高中数学离散型随机变量的期望与方差练习(含答案)

合集下载

高二数学随机变量的期望与方差试题答案及解析

高二数学随机变量的期望与方差试题答案及解析

高二数学随机变量的期望与方差试题答案及解析1.已知某一随机变量X的分布列如下:且,则a=__________;b=__________。

【答案】,【解析】由得,又由得。

【考点】随机变量的期望2.某市公租房房屋位于A、B、C三个地区,设每位申请人只申请其中一个片区的房屋,且申请其中任一个片区的房屋是等可能的,求该市的任4位申请人中:(1)若有2人申请A片区房屋的概率;(2)申请的房屋在片区的个数的X分布列与期望.【答案】(1)(2)X的分布列为:X123【解析】解:(1)所有可能的申请方式有34种,恰有2人申请A片区房源的申请方式有C·22种,从而恰有2人申请A片区房源的概率为=.(2)X的所有可能值为1,2,3.又p(X=1)==,p(X=2)==,p(X=3)==,综上知,X的分布列为:从而有E(X)=1×+2×+3×=.3.本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为,;两人租车时间都不会超过四小时.(1)求出甲、乙所付租车费用相同的概率;(2)求甲、乙两人所付的租车费用之和为随机变量X,求X的分布列与数学期望E(X).【答案】(1) (2) 分布列X02468【解析】解:(1)所付费用相同即为0,2,4元.设付0元为P1=×=,付2元为P2=×=,付4元为P3=×=,则所付费用相同的概率为P=P1+P2+P3=.(2)设甲,乙两个所付的费用之和为X, X可为0,2,4,6,8.P(X=0)=P(X=2)=×+×=P(X=4)=×+×+×=P(X=6)=×+×=P(X=8)=×=.分布列E(X)=+++=.4.已知离散型随机变量X的分布列如表,若E(X)=0,D(X)=1,则a=________,b=________.【答案】【解析】由题意知解得5.设一随机试验的结果只有A和,且P(A)=p令随机变量X=,则X的方差V(X)等于________.【答案】p(1-p)【解析】X服从两点分布,∴V(X)=p(1-p).6.甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.(1)求乙至多击中目标2次的概率;(2)记甲击中目标的次数为Z,求Z的分布列、数学期望和标准差.【答案】(1) (2) Z的分布列如下表:【解析】解:(1)甲、乙两人射击命中的次数服从二项分布,故乙至多击中目标2次的概率为1-33=.C303=;(2)P(Z=0)=C313=;P(Z=1)=C323=;P(Z=2)=C333=.P(Z=3)=C3Z的分布列如下表:Z0123E(Z)=0×+1×+2×+3×=,D(Z)=2×+2×+2×+2×=,∴=.7.样本4,2,1,0,-2的标准差是:()A.1B.2C.4D.【答案】D【解析】,样本4,2,1,0,-2的标准差是:=,选D。

高三数学选修2-3(B版)_《随机变量的数字特征》同步练习2

高三数学选修2-3(B版)_《随机变量的数字特征》同步练习2

2.3.2 离散型随机变量的方差一、选择题1.若随机变量X ~B ⎝ ⎛⎭⎪⎫4,12,则D (X )的值为( )A .2B .1 C.12 D.14[答案] B[解析] ∵X ~B ⎝ ⎛⎭⎪⎫4,12,∴D (X )=4×12×⎝ ⎛⎭⎪⎫1-12=1,故选B 。

2.若X 的分布列为X 0 1 Ppq 其中p ∈(0,1),则( A .D (X )=p 3 B .D (X )=p 2 C .D (X )=p -p 2 D .D (X )=pq 2 [答案] C[解析] 由两点分布的方差公式D (X )=p (1-p )=p -p 2,故选C 。

3.下列说法正确的是( )A .离散型随机变量ξ的期望E (ξ)反映了ξ取值的概率的平均值B .离散型随机变量ξ的方差D (ξ)反映了ξ的取值的平均水平C .离散型随机变量ξ的期望E (ξ)反映了ξ取值的平均水平D .离散型随机变量ξ的方差D (ξ)反映了ξ取值的概率的平均值 [答案] C[解析] 由离散型随机变量的期望与方差的定义可知,C 正确,故选C 。

4.已知随机变量ξ的分布列为ξ1234则Dξ的值为( A.2912 B .121144 C.179144 D .1712[答案] C[解析] ∵Eξ=1×14+2×13+3×16+4×14=2912,∴Dξ=⎝ ⎛⎭⎪⎫17122×14+⎝ ⎛⎭⎪⎫5122×13+⎝ ⎛⎭⎪⎫7122×16+⎝ ⎛⎭⎪⎫19122×14=179144,故选C 。

5.已知随机变量ξ的分布列为:P (ξ=k )=13,k =1、2、3,则D (3ξ+5)=( ) A .6 B .9 C .3 D .4[答案] A[解析] E (ξ)=(1+2+3)×13=2, D (ξ)=[(1-2)2+(2-2)2+(3-2)2]×13=23, ∴D (3ξ+5)=9D (ξ)=6,故选A 。

高考数学离散型随机变量的期望及方差解答题

高考数学离散型随机变量的期望及方差解答题

高考数学离散型随机变量的期望与方差解答题考点预测和题型解析在高考中,离散型随机变量的期望与方差试题的出题背景大多数源于课本上,有时也依赖于历年的高考真题、资料中的典型题例为背景,涉及主要问题有:产品检验问题、射击、投篮问题选题、选课,做题,考试问题、试验,游戏,竞赛,研究性问题、旅游,交通问题、摸球球问题、取卡片,数字和入座问题、信息,投资,路线等问题。

属于基础题或中档题的层面。

高考中一定要尽量拿满分。

● 考题预测离散型随机变量的期望与方差涉及到的试题背景有:产品检验问题、射击、投篮问题选题、选课,做题,考试问题、试验,游戏,竞赛,研究性问题、旅游,交通问题、摸球球问题、取卡片,数字和入座问题、信息,投资,路线等问题。

从近几年高考试题看,离散型随机变量的期望与方差问题还综合函数、方程、数列、不等式、导数、线性规划等知识主要考查能力。

● 复习建议1.学习概率与统计的关键是弄清分布列,期望和方差在统计中的作用. 离散型随机变量的分布列的作用是:(1)可以了解随机变量的所有可能取值; (2)可以了解随机变量的所有取值的概率;(3)可以计算随机变量在某一范围内取值的概率。

2.离散型随机变量的分布列从整体上全面描述了随机变量的统计规律。

3.离散型随机变量的数学期望刻画的是离散型随机变量所取的平均值,是描述随机变量集中趋势的一个特征数。

4.离散型随机变量的方差表示了离散型随机变量所取的值相对于期望的集中与分散程度。

● 知识点回顾1.离散型随机变量的期望:(1)若离散型随机变量ξ的概率分布为则称 ++++=n n p x p x p x E 2211ξ为ξ的数学期望(平均值、均值) 简称为期望。

① 期望反映了离散型随机变量的平均水平。

② ξE 是一个实数,由ξ的分布列唯一确定。

③ 随机变量ξ是可变的,可取不同值。

④ ξE 是不变的,它描述ξ取值的平均状态。

(2)期望的性质:① C C E =)(为常数)C ( ② b aE b a E +=+ξξ)( 为常数)b a ,(③ 若),(~p n B ξ,则np E =ξ (二项分布)④ 若),(~p k g ξ,则pE 1=ξ (几何分布) 2.离散型随机变量的方差(1)离散型随机变量的方差:设离散型随机变量ξ可能取的值为,,,,,21 n x x x 且这些值的概率分别为 ,,,,,321n p p p p则称 +-+-=222121)()(p E x p E x D εεε…+-+n n p E x 2)(ε…;为ξ 的方差。

概率论分布列期望方差习题及答案

概率论分布列期望方差习题及答案

概率论分布列期望方差习题及答案The following text is amended on 12 November 2020.圆梦教育 离散型随机变量的分布列、期望、方差专题姓名:__________班级:__________学号:__________1.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为,,,假设各盘比赛结果相互独立。

(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.2.已知某种从太空带回的植物种子每粒成功发芽的概率都为13,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的. (1) 第一小组做了三次实验,求实验成功的平均次数;(2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望; (3)两个小组分别进行2次试验,求至少有2次实验成功的概率.3.一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p ,出现“×”的概率为q .若第k 次出现“○”,则a k =1;出现“×”,则a k =1-.令S n =a 1+a 2+…+a n ()n N *∈.(1)当12p q ==时,求S 6≠2的概率;(2)当p =31,q =32时,求S 8=2且S i ≥0(i =1,2,3,4)的概率.4.在一个有奖问答的电视节目中,参赛选手顺序回答123A A A 、、三个问题,答对各个问题所获奖金(单位:元)对应如下表:当一个问题回答正确后,选手可选择继续回答下一个问题,也可选择放弃.若选择放弃,选手将获得答对问题的累计奖金,答题结束;若有任何一个问题回答错误,则全部奖金归零,答题结束.设一名选手能正确回答123A A A 、、的概率分别为421534、、,正确回答一个问题后,选择继续回答下一个问题的概率均为12,且各个问题回答正确与否互不影响.(Ⅰ)按照答题规则,求该选手1A 回答正确但所得奖金为零的概率;(Ⅱ)设该选手所获奖金总数为ξ,求ξ的分布列与数学期望.5.某装置由两套系统M,N 组成,只要有一套系统工作正常,该装置就可以正常工作。

高考数学拔高题训练:离散型随机变量的期望与方差含详解

高考数学拔高题训练:离散型随机变量的期望与方差含详解

高考数学拔高题训练:离散型随机变量的期望与方差学校:___________姓名:___________班级:___________考号:___________一、单选题1.对任意实数x ,有3230123(2)(2)(2)x a a x a x a x =+-+-+-,则2a 的值为()A .6B .9C .12D .212.数学与文学有许多奇妙的联系,如诗中有回文诗“儿忆父兮妻忆夫”,既可以顺读也可以逆读.数学中有回文数,如343,12521等.两位数的回文数有11,22,3,……,99共9个,则在三位数的回文数中偶数的个数是()A .40B .30C .20D .103.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11164.某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为()A .85B .86C .91D .905.已知甲口袋中有3个红球和2个白球,乙口袋中有2个红球和3个白球,现从甲,乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为ξ,则E ξ=A .145B .135C .73D .836.某科技公司生产一批同型号的光纤通信仪器,每台仪器的某个部件由三个电子元件按如图方式连接而成,若元件1或元件2正常工作,且元件3正常工作,则该部件正常工作.由大数据统计显示:三个电子元件的使用寿命(单位:时)均服从正态分布()210000,10N ,且各个元件能否正常工作相互独立.现从这批仪器中随机抽取1000台检测该部件的工作情况(各部件能否正常工作相互独立),那么这1000台仪器中该部件的使用寿命超过10000小时的台数的均值为()A .600B .420C .375D .2707.安排A ,B ,C ,D ,E ,F ,共6名义工照顾甲,乙,丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工A 不安排照顾老人甲,义工B 不安排照顾老人乙,则安排方法共有A .30种B .40种C .42种D .48种8.2020年12月1日,大连市开始实行生活垃圾分类管理.某单位有四个垃圾桶,分别是一个可回收物垃圾桶、一个有害垃圾桶、一个厨余垃圾桶、一个其它垃圾桶.因为场地限制,要将这四个垃圾桶摆放在三个固定角落,每个角落至少摆放一个,则不同的摆放方法共有(如果某两个垃圾桶摆放在同一角落,它们的前后左右位置关系不作考虑)()A .18种B .24种C .36种D .72种二、填空题9.已知随机变量()~,B n p ξ,且6E ξ=,3D ξ=,则n =______.10.在MON ∠的边OM 上有5个异于O 点的点,边ON 上有4个异于O 点的点,以这10个点(含O 点)中的3个点为顶点,可以得到___________个三角形.11.某校周五的课程表设计中,要求安排8节课(上午4节、下午4节),分别安排语文、数学、英语、物理、化学、生物、政治、历史各一节,其中生物只能安排在第一节或最后一节,数学和英语在安排时必须相邻(注:上午的最后一节与下午的第一节不记作相邻),则周五的课程顺序的编排方法共有______.12.一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取1只,每一次取后不放回.若已知第1只是好的,则第2只也是好的的概率是______.三、解答题13.212nx x ⎛⎫+ ⎪⎝⎭的展开式一共有16项.(1)求展开式中二项式系数之和;(2)求展开式中的常数项.14.10张奖券中有3张有奖,甲,乙两人不放回的各从中抽1张,甲先抽,乙后抽.求:(1)甲中奖的概率.(2)乙中奖的概率.(3)在甲未中奖的情况下,乙中奖的概率.15.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.①用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列;②设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.16.某超市每年10月份都销售某种桃子,在10月份的每天计划进货量都相同,进货成本为每千克16元,销售价为每千克24元;当天超出需求量的部分,以每千克10元全部卖出.根据往年销售经验,每天的需求量与当天最高气温(单位:℃)有一定关系:最高气温低于25,需求量为1000千克;最高气温位于[25,30)内,需求量为2000千克;最高气温不低于30,需求量为3000千克.为了制订2020年10月份的订购计划,超市工作人员统计了近三年10月份的气温数据,得到下面的频率分布直方图.以气温位于各区间的频率代替气温位于该区间的概率.(1)求2020年10月份桃子一天的需求量X的分布列;(2)设2020年10月份桃子一天的销售利润为Y元,当一天的进货量为多少千克时,E (Y)取到最大值?17.7本不同的书分给5人,每人至少1本,共有多少种不同的分法?18.随着国家对体育、美育的高度重视,不少省份已经宣布将体育、美育纳入中考范畴.某学校为了提升学生的体育水平,决定本学期开设足球课,某次体育课上,体育器材室的袋子里有大小、形状相同的2个黄色足球和3个白色足球,现从袋子里依次随机取球.(1)若连续抽取3次,每次取1个球,求取出1个黄色足球、2个白色足球的概率;(2)若无放回地取3次,每次取1个球,取出黄色足球得1分,取出白色足球不得分,求总得分X的分布列.参考答案:1.A 【解析】【分析】由33[(2)2]x x =-+,根据二项式定理可得特定项系数.【详解】因为33[(2)2]x x =-+,所以123C 26a =⨯=,故选:A.2.A 【解析】【分析】根据回文数定义,确定首位,再确定中间数,最后根据分步乘法计数原理得结果.【详解】由题意,若三位数的回文数是偶数,则末(首)位可能为2,4,6,8.如果末(首)位为2,中间一位数有10种可能,同理可得,如果末(首)位为4或6或8,中间一位数均有10种可能,所以有41040⨯=个,故选:A 【点睛】本题考查分步计数原理实际应用,考查基本分析求解能力,属基础题.3.A 【解析】【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.4.B 【解析】【分析】根据题意,分三类,第1类,男生甲入选,女生乙不入选,第2类,男生甲不入选,女生乙入选,第3类,男生甲入选,女生乙入选,分别求得其方法数,然后利用分类计数原理求解.【详解】由题意,可分三类:第1类,男生甲入选,女生乙不入选,则方法种数为122133434331C C C C C ++=;第2类,男生甲不入选,女生乙入选,则方法种数为122134343434C C C C C ++=;第3类,男生甲入选,女生乙入选,则方法种数为2112343421C C C C ++=.所以男生甲与女生乙至少有1人入选的方法种数为31+34+21=86.故选:B 5.A 【解析】【分析】先求出ξ的可能取值及取各个可能取值时的概率,再利用1122i i E p p p ξξξξ=+++ +可求得数学期望.【详解】ξ的可能取值为2,3,4.2ξ=表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故()33925525P ξ==⨯=.3ξ=表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白球,故()3223123555525P ξ==⨯+=.4ξ=表示从甲口袋中取出一个白球,从乙口袋中取出一个红球,故()22445525P ξ==⨯=.所以9124142342525255E ξ=⨯+⨯+⨯=.故选A.【点睛】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从二项分布(),B n p ,也可以直接利用公式E np ξ=求期望.6.C 【解析】【分析】计算得出1000台仪器中该部件的使用寿命超过10000小时的台数服从二项分布31000,8B ⎛⎫ ⎪⎝⎭,利用二项分布的期望公式可求得结果.【详解】由题意可知,该部件每个元件正常工作超过10000小时的概率均为12,则该部件正常工作超过10000小时的概率为21131228⎡⎤⎛⎫-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以1000台仪器中该部件的使用寿命超过10000小时的台数服从二项分布31000,8B ⎛⎫ ⎪⎝⎭,故所求均值为310003758⨯=.故选:C.7.C 【解析】利用间接法求解,首先计算出所有的安排方法,减掉A 照顾老人甲的情况和B 照顾老人乙的情况,再加回来多减一次的A 照顾老人甲的同时B 照顾老人乙的情况,从而得到结果.【详解】6名义工照顾三位老人,每两位义工照顾一位老人共有:2264C C 90=种安排方法其中A 照顾老人甲的情况有:1254C C 30=种B 照顾老人乙的情况有:1254C C 30=种A 照顾老人甲,同时B 照顾老人乙的情况有:1143C C 12=种∴符合题意的安排方法有:9030301242--+=种本题正确选项:C 【点睛】本题考查利用排列组合解决实际问题,对于限制条件较多的问题,通常采用间接法来进行求解.8.C 【解析】分析题意,得到有一个固定点放着两个垃圾桶,先选出两个垃圾桶,之后相当于三个元素分配到三个地方,最后利用分步乘法计数原理,求得结果.【详解】根据题意,有四个垃圾桶放到三个固定角落,其中有一个角落放两个垃圾桶,先选出两个垃圾桶,有246C =种选法,之后与另两个垃圾桶分别放在三个不同的地方有33A 种放法;所以不同的摆放方法共有23436636C A ⋅=⨯=种,故选:C.【点睛】思路点睛:该题考查的是有关排列组合综合题,解题方法如下:(1)首先根据题意,分析出有两个垃圾桶分到同一个地方,有246C =种选法;(2)之后就相当于三个元素的一个全排;(3)利用分步乘法计数原理求得结果.9.12【解析】根据二项分布的期望和方差公式可得出关于n 、p 的方程组,即可求得n 的值.【详解】()~,B n p ξ ,由二项分布的期望和方差公式得()613E np D np p ξξ==⎧⎨=-=⎩,解得1212n p =⎧⎪⎨=⎪⎩.故答案为:12.【点睛】本题考查利用二项分布的期望和方差公式求参数,解答的关键就是得出关于n 和p 的方程组,考查运算求解能力,属于基础题.10.90【解析】【分析】从10个点中任取3个点有310C 种情况,然后减去三点共线的情况即可得答案【详解】先不考虑共线点的问题,从10个点中任取3个点有310C 种情况.其中从边OM 上的6个点(含O 点)中任取3个点为顶点,不能得到三角形,有36C 种情况;从边ON 上的5个点(含O 点)中任取3个点为顶点,也不能得到三角形,有35C 种情况.所以共可以得到3331065C C C 12020--=--1090=个三角形.故答案为:9011.2400种【解析】【分析】分三步,第一步:根据题意从第一个位置和最后一个位置选一个位置安排生物,第二步:将数学和英语捆绑排列,第三步:将剩下的5节课全排列,最后利用分步乘法计数原理求解.【详解】分步排列,第一步:因为由题意知生物只能出现在第一节或最后一节,所以从第一个位置和最后一个位置选一个位置安排生物,有122A =(种)编排方法;第二步:因为数学和英语在安排时必须相邻,注意数学和英语之间还有一个排列,所以有225A 10=(种)编排方法;第三步:剩下的5节课安排5科课程,有55A 120=(种)编排方法.根据分步乘法计数原理知共有2101202400⨯⨯=(种)编排方法.故答案为:2400种12.59【解析】【分析】令A ={第1只是好的},B ={第2只是好的},在A 发生的条件下,盒中仅剩9只晶体管,其中5只是好的,由()1519C C P B A =可求得答案.【详解】解:令A ={第1只是好的},B ={第2只是好的},因为事件A 已发生,所以我们只研究事件B 即可,在A 发生的条件下,盒中仅剩9只晶体管,其中5只是好的,所以()1519C 5C 9P B A ==.故答案为:59.13.(1)152;(2)96096.【解析】【分析】(1)先由21(2n x x+的展开式一共有16项得15n =,即可求得展开式中二项式系数之和;(2)根据展开式的通项153031152r rr r T C x --+=⋅⋅,令3030r -=,即可求出常数项.【详解】(1)由21(2)n x x+的展开式一共有16项得15n =,∴2151(2)x x +得展开式中二项式系数之和为:152;(2)由2151(2x x+得展开式的通项为:()152********15122rrr r r r r T C x C x x ---+⎛⎫=⋅=⋅⋅ ⎪⎝⎭,令3030r -=,得10r =,∴展开式中的常数项为10151015230033296096C -⋅=⨯=.【点睛】本题考查二项式定理及其应用,其中()na b +的展开式通项1C r n rr r n T a b -+=的熟练运用是关键,是基础题.14.(1)310;(2)310;(3)13【解析】【分析】(1)设“甲中奖”为事件A ,根据古典概型的概率公式计算可得;(2)设“乙中奖”为事件B ,则()()()()P B P AB AB P AB P AB =+=+,再求出()P AB ,()P AB ,即可得解;(3)根据条件事件的概率公式计算可得;【详解】解:(1)设“甲中奖”为事件A ,则()310P A =(2)设“乙中奖”为事件B ,则()()()()P B P AB AB P AB P AB=+=+又()32110915P AB =⨯=,()73710930P AB =⨯=所以()()()179315303010P B P AB P AB =+=+==(3)因为()710P A =,()730P AB =所以()()()7130|7310P AB P B A P A ===【点睛】本题考查古典概型的概率公式,条件概率的概率公式的应用,属于基础题.15.(1)3人,2人,2人;(2)①答案见解析;②67.【解析】【详解】(1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(2)①随机变量X 的所有可能取值为0,1,2,3.P (X =k )=34337C C C k k -⋅(k =0,1,2,3).所以,随机变量X 的分布列为X0123P 13512351835435②设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=67.所以,事件A发生的概率为67.16.(1)答案见解析;(2)2000千克.【解析】【分析】(1)由题意知X的可能取值为1000,2000,3000,分别求出相应的概率,由此能求出X的分布列.(2)设一天的进货量为n千克,则1000≤n≤3000,当100≤n<2000时,求出E(Y)=5.2n+2800<13200;当2000≤n≤3000时,求出EY=14000﹣0.4n≤13200,由此能求出当一天的进货量为2000千克时,E(Y)取到最大值.【详解】(1)由题意知X的可能取值为1000,2000,3000,P(X=1000)=(0.0089+0.0311)×5=0.2,P(X=2000)=0.0800×5=0.4,P(X=3000)=(0.0467+0.0333)×5=0.4,∴X的分布列为:X100020003000P0.20.40.4(2)设一天的进货量为n千克,则1000≤n≤3000,①当1000≤n<2000时,若最高气温不低于25,则Y=8n,若最高气温低于25,则Y=1000×8﹣(n﹣1000)×6=14000﹣6n,此时E(Y)=0.8×8n+0.2×(14000﹣6n)=5.2n+2800<13200.②当2000≤n≤3000时,若最高气温不低于30,则Y=8n,若最高气温位于[25,30)内,则Y=2000×8﹣(n﹣2000)×6=28000﹣6n,若最高气温低于25,则Y=1000×8﹣(n﹣1000)×6=14000﹣6n,此时,EY =0.4×8n +0.4×(28000﹣6n )+0.2×(14000﹣6n )=14000﹣0.4n ≤13200,当且仅当n =2000时,取等号,综上,当一天的进货量为2000千克时,E (Y )取到最大值.17.16800(种)【解析】【分析】先将7本不同的书分成5组,每组有1、1、1、1、3本或1、1、1、2、2两种情况,再把这五组分配给5人,运用分步乘法原理可得结果.【详解】解:第一步,先把7本不同的书分成5组,每组有1、1、1、1、3本或1、1、1、2、2两种情况,有31111221117432175321423423140C C C C C C C C C C A A A +=⋅(种)方法.第二步,再把这五组分配给5人有55120A =(种)方法.故共有14012016800⨯=(种)不同的分法.18.(1)35;(2)分布列见解析.【解析】【分析】(1)利用古典概型概率公式即求;(2)由题知X 的取值范围为{}0,1,2,分别求概率,即得.【详解】(1)从袋子里连续抽取3次,每次取1个球,设事件A 为“取出1个黄色足球、2个白色足球”,则()122335C C 3C 5P A ==.(连续抽取3次,每次取1个球,求取出1个黄色足球、2个白色足球的概率问题可转化为从5个足球中选出3个足球,其中有1个黄色足球、2个白色足球的概率问题)(2)X 的取值范围为{}0,1,2,则()33351010===A P X A ,()11232335315C A A P X A ===,()221323353210===C A A P X A .所以总得分X的分布列为:X012P 11035310。

高中数学离散型随机变量的方差综合测试题(含答案)

高中数学离散型随机变量的方差综合测试题(含答案)

高中数学离散型随机变量的方差综合测试题(含答案)选修2-3 2.3.2 离散型随机变量的方差一、选择题1.下面说法中正确的是()A.离散型随机变量的均值E()反映了取值的概率的平均值B.离散型随机变量的方差D()反映了取值的平均水平C.离散型随机变量的均值E()反映了取值的平均水平D.离散型随机变量的方差D()反映了取值的概率的平均值[答案] C[解析] 离散型随机变量的均值E()反映取值的平均水平,它的方差反映的取值的离散程度.故答案选C.2.已知随机变量X的分布列为:P(X=k)=13,k=1、2、3,则D(3X+5)=()A.6 B.9C.3 D.4[答案] A[解析] E(X)=(1+2+3)13=2,D(X)=[(1-2)2+(2-2)2+(3-2)2]13=23,D(3X+5)=9D(X)=6.3.设X~B(n,p),且E(X)=12,D(X)=4,则n与p的值分别为()A.18,13 B.12,23C.18,23 D.12,13[答案] C[解析] 由E(X)=12D(X)=4得np=12np(1-p)=4则p=23,n=18.4.(2019山东理,6)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为()A.65B.65C.2 D.2[答案] D[解析] ∵a+0+1+2+35=1,a=-1,故s2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.5.已知随机变量的数学均值为E(),方差为D(),随机变量-E(),则D()的值为()A.0 B.-1C.1 D.D()[答案] C[解析] E()与D()均为常数,不妨设E()=a,D()=b,则-E()=1b-ab.D()=D1b-ab=1b2D()=1.6.随机变量X~B(100,0.2),那么D(4X+3)的值为()A.64 B.256C.259 D.320[答案] B[解析] 由X~B(100,0.2)知随机变量X服从二项分布,且n=100,p=0.2,由公式得D(X)=np(1-p)=1000.20.8=16,因此D(4X+3)=42D(X)=1616=256,故选B.7.已知X的分布列如下表.则在下列式子中:①E(X)=-13;②D(X)=2327;③P(X=0)=13.正确的有()X -1 0 1P 121316A.0个 B.1个C.2个 D.3个[答案] C[解析] 易求得D(X)=-1+13212+0+13213+1+13216=59,故只有①③正确,故选C.8.甲,乙两台自动机床各生产同种标准产品1000件,表示甲车床生产1000件产品中的次品数,表示乙车床生产1000件产品中的次品数,经过一段时间的考察的分布列分别如表一,表二所示.据此判定()表一0 1 2 3P 0.7 0 0.2 0.1表二0 1 2 3P 0.6 0.2 0.1 0.1A.甲比乙质量好B.乙比甲质量好C.甲与乙质量相同D.无法判定[答案] B[解析] 由分布列可求甲的次品数期望为E()=0.7,乙的次品数期望为E()=0.7,进而得D()=(0-0.7)20.7+(1-0.7)20+(2-0.7)20.2+(3-0.7)20.1=1.21,D()=(0-0.7)20.6+(1-0.7)20.2+(2-0.7)20.1+(3-0.7)20.1=1.01,故乙的质量要比甲好.二、填空题9.某射手击中目标的概率为p,则他射击n次,击中目标次数X的方差为________.[答案] np(1-p)[解析] ∵X~B(n,p),D(X)=np(1-p).10.已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是________.[答案] 10.5、10.5[解析] 由题意得a+b2=10.5,a+b=21,x=2+3+3+7+21+13.7+18.3+20+1210=10,s2=110[(10-2)2+(10-3)2+(10-3)2+(10-7)2+(10-a)2+(10-b)2+(10-12)2+(10-13.7)2+(10-18.3)2+(10-20)2]=110[82+72+72+32+(10-a)2+(10-b)2+4+3.72+8.32+102]=110[(10-a)2+(10-21+a)2+…]=110[2(a-10.5)2+…]当a=10.5时,方差s最小,b=10.5.11.随机变量X的分布列如下表:X -1 0 1P a b c其中a,b,c成等差数列,若E(X)=13,则D(X)的值是______.[答案] 59[解析] ∵a+b+c=1,2b=a+c,b=13,a+c=23,又∵E(X)=13,13=-a+c,故a=16,c=12,D(X)=(-1-13)216+(0-13)213+(1-13)212=59. 12.(2009广东理12)已知离散型随机变量X的分布列如下表,若E(X)=0,D(X)=1,,则a=________,b=__________. X -1 0 1 2P a b c 112[答案] 512;14[解析] 考查离散型随机变量的分布列、期望和方差的计算.由条件及E(X)=x1p1+x2p2+…+xnpn,D(X)=(x1-E(X))2p1+(x2-E(X))2p2+…+(xn-E(X))2pn得a+b+c=1112-a+c+16=0a+c+13=1,a=512b=14c =14.三、解答题13.有三张形状、大小、质地完全一致的卡片,在每张卡片上写上0、1、2,现从中任意抽取一张,将其上数字记作x,然后放回,再抽取一张,其上数字记作y,令X=xy.求(1)X的概率分布;(2)随机变量X的均值与方差.[解析] (1)P(X=0)=533=59;P(X=1)=133=19;P(X=2)=233=29;P(X=4)=133=19.X的分布列如下表:X 0 1 2 4P 59192919(2)E(X)=1,D(X)=169.14.甲、乙两名射手在一次射击中得分为两个相互独立的随机变量,且的分布列为1 2 3P a 0.1 0.61 2 3P 0.3 b 0.3求:(1)a、b的值;(2)计算的均值与方差,并以此分析甲、乙的技术状况.[解析] (1)由离散型随机变量的分布列的性质可知a+0.1+0.6=1,a=0.3.同理0.3+b+0.3=1,b=0.4.(2)E()=10.3+20.1+30.6=2.3,E()=10.3+20.4+30.3=2,D()=(1-2.3)20.3+(2-2.3)20.1+(3-2.3)20.6=0.81,D()=(1-2)20.3+(2-2)20.4+(3-2)20.3=0.6.由于E()>E(),说明在一次射击中,甲的平均得分比乙高,但D(D(),说明甲得分的稳定性不如乙,因此甲、乙两人技术水平都不够全面,各有优势与劣势.[点评] 比较技术水平、机器性能、产品质量,通常要同时考虑期望与方差这两个特征数.15.甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相同.而两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:甲保护区:X 0 1 2 3P 0.3 0.3 0.2 0.2乙保护区:X 0 1 2P 0.1 0.5 0.4试评定这两个保护区的管理水平.[解析] 甲保护区的违规次数X的均值和方差为E()=00.3+10.3+20.2+30.2=1.3,D()=(0-1.3)20.3+(1-1.3)20.3+(2-1.3)20.2+(3-1.3)20.2=1.21;乙保护区的违规次数的均值和方差为E()=00.1+10.5+20.4=1.3,D()=(0-1.3)20.1+(1-1.3)20.5+(2-1.3)20.4=0.41.因为E()=E(),D(D(),所以两个保护区内每季度发生的违规平均次数是相同的,但乙保护区内的违规事件次数更集中和稳定,而甲保护区的违规事件次数相对分散和波动.16.有一批零件共10个合格品,2个不合格品.安装机器时从这批零件中任选1个,取到合格品才能安装;若取出的是不合格品,则不再放回.(1)求最多取2次零件就能安装的概率;(2)求在取得合格品前已经取出的次品数X的分布列,并求出X的均值E(X)和方差D(X)(方差计算结果保留两个有效数字).[分析] 注意取到不合格品时不再放回,故可考虑用等可能性事件的概率公式求概率值.[解析] (1)设安装时所取零件的次数是,则P(=1)=1012=56,这是取1次零件就取到了合格品,可以安装;P(=2)=2121011=533,这是第1次取到不合格品,第2次取到了合格品.最多取2次零件就能安装的概率为56+533=6566.(2)依题意X的所有可能取值为0、1、2,P(X=0)=P(=1)=56,P(X=1)=P(=2)=533,P(X=2)=1-56-533=166.故X的分布列是X 0 1 2P 56533166于是E(X)=056+1533+2166=211,D(X)=562112+5339112+166201920.18.所以X的期望值和方差值分别是211和0.18.。

离散型随机变量的期望和方差(参考答案)

离散型随机变量的期望和方差(参考答案)

离散型随机变量的期望和方差(参考答案)想一想①:1.解:ξ的所有可能取值为1,2,3,4,5,6.对应的概率均为61.易得Eξ=3.5.2.解:E(2ξ+3)=2Eξ+3=37.想一想②:证: D(X +Y)=E[(X +Y)2]−[E(X +Y)]2=E[X 2+Y 2+2XY]−[E(x)+E(Y)]2 =E(X 2)+E(Y 2)+2E(X)E(Y)−[E(X)]2 −[E(Y)]2−2E(X)E(Y)={E(X 2)−[E (X )]2}+{E(Y 2)−[E (Y )]2}=D(X)+D(Y).想一想③:1.解:Eξ=np=7,Dξ=np(1-p)=6,所以p=17.2.解:Dξ=npq≤n(p+q 2)2=n4,等号在p=q=12时成立,此时,Dξ=25,σξ=5.答案:12; 5.想一想④:解:要使保险公司能盈利,需盈利数ξ的期望值大于0,故需求Eξ. 设ξ为盈利数,其概率分布为且Eξ=a(1-p 121212要盈利,至少需使ξ的数学期望大于零,故a >30000p 1+10000p 2.想一想⑤:1.解:直接考虑得分的话,情况较复杂,可以考虑取出的4只球颜色的分布情况:4红得8分,3红1黑得7分,2红2黑得6分,1红3黑得5分,故P(ξ=5)=C 41C 33C 74=435,P(ξ=6)=C 42C 32C 74=1835,P(ξ=70)=C 43C 31C 74,P(ξ=8)=C 44C 30C 74,Eξ=5435.2.解:分析,可能来多少人,是一个随机变量ξ.而ξ显然是服从二项分布的,用数学期望来反映平均来领奖人数,即能说明是否可行.设来领奖的人数ξ=k,(k =0,1,2,⋯,3000),所以P(ξ=k)=C 3000k(0.04)k ⋅(1−0.04)30000−k ,可见ξ~B (30000,0.04),所以, Eξ=3000×0.04=120(人)100>(人). 答:不能,寻呼台至少应准备120份礼品.想一想⑥:解:设X~B(n,p), 则X 表示n 重贝努里试验中的“成功” 次数.若设X i ={1 如第i 次试验成功0 如第i 次试验失败i =1,2,…,n则X =∑X i n i=1是n 次试验中“成功”的次数,E(X i )=0×q +1×p =p , 故D(X i )=E(X i 2)−[E(X i )]2=p −p 2=p(1−p),1,2,,i n =由于X 1,X 2,X 3⋯,X n 相互独立,于是D(X)=∑D(X i )n i=1pq.习题2.3 1.解:由已知q 应满足:解得q =1−√12故ξ的分布列为∴Eξ=(−1)×1+0×(√2−1)+1×(−√2)=−+3−√2=1−√2.Dξ=[−1−(1−√2)]2×12+(1−√2)2×(√2−1)+[1−(1−√2)]2×(32−√2)=(√2−2)2×12+(√2−1)3+2(32−√2).12-=2.解:设学生甲答对题数为ξ,成绩为η,则ξ~B(50,0.8),η=2ξ,故成绩的期望为Eη=E(2ξ)=2Eξ=2×50×0.8=80(分). 成绩的标准差为ση=√Dη=√D(2ξ)=√4Dξ=2√50×0.8×0.2=4√2≈5.7(分). 3.该组练习耗用的子弹数ξ为随机变量,ξ 可以取值为1,2,3,4,5.ξ=1,表示一发即中,故概率为P(ξ=1)=0.8;ξ=2,表示第一发未中,第二发命中,故P(ξ=2)=(1−0.8)×0.8=0.16; ξ=3,表示前二发未中,第三发命中,故P(ξ=3)=(1−0.8)2×0.8=0.032; ξ=4,表示前三发未中,第四发命中,故P(ξ=4)=(1−0.8)3×0.8=0.0064; ξ=5,表示第五发命中,故P(ξ=5)=(1−0.8)4⋅1=0.24=0.0016. 因此,ξ 的分布列为Eξ==1.25=0.05+0.09+0.098+0.0484+0.0225=0.31.说明:此题的随机变量ξ并不服从几何分布.故不能用公式来求期望和方差.要特别注意. 4.解:(1)分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点” 为事件A 1,A 2,A 3. 由已知A 1,A 2,A 3相互独立,P (A 1)=0.4,P (A 2)=0.5,P (A 3)=0.6, 客人游览的景点数的可能取值为0,1,2,3. 相应地,客人没有游览的景点数的可能取值为3,2,1,0, 所以ξ的可能取值为1,3. P(ξ=3)=P(A 1·A 2·A 3)+ P(A 1⋅A 2⋅A 3) = P(A 1)P(A 2)P(A 3)+P(A 1)P(A 2)P(A 3)=2×0.4×0.5×0.6=0.24,P(ξ=1)=1-0.24=0.76,所以ξ的分布列如右. E ξ=1×0.76+3×0.24=1.48.(2)方法1. 因为f(x)=(x −32ξ)2+1−94ξ2, 所以函数f (x )=x2−3ξx +1在区间[32ξ,+∞)上单调递增,要使f(x)在[2,+∞)上单调递增,当且仅当32ξ≤2,即ξ≤43. 从而;⎪⎪⎪⎪⎨⎧≤≤-≤=+-+.1,1210,1212122q q q qP(A)=P(ξ≤43)=P(ξ=1)=0.76. 方法2.ξ的可能取值为1,3.当ξ=1时,函数f(x)=x 2−3x +1在区间[2,+∞)上单调递增, 当ξ=3时,函数f(x)=x 2−9x +1在区间[2,+∞)上不单调递增.所以P(A)=P(ξ=1)=0.76.5.解:(1)由E ξ=np=3,D ξ=np(1-p)=32,得n=6,p=12. ξ的分布列为:P(A)=1+6+15+2064=2132或P(A)=1-P(ξ>3)=1-1+6+1564=2132.6.解:(1)ξ1的所有取值为0.8、0.9、1.0、1.125、1.25,ξ2的所有取值为0.8、0.96、1.0、1.2、1.44.ξ1、ξ2的分布列分别为:(2)令A 、B 分别表示方案一、方案二两年后柑桔产量超过灾前产量这一事件, P(A)=0.15+0.15=0.3, P(B)=0.24+0.08=0.32. 可见,方案二两年后柑桔产量超过灾前产量的概率更大. (3)令ηi 表示方案i 所带来的效益,则所以Eη1=14.75,Eη2=14.1,可见,方案一所带来的平均效益更大.7.(1)密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别都只含有1,2,即只能取表格第1,2列中的数字作为密码.其中第一排可有11,12两种,第二排可有21,22两种,第三排可有1,2两种. ∴ P(ξ=2)=234=18. (2)由题意可知,ξ的取值为2,3,4三种情形.当ξ=3,注意表格的第一排总含有数字1,第二排总含有数字2则密码中只可能取数字1,2, 3或1,2,4.若为1,2,3时,由于第一排总有1,第二排总有2,第一排取11有5种不同的情形,第一排取12也有5种不同的情形,第一排取13有9种不同的情形,共有19种不同的情形;同理若为1,2,4时也有19种情形. ∴ P(ξ=3)=2×1943=1932.若ξ=4, 则 P(ξ=4)=A 31A 22+A 32A 2243=932(或用1−P(ξ=2)−P(ξ=3)求得).∴ ξ的分布列为:∴ Eξ=2×18+3×1932+4×932=10132.。

高中数学离散型随机变量的期望与方差练习(含答案)

高中数学离散型随机变量的期望与方差练习(含答案)

离散型随机变量均值与方差专题练习一、单选题(共16题;共32分)1.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P (B|A)分别是()A. ,B. ,C. ,D. ,2.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.977,则P(﹣1<ξ<3)=()A. 0.683B. 0.853C. 0.954D. 0.9773.随机变量X的取值为0,1,2,若P(X=0)= ,E(X)=1,则D(X)=()A. B. C. D.4.已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.1587,则P(2<X<4)=()A. 0.6826B. 0.3413C. 0.4603D. 0.92075.甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是()A. B. C. D.6.不透明袋子中装有大小、材质完全相同的2个红球和5个黑球,现从中逐个不放回地摸出小球,直到取出所有红球为止,则摸取次数的数学期望是()A. B. C. D.7.下面说法中正确的是()A. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的概率的平均值B. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平C. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的平均水平D. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的概率的平均值8.每次试验的成功率为,重复进行10次试验,其中前7次都未成功,后3次都成功的概率为()A. B. C. D.9.已知随机变量,则()A. B. C. D.10.设随机变量的分布列为,,则等于()A. B. C. D.11.现在有张奖券,张元的,张元的,某人从中随机无放回地抽取张奖券,则此人得奖金额的数学期望为()A. B. C. D.12.已知X~B(n,p),E(X)=2,D(X)=1.6,则n,p的值分别为()A. 100,0.8B. 20,0.4C. 10,0.2D. 10,0.813.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量,则所有可能取值的个数是()A. 5B. 9C. 10D. 2514.电灯泡使用时数在1 000小时以上的概率为0.2,则三个灯泡在1 000小时以后最多有一个坏了的概率是()A. 0.401B. 0.104C. 0.410D. 0.01415.已知随机变量的概率分布列如下表所示:50.4且的数学期望,则()A. B. C. D.16.用电脑每次可以从区间(0,1)内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于的概率为()A. B. C. D.二、解答题(共7题;共65分)17.某班有6名班干部,其中男生4人,女生2人,任选3人参加学校组织的义务植树活动.(I)求男生甲、女生乙至少有1人被选中的概率;(II)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P (A)和P (B|A).18.某射手每次射击击中目标的概率是,求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.19.“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段:,,,,,后得到如图所示的频率分布直方图.问:(1)估计在40名读书者中年龄分布在的人数;(2)求40名读书者年龄的平均数和中位数;(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.20.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛中获胜的事件是独立的,并且获胜的概率均为.(1)求这支篮球队首次获胜前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好获胜3场的概率;(3)求这支篮球队在6场比赛中获胜场数的期望.21.某学校有甲、乙两个实验班,为了了解班级成绩,采用分层抽样的方法从甲、乙两个班学生中分别抽取8名和6名测试他们的数学成绩与英语成绩(单位:分),用表示(m,n).下面是乙班6名学生的测试分数:A(138,130),B(140,132),C(140,130),D(134,140),E(142,134),F(134,132),当学生的数学、英语成绩满足m≥135,且n≥130时,该学生定为优秀学生.(1)已知甲班共有80名学生,用上述样本数据估计乙班优秀生的数量;(2)从乙班抽出的上述6名学生中随机抽取3名,求至少有两名优秀生的概率;(3)从乙班抽出的上述6名学生中随机抽取2名,其中优秀生数记为ξ,求ξ的分布列和数学期望.22.甲参加A,B,C三个科目的学业水平考试,其考试成绩合格的概率如下表,假设三个科目的考试甲是否成绩合格相互独立.(I)求甲至少有一个科目考试成绩合格的概率;(Ⅱ)设甲参加考试成绩合格的科目数量为X,求X的分布列和数学期望.23.由于当前学生课业负担较重,造成青少年视力普遍下降,现从某高中随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如图:(Ⅰ)指出这组数据的众数和中位数;(Ⅱ)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;(Ⅲ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记ξ表示抽到“好视力”学生的人数,求ξ的分布列及数学期望.答案解析部分一、单选题1.【答案】A【考点】条件概率与独立事件【解析】【解答】解:根据条件概率的含义,P(A|B)其含义为在B发生的情况下,A发生的概率,即在“至少出现一个6点”的情况下,“三个点数都不相同”的概率,∵“至少出现一个6点”的情况数目为6×6×6﹣5×5×5=91,“三个点数都不相同”则只有一个6点,共C31×5×4=60种,∴P(A|B)= ;P(B|A)其含义为在A发生的情况下,B发生的概率,即在“三个点数都不相同”的情况下,“至少出现一个6点”的概率,∴P(B|A)= .故选A.【分析】根据条件概率的含义,明确条件概率P(A|B),P(B|A)的意义,即可得出结论.2.【答案】C【考点】正态分布曲线的特点及曲线所表示的意义【解析】【解答】解:随机变量ξ服从正态分布N(1,1),∴曲线关于x=1对称,∵P(ξ<3)=0.977,∴P(ξ>3)=0.023,∴P(﹣1≤ξ≤3)=1﹣2P(ξ>3)=1﹣0.046=0.954.故选:C.【分析】根据随机变量ξ服从正态分布,知正态曲线的对称轴是x=1,且P(ξ>3)=0.023,依据正态分布对称性,即可求得答案.3.【答案】B【考点】离散型随机变量的期望与方差【解析】【解答】解:设P(X=1)=p,P(X=2)=q,∵E(X)=0× +p+2q=1①,又+p+q=1,②由①②得,p= ,q= ,∴D(X)= (0﹣1)2+ = ,故选:B.【分析】设P(X=1)=p,P(X=2)=q,则由P(X=0)= ,E(X)=1,列出方程组,求出p= ,q= ,由此能求出D(X).4.【答案】A【考点】正态分布曲线的特点及曲线所表示的意义【解析】【解答】解:∵随机变量X服从正态分布N(3,1),∴正态曲线的对称轴是x=3,∵P(X≥4)=0.1587,∴P(2<X<4)=1﹣2P(X≥4)=1﹣0.3174=0.6826.故选:A.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴x=μ=3,利用对称性,即可求得P(2<X <4).5.【答案】D【考点】古典概型及其概率计算公式,条件概率与独立事件【解析】【解答】由题得甲不跑第一棒的总的基本事件有个,甲不跑第一棒,乙不跑第二棒的基本事件有,由古典概型的概率公式得在甲不跑第一棒的条件下,乙不跑第二棒的概率是.故答案为:D.【分析】由题得甲不跑第一棒的总的基本事件有18 个,甲不跑第一棒,乙不跑第二棒的基本事件有14个,由古典概型的概率公式求得在甲不跑第一棒的条件下,乙不跑第二棒的概率.6.【答案】D【考点】离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【解答】当时,第次取出额必然是红球,而前k-1次中,有且只有1次取出的是红球,其余次数取出的皆为黑球,故,于是得到X的分布列为故故答案为:D【分析】X的可能取值为2,3,4,5,6,7,利用互斥事件概率加法公式、相互独立事件概率乘法公式分别求出相应的概率,由此能求出摸取次数X的分布列,最后利用数学期望求解即可.7.【答案】C【考点】离散型随机变量的期望与方差【解析】【解答】离散型随机变量ξ的均值E(ξ)反映ξ取值的平均水平,它的方差反映ξ的取值的离散程度.故答案为:C.【分析】由离散型随机变量的均值与方差的意义判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散型随机变量均值与方差专题练习一、单选题(共16题;共32分)1.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P (B|A)分别是()A. ,B. ,C. ,D. ,2.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.977,则P(﹣1<ξ<3)=()A. 0.683B. 0.853C. 0.954D. 0.9773.随机变量X的取值为0,1,2,若P(X=0)= ,E(X)=1,则D(X)=()A. B. C. D.4.已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.1587,则P(2<X<4)=()A. 0.6826B. 0.3413C. 0.4603D. 0.92075.甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是()A. B. C. D.6.不透明袋子中装有大小、材质完全相同的2个红球和5个黑球,现从中逐个不放回地摸出小球,直到取出所有红球为止,则摸取次数的数学期望是()A. B. C. D.7.下面说法中正确的是()A. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的概率的平均值B. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平C. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的平均水平D. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的概率的平均值8.每次试验的成功率为,重复进行10次试验,其中前7次都未成功,后3次都成功的概率为()A. B. C. D.9.已知随机变量,则()A. B. C. D.10.设随机变量的分布列为,,则等于()A. B. C. D.11.现在有张奖券,张元的,张元的,某人从中随机无放回地抽取张奖券,则此人得奖金额的数学期望为()A. B. C. D.12.已知X~B(n,p),E(X)=2,D(X)=1.6,则n,p的值分别为()A. 100,0.8B. 20,0.4C. 10,0.2D. 10,0.813.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量,则所有可能取值的个数是()A. 5B. 9C. 10D. 2514.电灯泡使用时数在1 000小时以上的概率为0.2,则三个灯泡在1 000小时以后最多有一个坏了的概率是()A. 0.401B. 0.104C. 0.410D. 0.01415.已知随机变量的概率分布列如下表所示:50.4且的数学期望,则()A. B. C. D.16.用电脑每次可以从区间(0,1)内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于的概率为()A. B. C. D.二、解答题(共7题;共65分)17.某班有6名班干部,其中男生4人,女生2人,任选3人参加学校组织的义务植树活动.(I)求男生甲、女生乙至少有1人被选中的概率;(II)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P (A)和P (B|A).18.某射手每次射击击中目标的概率是,求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.19.“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段:,,,,,后得到如图所示的频率分布直方图.问:(1)估计在40名读书者中年龄分布在的人数;(2)求40名读书者年龄的平均数和中位数;(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.20.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛中获胜的事件是独立的,并且获胜的概率均为.(1)求这支篮球队首次获胜前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好获胜3场的概率;(3)求这支篮球队在6场比赛中获胜场数的期望.21.某学校有甲、乙两个实验班,为了了解班级成绩,采用分层抽样的方法从甲、乙两个班学生中分别抽取8名和6名测试他们的数学成绩与英语成绩(单位:分),用表示(m,n).下面是乙班6名学生的测试分数:A(138,130),B(140,132),C(140,130),D(134,140),E(142,134),F(134,132),当学生的数学、英语成绩满足m≥135,且n≥130时,该学生定为优秀学生.(1)已知甲班共有80名学生,用上述样本数据估计乙班优秀生的数量;(2)从乙班抽出的上述6名学生中随机抽取3名,求至少有两名优秀生的概率;(3)从乙班抽出的上述6名学生中随机抽取2名,其中优秀生数记为ξ,求ξ的分布列和数学期望.22.甲参加A,B,C三个科目的学业水平考试,其考试成绩合格的概率如下表,假设三个科目的考试甲是否成绩合格相互独立.(I)求甲至少有一个科目考试成绩合格的概率;(Ⅱ)设甲参加考试成绩合格的科目数量为X,求X的分布列和数学期望.23.由于当前学生课业负担较重,造成青少年视力普遍下降,现从某高中随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如图:(Ⅰ)指出这组数据的众数和中位数;(Ⅱ)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;(Ⅲ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记ξ表示抽到“好视力”学生的人数,求ξ的分布列及数学期望.答案解析部分一、单选题1.【答案】A【考点】条件概率与独立事件【解析】【解答】解:根据条件概率的含义,P(A|B)其含义为在B发生的情况下,A发生的概率,即在“至少出现一个6点”的情况下,“三个点数都不相同”的概率,∵“至少出现一个6点”的情况数目为6×6×6﹣5×5×5=91,“三个点数都不相同”则只有一个6点,共C31×5×4=60种,∴P(A|B)= ;P(B|A)其含义为在A发生的情况下,B发生的概率,即在“三个点数都不相同”的情况下,“至少出现一个6点”的概率,∴P(B|A)= .故选A.【分析】根据条件概率的含义,明确条件概率P(A|B),P(B|A)的意义,即可得出结论.2.【答案】C【考点】正态分布曲线的特点及曲线所表示的意义【解析】【解答】解:随机变量ξ服从正态分布N(1,1),∴曲线关于x=1对称,∵P(ξ<3)=0.977,∴P(ξ>3)=0.023,∴P(﹣1≤ξ≤3)=1﹣2P(ξ>3)=1﹣0.046=0.954.故选:C.【分析】根据随机变量ξ服从正态分布,知正态曲线的对称轴是x=1,且P(ξ>3)=0.023,依据正态分布对称性,即可求得答案.3.【答案】B【考点】离散型随机变量的期望与方差【解析】【解答】解:设P(X=1)=p,P(X=2)=q,∵E(X)=0× +p+2q=1①,又+p+q=1,②由①②得,p= ,q= ,∴D(X)= (0﹣1)2+ = ,故选:B.【分析】设P(X=1)=p,P(X=2)=q,则由P(X=0)= ,E(X)=1,列出方程组,求出p= ,q= ,由此能求出D(X).4.【答案】A【考点】正态分布曲线的特点及曲线所表示的意义【解析】【解答】解:∵随机变量X服从正态分布N(3,1),∴正态曲线的对称轴是x=3,∵P(X≥4)=0.1587,∴P(2<X<4)=1﹣2P(X≥4)=1﹣0.3174=0.6826.故选:A.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴x=μ=3,利用对称性,即可求得P(2<X <4).5.【答案】D【考点】古典概型及其概率计算公式,条件概率与独立事件【解析】【解答】由题得甲不跑第一棒的总的基本事件有个,甲不跑第一棒,乙不跑第二棒的基本事件有,由古典概型的概率公式得在甲不跑第一棒的条件下,乙不跑第二棒的概率是.故答案为:D.【分析】由题得甲不跑第一棒的总的基本事件有18 个,甲不跑第一棒,乙不跑第二棒的基本事件有14个,由古典概型的概率公式求得在甲不跑第一棒的条件下,乙不跑第二棒的概率.6.【答案】D【考点】离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【解答】当时,第次取出额必然是红球,而前k-1次中,有且只有1次取出的是红球,其余次数取出的皆为黑球,故,于是得到X的分布列为故故答案为:D【分析】X的可能取值为2,3,4,5,6,7,利用互斥事件概率加法公式、相互独立事件概率乘法公式分别求出相应的概率,由此能求出摸取次数X的分布列,最后利用数学期望求解即可.7.【答案】C【考点】离散型随机变量的期望与方差【解析】【解答】离散型随机变量ξ的均值E(ξ)反映ξ取值的平均水平,它的方差反映ξ的取值的离散程度.故答案为:C.【分析】由离散型随机变量的均值与方差的意义判断。

8.【答案】C【考点】二项分布与n次独立重复试验的模型【解析】【解答】成功率为,则不成功的概率为.前7次都未成功概率为,后3次都成功概率为,C符合题意.故答案为:C.【分析】成功率为p ,则不成功的概率为1-p,分别得到前7次都未成功概率和后3次都成功概率,再由公式求解.9.【答案】C【考点】二项分布与n次独立重复试验的模型【解析】【解答】=.故答案为:C.【分析】由不等式得到变量的取值,用间接法,用1减去变量为0,1时的概率值就是所求.10.【答案】C【考点】离散型随机变量及其分布列【解析】【解答】,故答案为:C.【分析】目标概率包括X为1和2两种情况,由已知概率公式求解.11.【答案】B【考点】离散型随机变量的期望与方差【解析】【解答】当抽取三张都是两元时,得奖金额是元;当抽取两张两元一张五元时,得奖金额是元;当取一张两元两张五元时,得奖金额是元.故得奖金额为,对应的概率分别是,故,故答案为:B.【分析】由变量的各取值求概率得分布列,结合公式求期望.12.【答案】C【考点】二项分布与n次独立重复试验的模型【解析】【解答】由题意可得解得p=0.2,n=10.故答案为:C.【分析】由二项分布的公式E(X)=np,D(X)=np(1-p)求解.13.【答案】B【考点】离散型随机变量及其分布列【解析】【解答】号码之和可能为2,3,4,5,6,7,8,9,10,共9种.故答案为:B.【分析】由1,2,3,4,5五个号码中两个的和可能为2,3,4,5,6,7,8,9,10,共9种.14.【答案】B【考点】二项分布与n次独立重复试验的模型【解析】【解答】.故答案为:B.【分析】最多有一个坏了分两种情况,由独立重复实验概率公式求解.15.【答案】A【考点】离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【解答】由题设可得解得故答案为:A.【分析】由分布列,结合公式得到关于a,b的方程组求解..16.【答案】C【考点】几何概型【解析】【解答】解:由题意得到每次生成每个实数都大于的概率为,用该电脑连续生成3个实数,则这3个实数都大于的概率为:;故答案为:C.【分析】由几何概型可知每次生成每个实数都大于的概率为,则连续生成的实数都大于的概率为.二、解答题17.【答案】解:(I)男生甲、女生乙至少有1人被选中的概率P=1﹣= ;(II)P(A)= = ,P(AB)= = ,P(B|A)= =【考点】古典概型及其概率计算公式,条件概率与独立事件【解析】【分析】(I)利用对立事件的概率公式求解即可;(II)求出男生甲被选中的概率、男生甲、女生乙都被选中的概率,即可得出结论.18.【答案】解:(1)∵某射手每次射击击中目标的概率是,则这名射手在10次射击中恰有8次击中目标的概率为••.(2)至少有8次击中目标的概率为••+••+.【考点】二项分布与n次独立重复试验的模型【解析】【分析】(1)由条件利用n次独立重复实验中恰好发生k次的概率计算公式,求得恰有8次击中目标的概率.(2)由条件利用n次独立重复实验中恰好发生k次的概率计算公式,求得恰有8次击中目标的概率、恰有9次击中目标的概率、恰有10次击中目标的概率,再把这3个概率相加,即得所求.19.【答案】(1)解:由频率分布直方图知年龄在的频率为,所以40名读书者中年龄分布在的人数为(2)解:40名读书者年龄的平均数为.设中位数为,则解得,即40名读书者年龄的中位数为55(3)解:年龄在的读书者有人,年龄在的读书者有人,所以的所有可能取值是0,1,2,,,,的分布列如下:数学期望【考点】频率分布直方图,众数、中位数、平均数,离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【分析】(1)首先根据频率分布直方图,计算年龄在[40,70)的人数的频率,再用总人数乘以频率得到结果。

相关文档
最新文档