了这条路的2/5,剩下的由乙队修,乙队修多少米?
8.一辆汽车从甲地开往乙地,第一小时行了全程的,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲、乙两地间的公路长多少千米?
3.两位同学踢毽,小明踢了130下,小强踢的是小明的1/2,两人一共踢了多少下?( )
①130×1/2+130②130×1/2③130 + 1/2
梨树的棵数是苹果树的4/5,梨树有多少棵?( )
①240×3/4+240×4/5②240×3/4×4/5③240+ 3/4×4/5
例2:一个长方形的宽是长的5/12。在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。
例3:今年的产量相当于去年的4/3倍。那么相当于后面的去年的产量就是标准量,也就是单位“1”。
(三)、原数量与现数量 有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。这类分数应用题的单位“1”比较难找。
教学内容
欧阳光明(2021.03.07)
分数乘法应用题单位1的确定
基本思路:分数的意义,“把单位1平均分成若干份,表示这样的一份或几份的数,叫分数”。
一:单位1的判定,就是看把谁平均分了,就把谁看作单位1.谁的几分之几,谁就把谁看作单位1。.
例:一桶油用去 ,男生占全班的 ,桃树棵数相当于梨树棵树的 ,一台电视机降价 。男生比女生多全班的 .把全班人数看作单位1。.
总结:
单位“1”在“是”、“比”、“占”,“相当于”后,分率前。已知单位“1”用乘法,未知单位“1”用除法,用具体数÷对应分率=单位“1”的量。
二:【详细说明】
正确找准单位“1”,是解答分数(百分数)应用题的关键。每一道分数应用题中总是有关键句(含有分率的句子)。如何从关键句中找准单位“1”,我觉得可以从以下这些方面进行考虑。
2.育民小学有男同学840人,女同学人数是男同学的4/7,这个学校有女同学多少人?
3.一堆煤12吨,又运来它的1/4,又运来的煤是多少吨?
4.教师公寓有三居室180套,二居室的套数是三居室的2/3,一居室的套数是二居室的1/4。教师公寓有一居室多少套?
5.阳光小学有男生750人,女生人数是男生的4/5,这个学校有女生多少人?一共有学生多少人?
(13)已经修了一条路的1/4 ( )×( )=( )
(14)黑兔是白兔的3/7 ( )×( )=( )
(15)黑兔的3/4相当于白兔 ( )×( )=( )
(16)甲数的5/6是乙数 ( )×( )=( )
(17)甲数是乙数的3/4 ( )×( )=( )
(18)苹果树占果园面积的2/5 ( )×( )=( )
(19)钢笔的价钱等于书的7/8 ( )×( )=( )
(20)甲仓货物的重量相当于乙仓货物的8/9( )×( )=( )
(21)鹅只数的11/16是鸭的只数( )×( )=( )
二.判断。
1.3吨钢铁的1/4和1吨棉花的3/4同样重。 ( )
2.12×2/5就是求12的2/5是多少。 ( )
3.1.2×4/15的积小于被乘数。( )
(7)读了一本书的 2/7 ( )×( )=( )
(8)三好学生占全校人数的 1/10 ( )×( )=( )
(9)完成了计划工作量的 3/4 ( )×( )=( )
(10)小军的体重是爸爸体重的3/8 。( )×( )=( )
(11)苹果树的棵数占果树总棵数的2/5 ( )×( )=( )
(12)汽车速度相当于飞机速度的1/5 ( )×( )=( )
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是带指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例1:六(2)班男生比女生多1/2。就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
典型例题
例1:求25的 是多少?列式:25× =15
甲数的 等于乙数,已知甲数是25,求乙数是多少?列式:25× =15
注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
例2:已知甲数是乙数的 ,乙数是25,求甲数是多少?
甲数=乙数× 即25× =15
注:(1)“是”“的”字中间的量“乙数”是 的单位“1”的量,即 是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。
(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。
(3)单位“1”的量×分率=分率对应的量
例3:甲数比乙数多(少) ,乙数是25,求甲数是多少?
甲数=乙数±乙数× 即25±25× = 25×(1± )=40(或10)
3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
巩固提高:
一.填空。
找出单位“1”,用波浪线划出,并完成数量关系式。
(1)男生人数占女生人数的4/5。( )
(2)甲的6/7相当于乙。( )
(3)乙的5/9与甲相等。 ( )
(4)鸡的只数是鸭的7/8 ( )×7/8=( )
(5)乙数是甲数的 1/3 ( )×( )=( )
(6)大鸡只数的4/5相当于小鸡的只数。( )×( )=( )
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多 。理解为男生比女生多女生的 ,所以把女生人数为标准,看作单位“1”,
看在谁的基础上增加或减少,那个基础量就是单位“1”
例如,水结成冰后体积增加了 ,把水看作单位“1”,冰融化成水后,体积减少了 。把冰看作单位“1”
例1:水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!比如水结成冰,原来的数量就是水,那么水就是单位“1冰融化成水,原来的数量是冰,所以冰的体积,就是单位“1”。
4.大于4/9小于7/9的分数只有2个。( )
5.3/4吨的2/15是1/10吨。( )
6.5×2/9表示5个2/9相加。( )
三.选择。
1.一种花茶每千克50元,买3/5千克用多少元?( )
①50×3/5②50+3/5
2.学校买来200千克萝卜,吃了3/5千克还剩多少千克?( )
①200×3/5②200-3/5
(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例:我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。
四.列式不计算. (1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
(2)油菜子的出油率是42%,一个榨油厂榨出菜子油2100千克,用油菜子多少千克?
(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?
五.应用题。
1.一桶油10千克,用去这桶油的4/5,用去了多少千克?