水文地质学基础岩土中的空隙和水
合集下载
水文地质学 岩石中的孔隙与水分

孔隙大小取决于颗粒大小(图4—3)。 颗粒排列方式也影响孔隙大小。仍以理 想等粒圆球状颗粒为例,设颗粒直径为 D,孔喉直径为d,则作立方体排列时, d=0.414D (图4—4),图4—5a); 作四面体排列时,d=0.155D (图4—5b)。 对于粘性土,决定孔隙大小的不仅是颗 粒大小及排列,结构孔隙及次生空隙的 影响是不可忽视的。
(4—2)
(4—3) 有效应力等于总应力减去孔隙水压力,这就是 著名的太沙基有效应力原理。
即原先由水承受的应力由于水头降低,
3.4.2 地下 水位 变动 引起 的岩 土压 密
浮托力减少而部分地转由砂层骨架 (颗粒本 身)承担:
(4—4) 砂层是通过颗粒的接触点承受应力的。 孔隙水压力降低,有效应力增加,颗粒发 生位移, 排列更为紧密,颗粒的接触面增 加,孔隙度降低,砂层受到压密。
空隙的多少、大小、形状、连通情况和 分布规律,对地下水的分布和运动具有 重要影响。 将岩石空隙作为地下水储存场所和运动 通道研究时,可分为三类,即:松散岩 石中的孔隙,坚硬岩石中的裂隙和可溶 岩石中的溶穴。
4.1.1 孔隙
松散岩石是由大小不等的颗粒组成的。 颗粒或颗粒集合体之间的空隙,称为孔 隙。 岩石中孔隙体积的多少是影响其储容地 下水能力大小的重要因素。孔隙体积的 多少可用孔隙度表示。孔隙度是指某一 体积岩石 ( 包括孔隙在内 ) 中孔隙体积所 占的比例。若以n表示岩石的孔隙度,V 表示包括孔隙在内的岩石体积,Vn表示 岩石中孔隙的体积,则:
Pz Pz P (u u)
⑴重量含水量:松散岩石孔隙中所含的水量(Gw)
与干燥岩石重(Gs)的比值。
Gw Wg 100% Gs
《水文地质基础》第二章 岩石中的空隙与水分

空隙发育的复杂性
松散层主要发育孔隙,但粘性土失水干缩后可产生裂隙; 坚硬岩石中也不全为裂隙或裂隙-溶穴。如有些沉积岩往 往存在大量的原生孔隙,其数量可大大超过裂隙与溶穴。
第1节 岩石中的空隙—三者比较
不同地区岩性空隙度比较
地区
岩性
孔隙度(%) 裂隙率(%)
中国北京西山 地区
美国斯普拉贝 尔油田
前苏联斯涅别 林斯基油田
慢。
第2节 岩石中水的存在形式— (矿物表面)结合水
– 溶解盐类能力较弱 – 冰点为-15℃ – 有一定的粘滞性和抗剪强度 – 在一定条件下(饱水带)可传递静水压力 – 弱结合水的外层能被植物吸收利用
第2节 岩石中水的存在形式— 毛细水(capillary water)
概念
依靠毛细力而保持在毛细空隙中的水,称为毛细水。 毛细空隙是岩土中的细小空隙,一般指直径小于1mm的 孔隙或宽度小于0.25mm的裂隙。
第二章 岩石中的空隙与水分
岩石中的空隙 岩石中的水分 岩石的水理性质 含水层与含水系统
第1节 岩石中的空隙
岩石空隙是地下水储存场所和运动通道。空 隙的多少、大小、形状、连通情况和分布规律, 对地下水的分布和运动具有重要影响。
孔隙 – 松散沉积物中的空隙 裂隙 – 坚硬岩石地层中的空隙 溶穴 – 可溶性基岩地层中经溶蚀后的空隙
毛细现象及实质
将一根玻璃毛细管插入水中,毛细管内的水面即会上升 到一定高度,这便是发生在固、液、气三相界面上的毛 细现象。 其实质是毛细张力的作用。
形弯液面产生的附加压强Pc,是个负压强,称毛细负压。
毛细上升高度hc(capillary height)和毛细上 升速度
式中D的单位为mm,Pc为毛细压力。 对主曲率半径分别为R1和R2的毛细空隙,拉普拉斯公式:
松散层主要发育孔隙,但粘性土失水干缩后可产生裂隙; 坚硬岩石中也不全为裂隙或裂隙-溶穴。如有些沉积岩往 往存在大量的原生孔隙,其数量可大大超过裂隙与溶穴。
第1节 岩石中的空隙—三者比较
不同地区岩性空隙度比较
地区
岩性
孔隙度(%) 裂隙率(%)
中国北京西山 地区
美国斯普拉贝 尔油田
前苏联斯涅别 林斯基油田
慢。
第2节 岩石中水的存在形式— (矿物表面)结合水
– 溶解盐类能力较弱 – 冰点为-15℃ – 有一定的粘滞性和抗剪强度 – 在一定条件下(饱水带)可传递静水压力 – 弱结合水的外层能被植物吸收利用
第2节 岩石中水的存在形式— 毛细水(capillary water)
概念
依靠毛细力而保持在毛细空隙中的水,称为毛细水。 毛细空隙是岩土中的细小空隙,一般指直径小于1mm的 孔隙或宽度小于0.25mm的裂隙。
第二章 岩石中的空隙与水分
岩石中的空隙 岩石中的水分 岩石的水理性质 含水层与含水系统
第1节 岩石中的空隙
岩石空隙是地下水储存场所和运动通道。空 隙的多少、大小、形状、连通情况和分布规律, 对地下水的分布和运动具有重要影响。
孔隙 – 松散沉积物中的空隙 裂隙 – 坚硬岩石地层中的空隙 溶穴 – 可溶性基岩地层中经溶蚀后的空隙
毛细现象及实质
将一根玻璃毛细管插入水中,毛细管内的水面即会上升 到一定高度,这便是发生在固、液、气三相界面上的毛 细现象。 其实质是毛细张力的作用。
形弯液面产生的附加压强Pc,是个负压强,称毛细负压。
毛细上升高度hc(capillary height)和毛细上 升速度
式中D的单位为mm,Pc为毛细压力。 对主曲率半径分别为R1和R2的毛细空隙,拉普拉斯公式:
水文地质学基础课件——第二章 岩石中的孔隙与水

11
第1节 岩石中的空隙—孔隙
影响孔隙大小的因素:
孔隙大小与岩石颗粒的分选程度的关系: ? 问:下列2种试样哪种孔隙大?
a—砂砾混合样
b—砾
a试样的孔隙为细颗粒形成的小孔石隙。
分选愈差,细粒占的比例愈大,孔隙愈小! 胶结程度越好,充填物越多,孔隙愈小!
12
第1节 岩石中的空隙—孔隙
影响孔隙大小的因素:
孔隙度是描述松散岩石中孔隙多少的指标 定义:某一体积岩石(包括颗粒骨架与空隙在内)中孔隙体积所 占的比例。通常用 n 表示
n Vn 100 % VT
?问:孔隙度的大小与什么有关?——与颗粒大小有关? a. 与排列有关——紧密与疏松 理想最疏松孔隙为47.64%,最紧密排列孔隙为25.95%。 b. 与分选有关——下面试样哪个孔隙度大?哪个小? 试样:①砾石 ②砂石 ③混合样
17
第1节 岩石中的空隙—孔隙
颗粒排列方式对孔隙度的影响 理想最疏松排列(立方体):孔隙度为 47.64%; 理想最紧密排列(四面体):孔隙度为 25.95%。 排列愈紧密孔隙度愈小。
18
第1节 岩石中的空隙—孔隙
粘性土的孔隙与孔隙度
粘土颗粒(指直径<0.005mm的颗粒); 粘性土颗粒细小,比表面积大,连结力强;颗粒表面带 电,
达到70%
16
第1节 岩石中的空隙—孔隙
这里与粒径的关系是:粒径愈小,孔隙度愈大!
与以上分析有矛盾!为什么? 砂样与砾石样混合时,砾石样中孔隙体积变小,因此 孔隙度变小。 当粗细颗粒完全混合时,混合样的孔隙度:
n混=n粗×n细 因此影响孔隙度大小的主要因素是试样的分选程度, 分选愈差,孔隙度愈小! 为何粘性土的孔隙度超过最疏松排列的47.64%可达 70%?
第1节 岩石中的空隙—孔隙
影响孔隙大小的因素:
孔隙大小与岩石颗粒的分选程度的关系: ? 问:下列2种试样哪种孔隙大?
a—砂砾混合样
b—砾
a试样的孔隙为细颗粒形成的小孔石隙。
分选愈差,细粒占的比例愈大,孔隙愈小! 胶结程度越好,充填物越多,孔隙愈小!
12
第1节 岩石中的空隙—孔隙
影响孔隙大小的因素:
孔隙度是描述松散岩石中孔隙多少的指标 定义:某一体积岩石(包括颗粒骨架与空隙在内)中孔隙体积所 占的比例。通常用 n 表示
n Vn 100 % VT
?问:孔隙度的大小与什么有关?——与颗粒大小有关? a. 与排列有关——紧密与疏松 理想最疏松孔隙为47.64%,最紧密排列孔隙为25.95%。 b. 与分选有关——下面试样哪个孔隙度大?哪个小? 试样:①砾石 ②砂石 ③混合样
17
第1节 岩石中的空隙—孔隙
颗粒排列方式对孔隙度的影响 理想最疏松排列(立方体):孔隙度为 47.64%; 理想最紧密排列(四面体):孔隙度为 25.95%。 排列愈紧密孔隙度愈小。
18
第1节 岩石中的空隙—孔隙
粘性土的孔隙与孔隙度
粘土颗粒(指直径<0.005mm的颗粒); 粘性土颗粒细小,比表面积大,连结力强;颗粒表面带 电,
达到70%
16
第1节 岩石中的空隙—孔隙
这里与粒径的关系是:粒径愈小,孔隙度愈大!
与以上分析有矛盾!为什么? 砂样与砾石样混合时,砾石样中孔隙体积变小,因此 孔隙度变小。 当粗细颗粒完全混合时,混合样的孔隙度:
n混=n粗×n细 因此影响孔隙度大小的主要因素是试样的分选程度, 分选愈差,孔隙度愈小! 为何粘性土的孔隙度超过最疏松排列的47.64%可达 70%?
水文地质学 第二章 岩石中的空隙与水分1.

注意: 图示三种颗粒直径不同的等粒岩石,排列
方式相同时,孔隙度完全相同。
② 颗粒的分选性(颗粒的均匀程度)
((aa))
(a)等径圆球按立方体排列, 孔隙度为47.64%;
(b()b)
(b)圆球按立方体排列, 空隙为小颗粒所充填, 孔隙度大为下降。
③ 颗粒的形状
颗粒形状愈是不规则,棱角越是明显,突出 部分互相接触,会使颗粒架空,通常排列就越松 散,n也越大。
故有:
V —岩石总体积(包括孔隙在内用)孔隙比;
ε=n/(1-n)
孔隙比(ε):
而涉及水的储容与 流动时,则采用孔隙
ε= Vn / Vs
或ε= Vn
/
V
s
度。
×100%
式中:Vs —固体颗粒的体积
2.影响孔隙度的因素
孔隙度的大小取决于以下因素: ① 颗粒的排列情况(即岩石的密实程度) ② 颗粒的分选性(颗粒的均匀程度) ③ 颗粒的形状 ④ 颗粒的胶结充填情况 ⑤ 结构孔隙及次生空隙(对粘性土)
岩溶率
衡量溶隙多少的定量指标。可用下式表示:
KK
VK V
或
KK
VK V
100%
式中: Kk ——岩石岩溶率;Vk ——岩石中溶隙或溶穴的体积; V ——岩石总体积。(包括溶隙在内)
注意: 自然界岩石中空隙的发育状况要复杂得多. 松散岩石、坚硬基岩和可溶岩石中的空隙网络 具有不同的特点。
综上所述,岩石越松散,分选越好,
圆度和胶结程度越差时,n越大。
3.孔喉,孔腹:
孔喉:孔隙通道最细 小的部分
孔腹:最宽大的部分
孔喉对水流动的 影响更大,讨论孔隙 大小时可以用孔喉直 径进行比较。
4.影响孔隙大小的因素
水文地质学-第2章岩石中的空隙与水份

chd-qw
第二章 岩石中的空隙与水分
15
chd-qw
第二章 岩石中的空隙与水分
16
四、岩石中的空隙小结
1、岩石中的空隙是研究地下水的基础 2、分布特点:孔隙主要分布于松散堆积物中,分布广 泛,联通均匀 裂隙分布于坚硬岩石中,分布不均 溶穴分布可溶性岩石中,分布不均 3、孔隙度,运用范围广;裂隙率、岩溶率受到地区限 制,运用不广,代表性不强。三者定义也各不相同。 4、裂隙率和岩溶率可以直接评价赋水性,孔隙度加孔 隙大小才可评价。 5、孔隙度及其影响因素。 按岩层的空隙类型分为三种类型地下水:①孔隙水;② 裂隙水;③岩溶水。
§2.3 与水储容及运移有关的岩石性质
四、透水性 1、透水性:岩石允许水透过的能力叫做透水性。 2、定量指标:渗透系数 3、影响透水性的因素: 1)空隙的大小和联通情况,特别是最小空隙直 径的影响,平均孔隙直径。 2)孔隙度:粘土和砂砾石孔隙度的区别。 颗粒的分选性,决定孔隙的变化和曲折性。
chd-qw
水文地质学
第二章 岩石中的 空隙与水分
第二章 岩石中的空隙与水分 §2.1 岩石中的空隙
岩石的空隙是地下水储存和运移的先决 条件,空隙的多少、大小、形状、联通状况 和分布规律,决定着地下水的埋藏、分布和 运动。 将岩石空隙作为地下水储存场所和运动 通道研究时,可分为三类,即:松散岩石中 的孔隙,坚硬岩石中的裂隙和可溶岩石中的 溶穴。
第二章 岩石中的空隙与水分
13
在花岗岩闪长岩岩体边坡上,分布大量陡于80°倾角的 构造裂隙。
chd-qw
第二章 岩石中的空隙与水分
14
§2.1.3 溶穴
1、溶穴:起因于水的溶蚀,在可溶岩(白云 岩、岩盐、石膏、石灰岩等)中形成的空洞 (溶隙)。 (cavity)-- soluble rock 2、岩溶率:Kk=Vk/V 特点:岩溶率的变化范围很大,且在相邻很近 地点处岩溶率完全不同,同一地点的不同深 度处岩溶率也有很大变化。
水文地质学基础(第六版)岩石中的空隙与水分

静电引力受2到021距/8/2离0 的影响,结合水的自由不同。
24
3、类型及特征:按牢固程度划分:
强结合水:
密度大于1,平均2g/cm3左右
冰点: -78 ℃
类似固体,不能流动。在温度105℃上才能以气态的形式脱离颗粒表面 溶解盐类能力弱、不能为植物吸收 有较大的粘滞性、弹性和抗剪强度 。
多少:裂隙率。线裂隙率:与裂隙走向垂直方向上单位长度内裂隙所 占的比例。 面裂隙率,体裂隙率。野外研究裂隙时应注意测定裂隙的方15 向、 宽度、延伸长度、充填情况等,这些影响水的运动。
各种岩石裂隙率数值表(变化范围)
岩石 名称
碎屑岩 化学岩 岩浆岩 变质岩 玄武岩 凝灰岩 现代火山岩
裂隙率 %
3-30 <1-30
持水性:岩石在重力释水后能在空隙中保持一定数量水的
性质。用持水度表示。
透水性:岩石允许让水通过的性质。用渗透系数或单位吸水
量表示。
2021/8/20
30
容水度(Mc) 岩土完全饱水时所能容纳的水的体积与岩土体积的比值。若
以重量计,则称容水量。 容水度与孔隙度(裂隙率、岩溶率)相等。
Mc
(Vm V
毛细水 固态水 气态水
水文地质学 的重点研究
对象 23
一、结合水
1、概念:分布在颗粒表面受静电引力大于重力,而不能
在自身重力作用下发生运动的那部分水。
2、成因:
➢ 带电荷的颗粒表面,一般带负电,主要存在于细小空隙、裂隙; ➢ 极性分子水,水分子是偶极体,被吸入; ➢ 岩石颗粒周围水分子受到库仑力(静电引力)的作用。
四、地下水分类
按含水介质(空隙特征)分: 孔/t8w/2a0 sh sand and gravel in a gravel pit
水文地质学 第二章 岩石中的空隙与水分2.

对遇水膨胀的粘土来说,恰好相反,容水度会大于 原有的孔隙度。
二、含 水 性
1.含水性:岩石含有水分的性能。 2.含水量:说明松散岩石实际保留水分的状况。
①重量含水量:松散岩石孔隙中所含水的重量与
干燥岩石重量的比值。即:
Wg
Gw Gs
100 %
Gw=Vw·1②体积含水量:含水的体积与包括孔隙在内的岩
一、有效应力原理: 有效应力 Pz =总应力 P - 孔隙水压力u
假定所讨论的是松散沉积物质构成的饱水砂层,
P =Gs+Gw
A
B
PZ 有效应力
u =γwh
P=u+Pz
P=u+Pz 即Pz=P-u
二、地下水位变动引起的岩土压密
1.假设:总应力P不变 2.地下水位下降:孔隙水压力降低△u
有效应力增加△Pz, 即:Pz+△Pz=P-(u-△u)
Gs=V石·γα 体积的比值。即:
Wv
Vw V
100%
当水的比重为1,岩石的干容重为 时,有:
Wv Wg
有关含水量的几个概念
饱和含水量(Ws):孔隙充分饱水时的含水量。 饱和差:饱和含水量-实际含水量 饱和度:实际含水量/饱和含水量
三、给 水 性
1.给水性:当地下水位下降时,其下降范 围内饱水岩石及相应的支持毛细水带中的水, 在重力作用下,从原先赋存的空隙中释出,这 一现象称为岩石的给水性。
1. 持水度 :地下水位下降一个单位深度,单位水平 面积岩石柱体中反抗重力而保持于岩石空隙中的水量。
可分为毛细持水度和结合持水度,通常应用结合持水 度,又称最大分子持水度。
2. 残留含水量(Wo ):包气带充分重力释水而又未 受到蒸发、蒸腾消耗时的含水量。数值上相当于最大的持 水度。
二、含 水 性
1.含水性:岩石含有水分的性能。 2.含水量:说明松散岩石实际保留水分的状况。
①重量含水量:松散岩石孔隙中所含水的重量与
干燥岩石重量的比值。即:
Wg
Gw Gs
100 %
Gw=Vw·1②体积含水量:含水的体积与包括孔隙在内的岩
一、有效应力原理: 有效应力 Pz =总应力 P - 孔隙水压力u
假定所讨论的是松散沉积物质构成的饱水砂层,
P =Gs+Gw
A
B
PZ 有效应力
u =γwh
P=u+Pz
P=u+Pz 即Pz=P-u
二、地下水位变动引起的岩土压密
1.假设:总应力P不变 2.地下水位下降:孔隙水压力降低△u
有效应力增加△Pz, 即:Pz+△Pz=P-(u-△u)
Gs=V石·γα 体积的比值。即:
Wv
Vw V
100%
当水的比重为1,岩石的干容重为 时,有:
Wv Wg
有关含水量的几个概念
饱和含水量(Ws):孔隙充分饱水时的含水量。 饱和差:饱和含水量-实际含水量 饱和度:实际含水量/饱和含水量
三、给 水 性
1.给水性:当地下水位下降时,其下降范 围内饱水岩石及相应的支持毛细水带中的水, 在重力作用下,从原先赋存的空隙中释出,这 一现象称为岩石的给水性。
1. 持水度 :地下水位下降一个单位深度,单位水平 面积岩石柱体中反抗重力而保持于岩石空隙中的水量。
可分为毛细持水度和结合持水度,通常应用结合持水 度,又称最大分子持水度。
2. 残留含水量(Wo ):包气带充分重力释水而又未 受到蒸发、蒸腾消耗时的含水量。数值上相当于最大的持 水度。
水文地质学基础第3章_岩土中的空隙和水

胶结程度
胶结程度越好(胶结物越多),孔隙越小
颗粒形状
形状越不规则,棱角越明显,排列越疏松,孔隙度越大
粘土:直径<0.005 mm的土颗粒 粘性土颗粒细小,比表面大,连结力强;颗粒表面带电, 易连结形成粘粒团,构成颗粒集合体
颗粒集合体在重力作用下沉积,形成峰窝或絮状结构 粘土孔隙
结构孔隙—粘粒(集合体)之间的空隙 次生孔隙—节理、裂缝、虫孔、根孔等 粘土孔隙度常大于粗粒土
弱结合水的特点
密度大于1,为1.3~1.8 g/cm3 不受重力影响 可以从簿膜厚的颗粒向簿膜薄的颗粒方向移动, 但速度十分缓慢
溶解盐类能力较弱 冰点为-15 ℃ 有一定的粘滞性和抗剪强度 在一定条件下(饱水带)可传递静水压力 弱结合水的外层能被植物吸收利用
重力水
重力水:固体表层结合水层以外受重力影响大于固体表面 吸引力,在重力作用下运移 重力水具有非常重要的实用价值 地层岩石空隙中如存在一定的重力水,就可以通过泉,或 井流出(抽出),为人们所用 重力水是水文地质学研究的主要对象
水文地质学基础
第三章 岩土中的空隙和水
杨峰田 讲师 吉林大学环境与资源学院 yangfengtian@
2012年11月14日
提纲
岩土中的空隙 岩土中的水 与水有关的岩土性质 有效应力原理与岩土体变形破坏
孔隙度:定义
n V n 或 n Vn 100%
V
V
孔隙的多少:决定岩土储容水的能力,控制岩土滞留、释 出传输水的能力
本节小结
空隙空间的类型 岩土中水的存在形式 有效应力原理
思考题
孔隙度的影响因素有哪些?
Thanks for your attention!
毛细水
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本节小结
空隙空间的类型 岩土中水的存在形式 有效应力原理
思考题
孔隙度的影响因素有哪些?
Thanks for your attention!
毛细水
毛细水 支持毛细带 悬挂毛细带 孔角毛细水
气态水、固态水及矿物中的水
未饱和空隙:气ห้องสมุดไป่ตู้水,高水汽压力处向低水汽压力处运移 冻土:我国北方;东北、青藏:多年冻土 结晶水、结构水、沸石水
有效应力原理
有效应力增加:岩土压密、土体抗剪能力降低 引发地质灾害:地面沉降、砂土液化、滑坡等
裂隙和溶穴
固结岩石:发育裂隙,系在各种应力作用下破裂变形而成 可溶岩石:原有孔隙或裂隙,经地下水溶蚀,扩大为溶穴
岩石中水的存在形式
结合水
结合水:固相表面引力大于自身重力的水
重力水
重力水:固体表层结合水层以外受重力影响大于固体表面 吸引力,在重力作用下运移 重力水具有非常重要的实用价值 地层岩石空隙中如存在一定的重力水,就可以通过泉,或 井流出(抽出),为人们所用 重力水是水文地质学研究的主要对象
n Vn 或 n Vn 100%
V
V
孔隙的多少:决定岩土储容水的能力,控制岩土滞留、释 出传输水的能力
孔隙度:描述孔隙的多少 定义:单位体积岩土中孔隙所占的比例
孔隙度:影响因素
颗粒排列
立方体排列(n~48%)
立方体排列——最松散排列:n~48 四面体排列——最紧密排列:n~26 松散岩土孔隙度多介于二者之间
提纲
岩土中的空隙 岩土中的水 与水有关的岩土性质 有效应力原理与岩土体变形破坏
岩土中的空隙
地壳表层就像饱含水分的海绵 岩土空隙是地下水的储容空间和传输通道 决定着岩土储容、滞留、释放和传输水的性能 空隙类型:孔隙、裂隙、溶穴
孔隙
孔隙:岩层颗粒及颗粒集合体之间的空隙
孔隙度:定义
四面体排列(n~26%)
分选程度
沉积物分选较好
沉积物分选较差
分选越差(颗粒大小越悬殊)的松散岩土,孔隙度越小 分选性是影响粗粒土孔隙度的首要因素
胶结程度
胶结程度越好(胶结物越多),孔隙越小
颗粒形状
形状越不规则,棱角越明显,排列越疏松,孔隙度越大
粘土:直径<0.005 mm的土颗粒 粘性土颗粒细小,比表面大,连结力强;颗粒表面带电, 易连结形成粘粒团,构成颗粒集合体
颗粒集合体在重力作用下沉积,形成峰窝或絮状结构 粘土孔隙
结构孔隙—粘粒(集合体)之间的空隙 次生孔隙—节理、裂缝、虫孔、根孔等 粘土孔隙度常大于粗粒土
孔喉(直径为d)与孔腹(直径为D’)
不同排列方式下的孔喉
立方排列d=0.414D;四面体排列d=0.155D
孔隙大小对地下水运动影响很大 孔隙通道最狭窄部分称作孔喉,最宽大部分称作孔腹 孔喉对水流动的影响更大,讨论孔隙大小时可用孔喉直径比较