全等三角形期末复习
人教版八年级上册第一学期数学期末专题复习卷(一)全等三角形-优选

八年级数学期末专题复习卷(一)全等三角形(考试时间:90分钟满分:100分)一、选择题 (每题3分,共24分)1.不能使两个直角三角形全等的条件是( )A.一条直角边和它的对角对应相等B.斜边和一条直角边对应相等C.斜边和一锐角对应相等D.两个锐角对应相等2. 如图,BE AC ⊥于点D ,且AD CD =,BD ED =,则54ABC ∠=︒,则E ∠等于( )A 25° B. 27° C. 30° D. 45°3. 如图,//,//,AB DE AC DF AC DF =,下列条件中不能判断ABC DEF ∆≅∆的是( ) A. AB DE = B. B E ∠=∠ C. EF BC = D. //EF BC4. 如图,在正方形ABCD 中,连接BD ,O 是BD 的中点,若M 、N 是边AD 上的两点,连接MO 、NO ,并分别延长交边BC 于两点'M 、'N ,则图中的全等三角形共有( ) A. 2对 B. 3对 C. 4对 D. 5对5. 如图,在长方形ABCD 中(AD AB >),E 是BC 上一点,且DE DA =,AF DE ⊥,垂足为F .在下列结论中,不一定正确的是( )A. AFD DCE ∆≅∆B. 12AF AD =C. AB AF =D. BE AD DF =- 6. 如图,将ABC ∆绕着点C 顺时针旋转50后得到'''A B C ∆.若40A ∠=︒,'110B ∠=︒,则'BCA ∠的度数是( )A. 110°B. 80°C. 40°D. 30°7. 如图,ABC ∆中,B C ∠=∠,BD CF =,BE CD =,EDF α∠=则下列结论正确的是( ) A. 2180A α+∠=︒ B. 90A α+∠=︒ C. 290A α+∠=︒ D. 180A α+∠=︒8. 如图,AB BC ⊥,BE AC ⊥,12∠=∠,AD AB =,则( ) A. 1EFD ∠=∠ B.BE EC = C.BF DF CD -= D.//FD BC二、填空题(每题2分,共20分) 9. 如图,直线l 经过等边三角形ABC 的顶点B ,在l 上取点D 、E ,使120ADB CEB ∠=∠=︒. 若2AD =cm ,5CE =cm ,则DE = cm10. 如图,已知ABC ∆中,ABC ∠、ACB ∠的角平分线交于点O ,连接AO 并延长交BC 于点D ,OH BC ⊥于点H ,若60BAC ∠=︒,5OH =cm ,则BAD ∠= ,点O 到AB 的距离为 cm. 11. 如图,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在BE 上,125∠=︒,230∠=︒则3∠= . 12. 已知ABC ∆的三边长分别为3、5、7,DEF ∆的三边长分别为3、32x -、21x -,若这两个三角形全等,则x 的值为 . 13. 如图,AC BC =,DC EC =,90ACB ECD ∠=∠=︒,且38EBD ∠=︒,则AEB ∠= .14. 如图,在ABC ∆中,AB AC =,AD 是BAC ∠的平分线,DE AB ⊥于点E ,DF AC ⊥于点F ,下列四个结论:①DA 平分EDF ∠;②EB FC =;③AD 上的点与B 、C 两点的距离相等;④到AE 、AF 距离相等的点,到DE 、DF 的距离也相等.其中,正确的结论有 (填序号). 15. 如图,有块边长为4的正方形塑料模板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E ,四边形AECF 的面积为 . 16. 如图,等边三角形ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将ADE ∆沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ∆外部,则阴影部分图形的周长为 cm.17. 如图,在24⨯的方格纸中,ABC ∆的3个顶点都在小正方形的顶点,这叫做格点三角形.作出另一个格点三角形DEF ,使DEF ABC ∆≅∆,这样的三角形共有 个. 18. 如图,ABC ∆中30A ∠=︒,E 是AC 边上的点,先将ABE ∆沿着BE 翻折,翻折后ABE ∆的AB 边交AC 于点D ,又将BCD ∆沿着BD 翻折,C 点恰好落在BE 上,此时82CDB ∠=︒,则原三角形的B ∠= .三、解答题(共56分)19. (6分)如图,点B 、F 、C 、E 在直线l 上(点F 、C 之间的距离不能直接测量),点A 、D 在l 异侧,测得AB DE =、AC DF =、BF EC =. (1)求证: ABC DEF ∆≅∆.(2)指出图中所有平行的线段,并说明理由.20. (6分)如图,在Rt ABC ∆中,90ACB ∠=︒,点D 、E 分别在AB 、AC 上,CE BC =,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF . (1)补充完成图形.(2)若//EF CD ,求证: 90BDC ∠=︒.21. (6分)如图,已知: 90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠.求证: (1) AM 平分DAB ∠. (2) AD AB CD =+.22. (6分)如图,在正方形ABCD 中,点E 在边CD 上,AQ BE ⊥于点Q ,DP AQ ⊥于点P . (1)求证:AP BQ =.(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.23. (8分)如图,已知D 为等腰直角三角形ABC 内一点,15CAD CBD ∠=∠=︒,E 为AD 延长线上的一点,且CE CA =. (1)求证:DE 平分BDC ∠.(2)若点M 在DE 上,且DC DM =,求证:ME BD =.24. 24.(8分)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB 、BC 、AD 不动,2AB AD ==cm ,5BC =cm ,如图,量得第四根木条5CD =cm ,判断此时B ∠与D ∠是否相等,并说明理由.(2)若固定一根木条AB 不动,2AB =cm ,量得木条5CD =cm ,如果木条AD 、BC 的长度不变,当点D 移到BA 的延长线上时,点C 也在BA 的延长线上;当点C 移到AB 的延长线上时,点A 、C 、D 能构成周长为30cm 的三角形,求出木条AD 、BC 的长度.25. (8分)(1)如图①,以ABC ∆的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连接EG ,试判断ABC ∆与AEG ∆面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图②所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a m 2,内圈的所有三角形的面积之和是b m 2,这条小路一共占地多少平方米?26. (8分)如图,在四边形ABCD 中,8AD BC ==,AB CD =,12BD =,点E 从点D 出发,以每秒1个单位长度的速度沿DA 向点A 匀速移动,点F 从点C 出发,以每秒3个单位长度的速度沿C B C →→作匀速移动,点G 从点B 出发沿BD 向点D 移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t ts. (1)试证明://AD BC .(2)在移动过程中,小明发现有DEG ∆与BFG ∆全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间和G 点的移动距离.参考答案一、1. D 2. B 3. C 4. C 5. B 6. B 7. A 8. D 二、9.3 10.30︒ 5 11.55︒ 12.313. 128︒14.①②③④15.16 16.3 17.7 18.78︒三、19.略 20. (1)略(2)由旋转的性质得,DC FC =,90DCF ∠=︒ 所以90DCE ECF ∠+∠=︒ 因为90ACB ∠=︒所以90DCE BCD ∠+∠=︒ 所以ECF BCD ∠=∠因为//EF CD所以180EFC DCF ∠+∠=︒ 所以90EFC ∠=︒在BDC ∆和EFC ∆,DC FC BCD ECF BC EC =⎧⎪∠=∠⎨⎪=⎩所以()BDC EFC SAS ∆≅∆所以90BDC EFC ∠=∠=︒ 21. (1)过M 作MH AD ⊥于点H因为DM 平分ADC ∠,MC DC ⊥,MH AD ⊥ 所以CM HM = 又因为BM CM = 所以MH BM =因为MH AD ⊥,MB AB ⊥ 所以AM 平分DAB ∠AM (2)因为CDM HDM ∠=∠ 所以CMD HMD ∠=∠又因为DC MC ⊥,DH MH ⊥ 所以DC DH = 同理:AB AH =因为AD DH AH =+ 所以AD AB CD =+ 22. (1)因为正方形ABCD所以AD BA =,90BAD ∠=︒ 即90BAQ DAP ∠+∠=︒ 因为DP AQ ⊥所以90ADP DAP ∠+∠=︒ 所以BAQ ADP ∠=∠ 因为AQ BE ⊥,DP AQ ⊥ 所以90AQB DPA ∠=∠=︒ 所以AQB DPA ∆≅∆ 所以AP BQ =(2)①AQ AP PQ -= ②AQ BQ PQ -= ③DP AP PQ -= ④DP BQ PQ -=23. (1)因为ABC ∆是等腰直角三角形所以45BAC ABC ∠=∠=︒因为15CAD CBD ∠=∠=︒所以451530BAD ABD ∠=∠=︒-︒=︒ 所以BD AD =所以点D 在AB 的垂直平分线上 因为AC BC =所以点C 也在AB 的垂直平分线上 即直线CD 是AB 的垂直平分线所以45ACD BCD ∠=∠=︒ 所以451560CDE ∠=︒+︒=︒所以60BDE DBA BAD ∠=∠+∠=︒ 所以CDE BDE ∠=∠ 即DE 平分BDC ∠ ( 2 )连接MC因为DC DM =,且60MDC ∠=︒ 所以MDC ∆是等边三角形所以CM CD =,60DMC MDC ∠=∠=︒因为180ADC MDC ∠+∠=︒,180DMC EMC ∠+∠=︒ 所以EMC ADC ∠=∠ 又因为CE CA =所以DAC CEM ∠=∠在ADC ∆与EMC ∆中ADC EMC DAC MEC AC EC ∠=∠⎧⎪∠=∠⎨⎪=⎩所以()ADC EMC AAS ∆≅∆ 所以ME AD BD == 24. (1)相等.理由:连接AC在ACD ∆和ACB ∆中,AC AC AD AB CD BC =⎧⎪=⎨⎪=⎩所以ACD ACB ∆≅∆ 所以B D ∠=∠(2)设AD x =,BC y =当点C 在点D 右侧时25(2)530x y x y +=+⎧⎨+++=⎩解得1310x y =⎧⎨=⎩当点C 在点D 左侧时 52(2)530y x x y =++⎧⎨+++=⎩ 解得815x y =⎧⎨=⎩此时17,5,5AC CD AD === 5817+<不合题意所以13AD =cm ,10BC =cm. 25. (1)ABC ∆与AEG ∆面积相等理由:过点C 作CM AB ⊥于点M ,过点G 作GN EA ⊥交EA 延长线于点N 则90AMC ANG ∠=∠=︒因为四边形ABDE 和四边形ACFG 都是正方形所以90BAE CAG ∠=∠=︒,AB AE =,AC AG = 因为360BAE CAG BAC EAG ∠+∠+∠+∠=︒ 所以180BAC EAG ∠+∠=︒ 因为180EAG GAN ∠+∠=︒ 所以BAC GAN ∠=∠在ACM ∆和AGN ∆中MAC NAG AMC ANG AC AG ∠=∠⎧⎪∠=∠⎨⎪=⎩所以ACM AGN ∆≅∆ 所以CM GN = 因为12ABC S AB CM ∆=g ,12AEG S AE GN ∆=g 所以ABCAEG S S ∆∆=(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和.所以这条小路的面积为(2)a b +m 2.26. (1)在ABD ∆和CDB ∆中,AD BC AB CD BD DB =⎧⎪=⎨⎪=⎩所以ABD CDB ∆≅∆ 所以ADB CBD ∠=∠所以//AD BC(2)设G 点的移动距离为y ,当DEG ∆与BFG ∆全等时有EDG FBG ∠=∠ 所以DE BF =,DG BG =或DE BG =,DG BF = 当点F 由点C 到点B即803t <≤时,则有8312t t y y =-⎧⎨=-⎩解得26t y =⎧⎨=⎩或8312t y t y =⎧⎨-=-⎩ 解得22t y =-⎧⎨=-⎩(舍去)当点F 由点B 到点C即81633t <≤时,有3812t t y y=-⎧⎨=-⎩ 解得46t y =⎧⎨=⎩或3812t y t y=⎧⎨-=-⎩ 解得55t y =⎧⎨=⎩综上可知共会出现3次,移动的时间分别为2s 、4s 、5s ,移动的距离分别为6、6、5。
人教版八年级数学上《全等三角形》《轴对称》期末复习提优题及答案解析

八年级[上]数学期末《全等三角形》《轴对称》复习一.选择题(共4小题)1.如图,Rt△ACB中,∠ACB=90°,∠ABC的角平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC 和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是()A.①②③B.①②④C.②③④D.①②③④2.如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB平分∠AED;④ED=2AB.其中正确的是()A.①②③B.①②④C.②③④D.①②③④3.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE =S△ABP,其中正确的是()A.①③B.①②④C.①②③D.②③4.如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④;⑤M到AD的距离等于BC的一半;其中正确的有()1A.2个B.3个C.4个D.5个二.解答题(共8小题)5.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=_________;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.6.两个等腰直角△ABC和等腰直角△DCE如图1摆放,其中D点在AB上,连接BE.(1)则=_________,∠CBE=_________度;(2)当把△DEF绕点C旋转到如图2所示的位置时(D点在BC上),连接AD并延长交BE于点F,连接FC,则=_________,∠CFE=_________度;(3)把△DEC绕点C旋转到如图3所示的位置时,请求出∠CFE的度数_________.7.已知△ABC为边长为10的等边三角形,D是BC边上一动点:①如图1,点E在AC上,且BD=CE,BE交AD于F,当D点滑动时,∠AFE的大小是否变化?若不变,请求出其度数.②如图2,过点D作∠ADG=60°与∠ACB的外角平分线交于G,当点D在BC上滑动时,有下列两个结论:①DC+CG 的值为定值;②DG﹣CD的值为定值.其中有且只有一个是正确的,请你选择正确的结论加以证明并求出其值.8.如图,点A、C分别在一个含45°的直角三角板HBE的两条直角边BH和BE上,且BA=BC,过点C作BE的垂线CD,过E点作EF上AE交∠DCE的角平分线于F点,交HE于P.(1)试判断△PCE的形状,并请说明理由;(2)若∠HAE=120°,AB=3,求EF的长.9.如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.10.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD 的中点G,连接GF.(1)FG与DC的位置关系是_________,FG与DC的数量关系是_________;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立?请证明你的结论.11.如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE 和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.(1)试探究EP与FQ之间的数量关系,并证明你的结论.(2)若连接EF交GA的延长线于H,由(1)中的结论你能判断并证明EH与FH的大小关系吗?(3)图2中的△ABC与△AEF的面积相等吗?(不用证明)12.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC 于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?八年级[丄]数学期末《全等三角形》《轴对称》复习提优题【大海之音组卷】参考答案与试题解析一.选择题(共4小题)1.如图,Rt△ACB中,∠ACB=90°,∠ABC的角平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC 和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是()A.①②③B.①②④C.②③④D.①②③④考点:直角三角形的性质;角平分线的定义;垂线;全等三角形的判定与性质.专题:推理填空题.分析:①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP,再根据角平分线的定义∠ABP=∠ABC,然后利用三角形的内角和定理整理即可得解;②③先根据直角的关系求出∠AHP=∠FDP,然后利用角角边证明△AHP与△FDP全等,根据全等三角形对应边相等可得DF=AH,对应角相等可得∠PFD=∠HAP,然后利用平角的关系求出∠BAP=∠BFP,再利用角角边证明△ABP与△FBP全等,然后根据全等三角形对应边相等得到AB=BF,从而得解;④根据PF⊥AD,∠ACB=90°,可得AG⊥DH,然后求出∠ADG=∠DAG=45°,再根据等角对等边可得DG=AG,再根据等腰直角三角形两腰相等可得GH=GF,然后求出DG=GH+AF,有直角三角形斜边大于直角边,AF>AP,从而得出本小题错误.解答:解:①∵∠ABC的角平分线BE和∠BAC的外角平分线,∴∠ABP=∠ABC,∠CAP=(90°+∠ABC)=45°+∠ABC,在△ABP中,∠APB=180°﹣∠BAP﹣∠ABP,=180°﹣(45°+∠ABC+90°﹣∠ABC)﹣∠ABC,=180°﹣45°﹣∠ABC﹣90°+∠ABC﹣∠ABC,=45°,故本小题正确;②③∵∠ACB=90°,PF⊥AD,∴∠FDP+∠HAP=90°,∠AHP+∠HAP=90°,∴∠AHP=∠FDP,∵PF⊥AD,∴∠APH=∠FPD=90°,在△AHP与△FDP中,,∴△AHP≌△FDP(AAS),∴DF=AH,∵AD为∠BAC的外角平分线,∠PFD=∠HAP,∴∠PAE+∠BAP=180°,又∵∠PFD+∠BFP=180°,∴∠PAE=∠PFD,∵∠ABC的角平分线,∴∠ABP=∠FBP,在△ABP与△FBP中,,∴△ABP≌△FBP(AAS),∴AB=BF,AP=PF故②小题正确;∵BD=DF+BF,∴BD=AH+AB,∴BD﹣AH=AB,故③小题正确;④∵PF⊥AD,∠ACB=90°,∴AG⊥DH,∵AP=PF,PF⊥AD,∴∠PAF=45°,∴∠ADG=∠DAG=45°,∴DG=AG,∵∠PAF=45°,AG⊥DH,∴△ADG与△FGH都是等腰直角三角形,∴DG=AG,GH=GF,∴DG=GH+AF,∵AF>AP,∴DG=AP+GH不成立,故本小题错误,综上所述①②③正确.故选A.点评:本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.2.如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB平分∠AED;④ED=2AB.其中正确的是()A.①②③B.①②④C.②③④D.①②③④考点:旋转的性质;含30度角的直角三角形.分析:根据直角三角形中30°的角所对的直角边等于斜边的一半,以及旋转的性质即可判断.解答:解:①根据旋转的性质可以得到:AB=AD,而∠ABD=60°,则△ABD是等边三角形,可得到∠DAC=30°,∴∠DAC=∠DCA,故正确;②根据①可得AD=CD,并且根据旋转的性质可得:AC=AE,∠EAC=60°,则△ACE是等边三角形,则EA=EC,即D、E都到AC两端的距离相等,则DE在AC的垂直平分线上,故正确;③根据条件AB∥DE,而AB≠AE,即可证得EB平分∠AED不正确,故错误;④根据旋转的性质,DE=BC,而BC=2AB,即可证得ED=2AB,故正确;故正确的是:①②④.故选B.点评:正确理解旋转的性质,图形旋转前后两个图形全等是解决本题的关键.3.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE=S△ABP,其中正确的是()A.①③B.①②④C.①②③D.②③考点:全等三角形的判定与性质;等腰三角形的性质.分析:根据三角形全等的判定和性质以及三角形内角和定理逐条分析判断.解答:解:在△ABC中,AD、BE分别平分∠BAC、∠ABC,∵∠ACB=90°,∴∠A+∠B=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠A+∠B)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP,∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD,∴AH=FD,又∵AB=FB,∴AB=FD+BD=AH+BD.故③正确.∵△ABP≌△FBP,△APH≌△FPD,∴S四边形ABDE=S△ABP+S△BDP+S△APH﹣S△EOH+S△DOP=S△ABP+S△ABP﹣S△EOH+S△DOP=2S△ABP﹣S△EOH+S△DOP.故选C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④;⑤M到AD的距离等于BC的一半;其中正确的有()A.2个B.3个C.4个D.5个考点:全等三角形的判定与性质;角平分线的性质.分析:过M作ME⊥AD于E,得出∠MDE=∠CDA,∠MAD=∠BAD,求出∠MDA+∠MAD=(∠CDA+∠BAD)=90°,根据三角形内角和定理求出∠AMD,即可判断①;根据角平分线性质求出MC=ME,ME=MB,即可判断②和⑤;由勾股定理求出DC=DE,AB=AE,即可判断③;根据SSS证△DEM≌△DCM,推出S=S三角形DCM,同理得出S三角形AEM=S三角形ABM,即可判断④.三角形DEM解答:解:过M作ME⊥AD于E,∵∠DAB与∠ADC的平分线相交于BC边上的M点,∴∠MDE=∠CDA,∠MAD=∠BAD,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠MDA+∠MAD=(∠CDA+∠BAD)=×180°=90°,∴∠AMD=180°﹣90°=90°,∴①正确;∵DM平分∠CDE,∠C=90°(MC⊥DC),ME⊥DA,∴MC=ME,同理ME=MB,∴MC=MB=ME=BC,∴②正确;∴M到AD的距离等于BC的一半,∴⑤正确;∵由勾股定理得:DC2=MD2﹣MC2,DE2=MD2﹣ME2,又∵ME=MC,MD=MD,∴DC=DE,同理AB=AE,∴AD=AE+DE=AB+DC,∴③正确;∵在△DEM和△DCM中,∴△DEM≌△DCM(SSS),∴S三角形DEM=S三角形DCM同理S三角形AEM=S三角形ABM,∴S三角形AMD=S梯形ABCD,∴④正确;故选D.点评:本题考查了角平分线性质,垂直定义,直角梯形,勾股定理,全等三角形的性质和判定等知识点的应用,主要考查学生运用定理进行推理的能力.二.解答题(共8小题)5.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=2;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.考点:含30度角的直角三角形;全等三角形的判定与性质;等边三角形的性质.专题:动点型.分析:(1)根据三角形内角和定理求出∠BAC=60°,再根据平角等于180°求出∠FAC=60°,然后求出∠F=30°,根据30°角所对的直角边等于斜边的一半求解即可;(2)根据三角形的任意一个外角等于与它不相邻的两个内角的和利用∠CBD表示出∠ADE=30°+∠CBD,又∠HBE=30°+∠CBD,从而得到∠ADE=∠HBE,然后根据边角边证明△ADE与△HBE全等,根据全等三角形对应边相等可得AE=HE,对应角相等可得∠AED=∠HEB,然后推出∠AEH=∠BED=60°,再根据等边三角形的判定即可证明.解答:(1)解:∵△BDE是等边三角形,∴∠EDB=60°,∵∠ACB=90°,∠ABC=30°,∴∠BAC=180°﹣90°﹣30°=60°,∴FAC=180°﹣60°﹣60°=60°,∴∠F=180°﹣90°﹣60°=30°,∵∠ACB=90°,∴∠ACF=180°﹣90°,∴AF=2AC=2×1=2;(2)证明:∵△BDE是等边三角形,∴BE=BD,∠EDB=∠EBD=60°,在△BCD中,∠ADE+∠EDB=∠CBD+∠C,即∠ADE+60°=∠CBD+90°,∴∠ADE=30°+∠CBD,∵∠HBE+∠ABD=60°,∠CBD+∠ABD=30°,∴∠HBE=30°+∠CBD,∴∠ADE=∠HBE,在△ADE与△HBE中,,∴△ADE≌△HBE(SAS),∴AE=HE,∠AED=∠HEB,∴∠AED+∠DEH=∠DEH+∠HEB,即∠AEH=∠BED=60°,∴△AEH为等边三角形.点评:本题考查了30°角所对的直角边等于斜边的一半的性质,全等三角形的判定与性质,等边三角形的性质与判定,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,(2)中求出∠ADE=∠HBE是解题的关键.6.两个等腰直角△ABC和等腰直角△DCE如图1摆放,其中D点在AB上,连接BE.(1)则=1,∠CBE=45度;(2)当把△DEF绕点C旋转到如图2所示的位置时(D点在BC上),连接AD并延长交BE于点F,连接FC,则=1,∠CFE=45度;(3)把△DEC绕点C旋转到如图3所示的位置时,请求出∠CFE的度数135°.考点:圆周角定理;全等三角形的判定与性质;等腰直角三角形;确定圆的条件.分析:(1)先证明∠ACD=∠BCE,再根据边角边定理证明△ACD≌△BCE,然后根据全等三角形对应边相等和对应角相等解答;(2)根据(1)的思路证明△ACD和△BCE全等,再根据全等三角形对应边相等得BE=AD,对应角相等得∠DAC=∠DBF,又AC⊥CD,所以AF⊥BF,从而可以得到C、E、F、D四点共圆,根据同弧所对的圆周角相等即可求出∠CFE=∠CDE=45°;(3)同(2)的思路,证明C、F、D、E四点共圆,得出∠CFD=∠CED=45°,而∠DEF=90°,所以∠CFE 的度数即可求出.解答:解:(1)∵△ABC和△DCE是等腰三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACB﹣∠BCD=∠DCE﹣∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD,∠CBE=∠CAD=45°,因此=1,∠CBE=45°;(2)同(1)可得BE=AD,∴=1,∠CBE=∠CAD;又∵∠ACD=90°,∠ADC=∠BDF,∴∠BFD=∠ACD=90°;又∵∠DCE=90°,∴C、E、F、D四点共圆,∴∠CFE=∠CDE=45°;(3)同(2)可得∠BFA=90°,∴∠DFE=90°;又∵∠DCE=90°,∴C、F、D、E四点共圆,∴∠CFD=∠CED=45°,∴∠CFE=∠CFD+∠DFE=45°+90°=135°.点评:本题综合考查了等边对等角的性质,三角形全等的判定和全等三角形的性质,四点共圆以及同弧所对的圆周角相等的性质,需要熟练掌握并灵活运用.7.已知△ABC为边长为10的等边三角形,D是BC边上一动点:①如图1,点E在AC上,且BD=CE,BE交AD于F,当D点滑动时,∠AFE的大小是否变化?若不变,请求出其度数.②如图2,过点D作∠ADG=60°与∠ACB的外角平分线交于G,当点D在BC上滑动时,有下列两个结论:①DC+CG 的值为定值;②DG﹣CD的值为定值.其中有且只有一个是正确的,请你选择正确的结论加以证明并求出其值.考点:等边三角形的性质;全等三角形的判定与性质.专题:探究型.分析:①∠AFE的大小不变,其度数为60°,理由如下:由三角形ABC为等边三角形,得到三条边相等,三个内角相等,都为60°,可得出AB=BC,∠ABD=∠C,再由BD=CE,利用SAS可得出三角形ABD与三角形BCE全等,根据全等三角形的对应角相等可得出∠BAD=∠CBE,在三角形ABD中,由∠ABD为60°,得到∠BAD+∠ADB的度数,等量代换可得出∠CBE+∠ADB的度数,利用三角形的内角和定理求出∠BFD 的度数,根据对应角相等可得出∠AFE=∠BFD,可得出∠AFE的度数不变;②连接AG,如图所示,由三角形ABC为等边三角形,得出三条边相等,三个内角都相等,都为60°,再由CG为外角平分线,得出∠ACG也为60°,由∠ADG为60°,可得出A,D,C,G四点共圆,根据圆内接四边形的对角互补可得出∠DAG与∠DCG互补,而∠DCG为120°,可得出∠DAG为60°,根据∠BAD+∠DAC=∠DAC+∠CAG=60°,利用等式的性质得到∠BAD=∠CAG,利用ASA可证明三角形ABD 与三角形ACG全等,利用全等三角形的对应边相等可得出BD=CG,由BC=BD+DC,等量代换可得出CG+CD=BC,而BC=10,即可得到DC+CG为定值10,得证.解答:解:①∠AFE的大小不变,其度数为60°,理由为:∵△ABC为等边三角形,∴AB=BC,∠ABD=∠C=60°,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,又∠BAD+∠ADB=120°,∴∠CBE+∠ADB=120°,∴∠BFD=60°,则∠AFE=∠BFD=60°;②正确的结论为:DC+CG的值为定值,理由如下:连接AG,如图2所示:∵△ABC为等边三角形,∴AB=BC=AC,∠ABD=∠ACB=∠BAC=60°,又CG为∠ACB的外角平分线,∴∠ACG=60°,又∵∠ADG=60°,∴∠ADG=∠ACG,即A,D,C,G四点共圆,∴∠DAG+∠DCG=180°,又∠DCG=120°,∴∠DAG=60°,即∠DAC+∠CAG=60°,又∵∠BAD+∠DAC=60°,∴∠BAD=∠GAC,在△ABD和△ACG中,∵,∴△ABD≌△ACG(ASA),∴DB=GC,又BC=10,则BC=BD+DC=DC+CG=10,即DC+CG的值为定值.点评:此题考查了等边三角形的判定与性质,全等三角形的判定与性质,四点共圆的条件,以及圆内接四边形的性质,利用了等量代换及转化的思想,熟练掌握等边三角形的判定与性质是解本题的关键.8.如图,点A、C分别在一个含45°的直角三角板HBE的两条直角边BH和BE上,且BA=BC,过点C作BE的垂线CD,过E点作EF上AE交∠DCE的角平分线于F点,交HE于P.(1)试判断△PCE的形状,并请说明理由;(2)若∠HAE=120°,AB=3,求EF的长.考点:全等三角形的判定与性质;等腰直角三角形.专题:计算题;证明题.分析:(1)根据∠PCE=∠DCE=×90°=45°,求证∠CPE=90°,然后即可判断三角形的形状.(2)根据∠HEB=∠H=45°得HB=BE,再根据BA=BC和∠HAE=120°,利用ASA求证△HAE≌△CEF,得AE=EF,又因为AE=2AB.然后即可求得EF.解答:解:(1)△PCE是等腰直角三角形,理由如下:∵∠PCE=∠DCE=×90°=45°∠PEC=45°∴∠PCE=∠PEC∠CPE=90°∴△PCE是等腰直角三角形(2)∵∠HEB=∠H=45°∴HB=BE∵BA=BC∴AH=CE而∠HAE=120°∴∠BAE=60°,∠AEB=30°又∵∠AEF=90°∴∠CEF=120°=∠HAE而∠H=∠FCE=45°∴△HAE≌△CEF(ASA)∴AE=EF又∵AE=2AB=2×3=6∴EF=6点评:此题主要考查学生对全等三角形的判定与性质和等腰直角三角形等知识点的理解和掌握,解答(2)的关键是利用ASA求证△HAE≌△CEF,此题有一定的拔高难度,属于中档题.9.如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.考点:全等三角形的判定与性质.专题:证明题.分析:(1)在AB上取一点M,使得AM=AH,连接DM,则利用SAS可得出△AHD≌△AMD,从而得出HD=MD=DB,即有∠DMB=∠B,通过这样的转化可证明∠B与∠AHD互补.(2)由(1)的结论中得出的∠AHD=∠AMD,结合三角形的外角可得出∠DGM=∠GDM,可将HD转化为MG,从而在线段AG上可解决问题.解答:证明:(1)在AB上取一点M,使得AM=AH,连接DM,∵,∴△AHD≌△AMD,∴HD=MD,∠AHD=∠AMD,∵HD=DB,∴DB=MD,∴∠DMB=∠B,∵∠AMD+∠DMB=180°,∴∠AHD+∠B=180°,即∠B与∠AHD互补.(2)由(1)∠AHD=∠AMD,HD=MD,∠AHD+∠B=180°,∵∠B+2∠DGA=180°,∠AHD=2∠DGA,∴∠AMD=2∠DGM,又∵∠AMD=∠DGM+∠GDM,∴2∠DGM=∠DGM+∠GDM,即∠DGM=∠GDM,∴MD=MG,∴HD=MG,∵AG=AM+MG,∴AG=AH+HD.点评:本题考查了全等三角形的判定及性质,结合了等腰三角形的知识,解决这两问的关键都是通过全等图形的对应边相等、对应角相等,将题目涉及的角或边进行转化.10.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连接GF.(1)FG与DC的位置关系是FG⊥CD,FG与DC的数量关系是FG=CD;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立?请证明你的结论.考点:全等三角形的判定与性质;等腰直角三角形.专题:探究型.分析:(1)证FG和CD的大小和位置关系,我们已知了G是CD的中点,猜想应该是FG⊥CD,FG=CD.可通过构建三角形连接FD,FC,证三角形DFC是等腰直角三角形来得出上述结论,可通过全等三角形来证明;延长DE交AC于M,连接FM,证明三角形DEF和FMC全等即可.我们发现BDMC是个矩形,因此BD=CM=DE.由于三角形DEB和ABC都是等腰直角三角形,∠BED=∠A=45°,因此∠AEM=∠A=45°,这样我们得出三角形AEM是个等腰直角三角形,F是斜边AE的中点,因此MF=EF,∠AMF=∠BED=45°,那么这两个角的补角也应当相等,由此可得出∠DEF=∠FMC,这样就构成了三角形DEF和CMF的全等的所有条件,可得到DF=FC,即三角形DFC是等腰三角形,下面证直角.根据两三角形全等,我们还能得出∠MFC=∠DFE,我们知道∠MFC+∠CFE=90°,因此∠DFE+∠CFE=∠DFC=90°,这样就得出三角形DFC是等腰直角三角形了,也就能得出FG⊥CD,FG=CD的结论了.(2)和(1)的证法完全一样.解答:解:(1)FG⊥CD,FG=CD.(2)延长ED交AC的延长线于M,连接FC、FD、FM,∴四边形BCMD是矩形.∴CM=BD.又△ABC和△BDE都是等腰直角三角形,∴ED=BD=CM.∵∠AEM=∠A=45°,∴△AEM是等腰直角三角形.又F是AE的中点,∴MF⊥AE,EF=MF,∠EDF=∠MCF.∵在△EFD和△MFC中,∴△EFD≌△MFC.∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90°,∴∠MFC+∠DFM=90°.即△CDF是等腰直角三角形,又G是CD的中点,∴FG=CD,FG⊥CD.点评:本题中通过构建全等三角形来证明线段和角相等是解题的关键.11.如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE 和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.(1)试探究EP与FQ之间的数量关系,并证明你的结论.(2)若连接EF交GA的延长线于H,由(1)中的结论你能判断并证明EH与FH的大小关系吗?(3)图2中的△ABC与△AEF的面积相等吗?(不用证明)考点:全等三角形的判定与性质;等腰直角三角形.分析:(1)根据全等三角形的判定得出△ABG≌△EAP,进而求出AG=EP.同理AG=FQ,即EP=FQ.(2)过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.根据全等三角形的判定和性质即可解题.(3)由(1)、(2)中的全等三角形可以推知△ABC与△AEF的面积相等.解答:解:(1)EP=FQ,理由如下:如图1,∵Rt△ABE是等腰三角形,∴EA=BA.∵∠PEA+∠PAE=90°,∠PAE+∠BAG=90°,∴∠PEA=∠BAG在△EAP与△ABG中,,∴△EAP≌△ABG(AAS),∴EP=AG.同理AG=FQ.∴EP=FQ.(2)如图2,HE=HF.理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.由(1)知EP=FQ.在△EPH与△FQH中,∵,∴△EPH≌△FQH(AAS).∴HE=HF;(3)相等.理由如下:由(1)知,△ABG≌△EAP,△FQA≌△AGC,则S△ABG=S△EAP,S△FQA=S△AGC.由(2)知,△EPH≌△FQH,则S△EPH=S△FQH,所以S△ABC=S△ABG+S△AGC=S△EAP﹣S△EPH+S△FQA﹣S△FQH=S△EAP+S△FQA=S△AEF,即S△ABC=S△AEF.故图2中的△ABC与△AEF的面积相等.点评:本题考查了全等三角形的证明,考查了全等三角形对应边相等的性质,考查了三角形内角和为180°的性质,考查了等腰三角形腰长相等的性质,本题中求证△AFQ≌△CAG是解题的关键.12.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC 于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?考点:等腰三角形的判定与性质;平行线的性质.专题:计算题;证明题.分析:(1)根据EF∥BC,∠B、∠C的平分线交于O点,可得∠EOB=∠OBC,∠FOC=∠OCB,∠EOB=∠OBE,∠FCO=∠FOC,再加上题目中给出的AB=AC,共5个等腰三角形;根据等腰三角形的性质,即可得出EF 与BE、CF间有怎样的关系.(2)根据EF∥BC 和∠B、∠C的平分线交于O点,还可以证明出△OBE和△OCF是等腰三角形;利用几个等腰三角形的性质即可得出EF与BE,CF的关系.(3)EO∥BC和OB,OC分别是∠ABC与∠ACL的角平分线,还可以证明出△BEO和△CFO是等腰三角形.解答:解:(1)有5个等腰三角形,EF与BE、CF间有怎样的关系是:EF=BE+CF=2BE=2CF.理由如下:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,又∠B、∠C的平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠OBE,∠FCO=∠FOC,∴OE=BE,OF=CF,∴EF=OE+OF=BE+CF.又AB=AC,∴∠ABC=∠ACB,∴∠EOB=∠OBE=∠FCO=∠FOC,∴EF=BE+CF=2BE=2CF;(2)有2个等腰三角形分别是:等腰△OBE和等腰△OCF;第一问中的EF与BE,CF的关系是:EF=BE+CF.(3)有,还是有2个等腰三角形,△EBO,△OCF,EF=BE﹣CF,理由如下:∵EO∥BC,∴∠EOB=∠OBC,∠EOC=∠OCG(G是BC延长线上的一点)又∵OB,OC分别是∠ABC与∠ACG的角平分线∴∠EBO=∠OBC,∠ACO=∠OCG,∴∠EOB=∠EBO,∴BE=OE,∠FCO=∠FOC,∴CF=FO,又∵EO=EF+FO,∴EF=BE﹣CF.点评:此题主要考查学生对等腰三角形的判定与性质和平行线性质的理解和掌握,此题难度并不大,但是步骤繁琐,属于中档题,还有第(1)中容易忽略△ABC也是等腰三角形,因此这又是一道易错题.要求学生在证明此题时一定要仔细,认真.。
《全等三角形》期末复习试卷及答案

第一学期八年级数学期末复习专题全等三角形姓名:_______________班级:_______________得分:_______________一选择题:1.下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等2.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°3.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是1000,那么△ABC中与这个角对应的角是()A.∠AB.∠BC.∠CD.∠D4.如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对5.要测量河两岸相对的两点,的距离,先在的垂线上取两点,,使,再作出的垂线,使,,在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角6.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE7.如图,已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有( )A.△ABD≌△AFDB.△AFE≌△ADCC.△AEF≌△ACBD.△ABC≌△ADE8.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个9.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.410.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于( )A.5B.4C.3D.211.如图,在△ABC中,BD平分∠ABC,与AC交于点D,DE⊥AB于点E,若BC=5,△BCD的面积为5,则ED的长为().A. B. 1 C.2 D.512.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③13.如图所示,△ABC是等边三角形,AQ=PQ, PR⊥AB于R点,PS⊥AC于S点,PR=PS.则四个结论:①点P在∠BAC的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的结论是( )A.①②③④B.只有①②C.只有②③D.只有①③14.如图,AC=AD,BC=BD,连结CD交AB于点E,F是AB上一点,连结FC,FD,则图中的全等三角形共有()A.3对B.4对C.5对D.6对15.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.416.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有( )A.4个B.3个C.2个D.1个17.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段D K上,正方形BEFG的边长为4,则△DEK的面积为( )A.10B.12C.14D.1618.如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于EF两点,∠BAC∠BFD的平分线交于点I,AI交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的个数是( )A.1个B.2个C.3个D.4个19.如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:⑴BP=CM;⑵△ABQ≌△CAP;⑶∠CMQ的度数始终等于60°;⑷当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有( )A.1个B.2个C.3个D.420.如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:① AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有()个.A.1B.2C.3D.421.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第_______块.22.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=________.23.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是______.24.如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是 .25.如图,△ABC的角平分线交于点P,已知AB,BC,CA的长分别为5,7,6,则S△ABP∶S△BPC∶S△APC=___________.26.如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE= .27.如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于cm2.28.如图的三角形纸片中,AB=8cm,BC=6cm,AC=7cm,沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD,则△AED的周长为.29.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC 上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.30.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为.31.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,判断 EC与BF的关系,并说明理由.(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE.33.如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:AB+CD=AC.34.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC的平分线交BC 于点G,连接FG.(1)求∠DFG的度数;(2)设∠BAD=θ,①当θ为何值时,△DFG为等腰三角形;②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.36.已知三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.37.如图(1)边长为6的等边三角形ABC中,点D沿射线AB方向由A向B运动,点F同时从C出发,以相同的速度沿射线BC方向运动,过点D作DE⊥AC,连结DF交射线AC于点G.(1)当点D运动到AB的中点时,求AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图(2)的情况时,EG的长始终等于AC的一半吗?若改变,说明理由,若不变,请证明EG等于AC的一半.38.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠D=90°.E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系,并说明理由.拓展应用:如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西40°的A处,舰艇乙在指挥中心南偏东80°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度,同时舰艇乙沿北偏东50°的方向以70海里/小时的速度各自前进2小时后,在指挥中心观测到甲、乙两舰艇分别到达E,F处,两舰艇与指挥中心之间的夹角为70°,试求此时两舰艇之间的距离.参考答案1、B2、B3、A4、D5、B6、D7、D8、C9、D 10、B 11、C 12、D 13、A14、D 15、C 16、A 17、D.18、C 19、C 20、C 21、2 块. 22、55° 23、4 .24、①②③25、5∶7∶6 26、4; 27、12 cm2.28、9cm .29、1或4 30、2∠α+∠A=180°.31、平行且相等32、【解答】(1)解:如图1,射线CP为所求作的图形.(2)证明:∵CP是∠ACB的平分线∴∠DCE=∠BCE.在△CDE和△CBE中,,∴△DCE≌△BCE(SAS),∴BE=DE.33、1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,此时A、B、N三点在同一条直线上.∵AD∥EN,∠DAB=90°,∴∠ENA=∠DAN=90°.∵∠BCE=90°,∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.∵A、B、N三点在同一条直线上,∴∠ABC+∠CBN=180°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.35、证:延长AD到G,使得DG=AD.(1分)∵AE=EF∴∠EFA=∠EAF∴∠G=∠EFA∵∠EFA=∠BFG∴∠G=∠BFG∴BG=BF∵AC=BG∴BF=AC(1)证明:连结AD.∵AB=AC ∠BAC=90° D为BC的中点∴∠B=∠BAD=∠DAC=45°,AD⊥BC∴BD=AD, ∠BDA=90°又BE=AF∴△BDE≌△ADF (SAS)∴ED=FD ∠BDE=∠ADF∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°∴△DEF为等腰直角三角形(2)△DEF仍为等腰直角三角形证明:连结AD∵AB=AC ∠BAC=90° D为BC的中点∴∠DAC=∠BAD=∠ABD=45°,AD⊥BC∴BD=AD, ∠BDA=90°∴∠DAF=∠DBE=135°又AF=BE∴△DAF≌△DBE (SAS)∴FD=ED ∠FDA=∠EDB∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°∴△DEF仍为等腰直角三角形37、(1)AE=(2)设AD=x,则CF=x,BD=6-x,BF=6+x∵∠B=60°,∠BDF=90°∴BF=2BD 即6+x=2×(6-x)∴x=2即AD=2 ∴BD=4,DF=∴S △BDF=×4×=(3)不变过F作FM⊥AG延长线于M由AD=CF,∠AED=∠FMC=90°,∠A=∠FCM=60°可得FM=DE易知△DEG≌△FMG由全等可得CM=AE,FG=GM即AC=AE+EC=CM+CE=EG+GM=2GE38、(1)延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论应是EF=BE+DF ;(2)如图,连接EF,延长AE、BF相交于点C,∵∠AOB=40°+90°+(90°﹣80°)=140°,∠EOF=70°,∴∠EAF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣40°)+(80°+50°)=180°,延长FB到G,使BG=AE,连接OG,先证明△AOE≌△BOG,再证明△OEF≌△OGF,可得出结论应是EF=AE+BF ;即EF=2×(50+70)=240海里.答:此时两舰艇之间的距离是240海里.。
八年级数学上册期末复习资料

初二上册数学全册.第十一章全等三角形综合复习1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。
知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASAAAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
. 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
知识点二:构造全等三角形 例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
求证:AE CF=。
知识点三:常见辅助线的作法..1. 连接四边形的对角线例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。
2. 作垂线,利用角平分线的知识..例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的 平分线,它们交于点P 。
求证:BP 为MBN ∠的平分线。
例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =。
4. “截长补短”构造全等三角形.例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。
八年级数学人教版(上册)期末复习(二)全等三角形

(2)写出 AB+AC 与 AE 之间的等量关系,并说明理由. 解:AB+AC=2AE. 理由:由(1)知,AD 平分∠BAC,
∴∠EAD=∠CAD. 在△AED 和△AFD 中,
∠EAD=∠FAD, ∠AED=∠AFD, AD=AD,
∴△AED≌△AFD(AAS). ∴AE=AF. ∴AB+AC=AE-BE+AF+CF=AE+AF=2AE.
14.(14 分)如图,在△ABC 中,AD 是 BC 边上的中线,E 是 AB 边上一点,过点 C 作 CF∥AB 交 ED 的延长线于点 F.
(1)求证:△BDE≌△CDF. 解:证明:∵CF∥AB, ∴∠B=∠FCD,∠BED=∠F. ∵AD 是 BC 边上的中线, ∴BD=CD. ∴△BDE≌△CDF(AAS).
三、解答题(共 40 分) 13.(10 分)已知:如图,∠BAC=∠DAM,AB=AN,AD=AM, 求证:∠B=∠ANM.
证明:∵∠BAC=∠DAM,∠BAC=∠BAD+∠DAC,∠DAM
=∠DAC+∠NAM, ∴∠BAD=∠NAM. 在△BAD 和△NAM 中, AB=AN, ∠BAD=∠NAM, AD=AM, ∴△BAD≌△NAM(SAS). ∴∠B=∠ANM.
期末复习(二) 全等三角形
01 知识结构图
02 重难点突破
重难点 1 全等三角形的性质与判定 【例 1】 如图,在五边形 ABCDE 中:
(1)若 AB=AE,∠B=∠E,BC=ED,F 为 CD 的中点,求证: AF⊥CD.
【解答】 证明:如图 1,连接 AC,AD, ∵AB=AE,∠B=∠E,BC=ED, ∴△ABC≌△AED(SAS). ∴AC=AD. ∵F 为 CD 的中点, ∴AF⊥CD.
章节复习(二)全等三角形

期末章节复习(二)全等三角形考点1全等三角形的性质1.如图,△ABC≌△EBD,AB=4 cm,BD=7 cm,则CE的长度为()A.4 cm B.3 cm C.2 cm D.3.5 cm第1题图第2题图2.如图,△ABC≌△ADE,∠B=20°,∠C=110°,则∠EAD的度数为()A.50°B.20°C.110°D.70°3.如图,已知△ABC≌△DEF,BG,EH分别是△ABC和△DEF的中线.求证:BG=EH.考点2全等三角形的判定4.如图,已知点A,D,C,F在同一直线上,AB=DE,AD=CF,且∠B=∠E=90°,则判定△ABC≌△DEF的依据是()A.SAS B.ASA C.AAS D.HL第4题图第5题图第6题图第7题图5.如图,点C是AB的中点,AD=BE,CD=CE,则图中全等三角形共有()A.2对B.3对C.4对D.5对6.如图,BC=EF,AC∥DF,请你添加一个适当的条件,使得△ABC≌△DEF,______________.7.如图,在四边形ABCD中,AB∥CD,∠1=∠2,DB=DC,求证:△ABD≌△EDC.考点3全等三角形的性质与判定8.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF,下列结论错误的是()A.∠C=∠B B.DF∥AE C.∠A+∠D=90°D.CF=BE9.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.10.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.考点4全等三角形的应用11.如图,将两根钢条AA′,BB′的中点O连在一起,使AA′,BB′可以绕着点O自由转动,就做成了一个测量工件,则A′B′的长等于内槽宽AB,那么判定△AOB≌△A′OB′的理由是_________.第11题图第12题图12.数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.如图,工人师傅要在墙壁的O处用钻打孔且使孔口从墙壁对面的B点处打开,墙壁厚OA是35 cm,B点与O点的铅直距离AB长是20 cm,工人师傅在旁边墙上与AO水平的线上截取OC=35 cm,画CD⊥OC,使CD=20 cm,连接OD,然后沿着DO 的方向打孔,结果钻头正好从B点处打出.这是什么道理呢?请你说出理由.考点5角平分线的性质与判定13.如图,在CD上求一点P,使它到边OA,OB的距离相等,则点P是()A.线段CD的中点B.CD与过点O作CD的垂线的交点C.CD与∠AOB的平分线的交点D.以上均不对第13题图第14题图第15题图14.如图,△ABC的三边AB,AC,BC的长分别为4,6,8,其三条角平分线将△ABC分成三个三角形,则S△OAB∶S△OAC∶S△OBC=_________.15.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为E.(2)在(1)作出的图形中,求DE的长.一、选择题(每小题3分,共30分)1.如果两个图形全等,则这个图形必定是()A.形状相同,但大小不同B.形状、大小均相同C.大小相同,但形状不同D.形状、大小均不相同2.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA第2题图第3题图第5题图第6题图第7题图3.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,则不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.根据下列已知条件,能唯一画出△ABC的是()A.AB=5,BC=3,AC=8 B.AB=4,BC=3,∠A=30°C.∠C=90°,AB=6 D.∠A=60°,∠B=45°,AB=45.如图,从下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的命题的个数是()A.1 B.2 C.3 D.46.如图所示,∠ABC=∠ACB,CD⊥AC于点C,BE⊥AB于点B,AE交BC于点F,且BE=CD,则下列结论不一定正确的是()A.AB=AC B.BF=EF C.AE=AD D.∠BAE=∠CAD7.如图,等腰直角三角形ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于点E,交BA的延长线于点F.若BF=12,则△FBC的面积为()A.40 B.46 C.48 D.508.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是()A.两条边长分别为4,5,它们的夹角为β B.两个角是β,它们的夹边为4C.三条边长分别是4,5,5 D.两条边长是5,一个角是β9.如图所示,点A,B分别是∠NOP,∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.∠AOB=90°C.与∠CBO互余的角有两个D.点O是CD的中点第9题图第10题图第11题图第12题图10.如图,BD平分∠ABC,CD平分∠ACE.若∠BDC=35°,则∠DAC的度数为()A.35°B.70°C.55°D.60°二、填空题(每小题4分,共24分)11.如图,AC,BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是_______. 12.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则点D到AB边的距离是________. 13.如图,在等边△ABC中,D,E分别是边AB,AC上的点,且AD=CE,则∠ADC+∠BEA=__________.第13题图第14题图第15题图第16题图14.如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=3 cm,AB=5 cm,O是∠CAB与∠CBA平分线的交点,则O点到AB的距离为________.15.如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(0,4),点C的坐标为(4,3),点D在第二象限,且△ABD与△ABC全等,点D的坐标是_________16.如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,下列:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,正确的是________(填序号).三、解答题(共46分)17.(10分)如图,E是BC上一点,AB=EC,AB∥CD,∠A=∠CED.求证:AC=ED.18.(10分)已知:如图,∠BAC=∠DAM,AB=AN,AD=AM.求证:∠B=∠ANM.19.(12分)在△ABC中,D为AB上一点,E为AC的中点,连接DE并延长至点F,使得EF=ED,连接CF.(1)求证:CF∥AB;(2)若∠ABC=50°,CA平分∠BCF,求∠A的度数.20.(14分)(2019·广州花都区期末)如图1,在Rt△ABC中,∠C=90°,BC=9 cm,AC=12 cm,AB=15 cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3 cm/s,设运动时间为t s.(1)如图1,当t=_________时,△APC的面积等于△ABC面积的一半;(2)如图2,在△DEF中,∠E=90°,DE=4 cm,DF=5 cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.。
全等三角形复习资料(搜集整理版)

特别鸣谢资源原创者,本人仅仅便于自己的备课整理排版了一下。
第十一章全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。
一个三角形经过平移、翻折、旋转可以得到它的全等形.2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等.3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS")边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”))2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等"或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4)时刻注意图形中的隐含条件,如“公共角”、“公共边"、“对顶角”第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴.这时我们也说这个图形关于这条直线(成轴)对称.2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴.折叠后重合的点是对应点,叫做对称点4。
轴对称的性质①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线1。
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线.2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。
全等三角形复习专题

全等三角形复习专题一、全等三角形基本概念与性质全等三角形是指能够完全重合的两个三角形,即形状相同和大小相等的三角形。
全等三角形的性质是全等三角形的边、角及其对应线段之间具有一些特殊的数量关系和位置关系。
如全等三角形的对应边相等,对应角相等,对应线段相等,以及全等三角形的中点连线等于其一边。
二、全等三角形的判定全等三角形的判定是全等三角形研究的核心内容,主要有以下五个判定方法:1、边角边定理(SAS):若两个三角形的两边及其夹角对应相等,则这两个三角形全等。
2、角边角定理(ASA):若两个三角形的两个角及其夹边对应相等,则这两个三角形全等。
3、边边边定理(SSS):若两个三角形的三边对应相等,则这两个三角形全等。
4、角角边定理(AAS):若两个三角形的两个角及其一边对应相等,则这两个三角形全等。
5、斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。
三、全等三角形的应用全等三角形在数学、几何、物理等领域中都有广泛的应用。
如证明线段相等、角相等、平行四边形、矩形、菱形、正方形等几何图形的性质和判定,以及解决一些实际问题等。
四、全等三角形的复习策略1、掌握全等三角形的基本概念和性质,理解判定方法的意义和适用范围。
2、熟练掌握全等三角形的判定方法,能够根据题目条件选择合适的判定方法解决问题。
3、熟悉全等三角形的应用,能够将全等三角形的知识应用到实际问题和数学问题中。
4、多做练习题,熟悉各种题型和解题方法,提高解题能力和思维水平。
5、注意对易错点和难点进行重点复习和强化训练,避免出现常见的错误和失误。
全等三角形动点专题在数学的世界里,全等三角形和动点问题是两个重要的概念。
全等三角形是指两个或两个以上的三角形,它们的边长和角度都相等,可以完全重合。
动点问题则涉及到在给定的图形或轨迹上移动的点,以及这些点的变化和规律。
将这两个概念结合起来,我们可以研究一类非常有趣的数学问题,即全等三角形动点专题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B C
典型习题:
5 (金华):如图, A,E,B,D在同一直线上, AB=DE,AC=DF,AC ∥ DF
(1)求证: ΔABC≌ΔDEF; A
E
F B
D
C
典型习题:
6 已知:如图,AB=AD,AC=AE,∠1=∠2, A
求证:∠B=∠D.
1
B
2
D
C
E
典型习题:
7 (昆明):如图,已知,AB=CD,
B
1
C
∴ ∠BCA= ∠ECD
2、全等三角形中常见的辅助线
1)、遇过中点线段延长一倍
(1)如图,在△ABC中,AD为BC边的中线, AB=4,AC=2,求AD的取值范围
A
延长AD至E,使 DE=AD
B D
C
E
(2)如图所示,D是△ABC的BC上的点, 且CD=AB,∠ADB=∠BAD,AE是 △ABD的中线,求证:AC=2AE
N
C
F A B M
D P E
P116 3
如图,△ABC的∠B的平分线BD与∠C 的外角的平分线CE相交于点P. 求证: 点P到三边AB、BC、CA所在直线的距 离相等. N
A F E D
P B
C
M
全等三角形基础知识巩固练习: 1. 如图, AB=CD , AC=BD ,则与∠ ACB 相 ∠DBC ,为什么? 等的角是________ A B D C
△ABP≌△CEP
一题多变
变式一:已知:点P为∠EOF平分线上
点,PC⊥OE于C,点 A 、B 分别是射线 0E ,OF 上的点,且 ∠1+∠2=180° , (1)当点 A 在OC 的延长线上时 求证:PA=PB 2
1 M
变式二:
(2)在(1)的条件下,
OA 、OB 、
OC之间的数量关系
∠CAB=∠DAB,要使ΔABC≌ΔABD, CBA= AC=AD DBA ∠ CBE= C=∠∠ D DBE 可补充的一个条件是∠
分析:现在我们已知 A→∠CAB=∠DAB S→ AB=AB(公共边) .
C
.
A
B
D
E
SAS
ASA
AAS
典型习题:
4 (湖南株洲):如图,AE=AD,要使 ΔABD≌ΔACE,请你增加一个条 ∠ BEC ADB= ∠ AB=AC CD=BE B=∠ C AEC . 件 ∠BDC= E 分析:现在我们已知 S→ AE=AD A D A→∠A=∠A (公共角) . ASA SAS (CD=BE行吗?) AAS
A
E O
M
在AC上截取 AM=AE
C
B
D
(1)如图所示,已知BN平分∠ABC,P为 BN上一点,且PD⊥BC于D,AB+BC=2BD, 求证:∠BAP+∠BCP=180° 解法一:过P做 PF⊥B A于F ,证明 △BPF≌△BPD △PFA≌△PDC
解法二:在BC上截取 BF=BA,连接PF,证明 △ABP≌△FBP △PDF≌△PDC 解法三:在BC延长线上 截取点E使CE=BA,连 接PE,证明 △BDP≌△EDP
A
延长AE至F,使EF=AE
B
E
D
C
F
(3)如图,在△ABC中,BD=DC, ED⊥DF,求证:BE+CF>EF
A
E
F
延长FD至G, 使GD=FD,再 连接EG,BG
C
B
D
G
2)、遇到角平分线时截长补短
(1)如图,在△ABC中,∠B=60°, △ABC的角平分线AD,CE交于点O.求证: AE+CD=AC
知识框图: 全等图形 特 殊 情 况 能够完全重合的图形 定义:
形状大小都相等 性质:
对应边、对应角相等 SSS 一 性质: 般 SAS 三 全等三角形 ASA 角 判定: 形 AAS 直角三角形 HL
角平分线性质及判定
性质:角平分线上的点到 距离相等 角两边 的
判定:到角的两边距离相等的点在 角平分线 上
三角形全等判定方法4
有两角和其中一个角的对边对应相等的两个
三角形全等(可以简写成“角角边”或“AAS”)
A
D
B
CF
E
知识梳理:
A
A
B C A
B
D
C
SSA不能 判定全等
B
D
直角三角形全等的条件 斜边和一条直角边对应相等的 两个直角三角形全等. 简写成“斜边、直角边”或“HL”. D A
在Rt△ABC和Rt△DEF中 AC=DF
20
cm.
角平分线性质应用
2.与相交的两条直线距离相等的点在(C)
A 一条直线上 B 一条射线上
C 两条互相垂直的直线上 D 以上都不对
角平分线性质应用
3.如图,△ABC中,∠C=90°,AC=BC,
AD是∠BAC的平分线,DE⊥AB, 垂足是E,
若AB=15 cm,则△DBE的周长为 15 cm。
2
Байду номын сангаас
1
变式三: 四边形ABCD中,BC<BA,AD=CD,BD 平分∠ ABC 求证:∠A+∠C=180°
双高型问题
基础训练:
1、如图,在△ABC中,AD⊥BC于 D,BF⊥AC于点F,AD=BD,求证 BE=AC。
A
E B D
F C
2、如图所示,△ABC中,BE、CF 分别是AC、AB两边上的高,在 BE上截取BD=AC,在CF延长线 上截取CG=AB,试猜想AG 、 AD G 的位置关系和数量关系
D
A P C
O
E B
二、全等三角形常见的基本型
及辅助线
1、几种常见的全等三角形基本图形
A D
B
E
C
F
A B
平移
C E
D
几种常见的全等三角形基本图形
A B D C A
翻折
D
C
A
B E
C
B
D
几种常见的全等三角形基本图形
D
A A B E C O B
旋转
E
F
几种常见的全等三角形基本图形
组合
双高基本型
CE=DF,AE=BF,则AE∥DF吗?为什么?
A B C D F
E
典型习题:
8 (烟台):如图在 ΔABC中,
AD⊥BC于D,BE⊥AC于E,AD交BE于F, 若BF=AC,那么∠ABC的大小是( D ) A A.40° B.50° C.60° D.45° F E B C D
角平分线性质应用
1.如图,在△ABC中,∠C=90°,AM平分 ∠CAB,CM=20cm,那么M到AB的距离是
(3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边,
最小的边是对应边;
(5)两个全等三角形最大的角是对应角, 最小的角是对应角;
A
全等三角形的性质:
D
B
C
E
F
1、全等三角形的对应边相等, 2、全等三角形的对应角相等。 ∵△ABC≌△DEF (已知)
∴ AB=DE,BC=EF,AC=DF (全等三角形的对应边相等)
A
D
E
A字型(燕尾型)
教材P110 3
C
A D D
B
A
M型
教材P110 8 P105 2
C
B B
E
C
F
涉及线段等量关系的习题
A
C
B F
E
教材P111 11如图,点B、F、 C、E在一条直线上, FB=CE,AB∥ED,AC∥FD, 求证:AB=DE,AC=DF ∵FB=CE ∴FB+FC=CE+FC
AB=DE
∴ Rt△ABC≌Rt△DEF (HL).
B
CE
F
一边一锐角对应相等的两个直
角三角形全等。 两直角边对应相等的两个直角 三角形全等。
如果两个三角形有两边和其
中一边上的中线对应相等,那 么这两个三角形全等。 如果两个三角形有两个角和 其中一对等角的平分线相等, 那么这两个三角形全等。
A
E N
B 图(1)
C
变式练习 (2)当直线MN绕点A旋转到图(2)的位置时, (1)中的结论是否仍成立?若成立,请直接 给予回答;若不成立,请给出新的结论,并 说明理由; M A
D B
E 图(2) C
N
变式练习 (3)当直线MN绕点A旋转到图(3)的位置时, DE、BD、CE又有怎样的数量关系?请直接写 出这个关系,不需要说明理由. N A E B M D 图(3)
知识梳理:
三角形全等判定方法3 有两角和它们夹边对应相等的两个三角形
知识梳理:
全等(可以简写成“角边角”或“ASA”)。 用符号语言表达为: A D 在△ABC和△DEF中 ∠A=∠D (已知 ) C F AB=DE(已知 ) B E ∠B=∠E(已知 ) ∴ △ABC≌△DEF(ASA)
知识梳理:
2.已知:在平面直角坐标系中, A(0,3), B(3,0), C 点为 x轴上一点,从原点 O 出发以每秒1个单位的速度运动。 (1)若 C 点从原点沿 x 轴负方向运动,当t=1 时,连接 AC ,作 BE ⊥AC 于 E ,交y 轴于点 F ,求 AF 的长。
(2)若C 点沿x 轴正方向运动,当t =4 时,连接AC ,作BE ⊥ AC 于 E ,直 线 BE 交 y轴于 F , 求S △ABC 。
∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应角相等)
知识梳理:
三角形全等判定方法1 三边对应相等的两个三角形全等