高中数学 离散型随机变量的方差
高中数学必修2-3第二章2.3 2.3.2离散型随机变量的方差

2.3.2 离散型随机变量的方差1.问题导航(1)离散型随机变量的方差及标准差的定义是什么?(2)方差具有哪些性质?两点分布与二项分布的方差分别是什么? (3)如何计算简单离散型随机变量的方差? 2.例题导读(1)例4求随机变量的均值和方差、标准差,请试做教材P 68练习1题. (2)例5是均值和方差的实际应用,请试做教材P 68练习3题.1.方差、标准差的定义及方差的性质 (1)方差及标准差的定义:设离散型随机变量X 的分布列为①方差D (X )=∑n i =1(x i -E (X ))2p i . ②标准差为________D (X ).(2)方差的性质:D (aX +b )=________a 2D (X ). 2.两个常见分布的方差(1)若X 服从两点分布,则D (X )=________p (1-p ). (2)若X ~B (n ,p ),则D (X )=________np (1-p ).1.判断(对的打“√”,错的打“×”)(1)离散型随机变量的方差越大,随机变量越稳定.( ) (2)若a 是常数,则D (a )=0.( )(3)离散型随机变量的方差反映了随机变量偏离于期望的平均程度.( ) 答案:(1)× (2)√ (3)√2.一批产品中,次品率为13,现连续抽取4次,其次品数记为X ,则D (X )的值为( )A.43B.83C.89D .1答案:C3.如果X 是离散型随机变量,E (X )=6,D (X )=0.5,X 1=2X -5,那么E (X 1)和D (X 1)分别是( )A .E (X 1)=12,D (X 1)=1B .E (X 1)=7,D (X 1)=1C .E (X 1)=12,D (X 1)=2 D .E (X 1)=7,D (X 1)=2 答案:D4.已知随机变量X ________.答案:3.561.方差与标准差的作用随机变量的方差与标准差一样,都是反映随机变量的取值的稳定与波动、集中与离散程度的,方差越小,取值越集中,稳定性越高,波动性越小;反之,方差越大,取值越不集中,稳定性越差,波动性越大.2.随机变量的方差与样本方差的关系随机变量的方差是总体的方差,它是一个常数,样本的方差则是随机变量,是随样本的变化而变化的.对于简单随机样本,随着样本容量的增加,样本的方差越来越接近于总体的方差.求离散型随机变量的方差袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.求ξ的分布列、均值和方差;[解] 由题意得,ξ的所有可能取值为0,1,2,3,4,P (ξ=0)=1020=12,P (ξ=1)=120,P (ξ=2)=220=110,P (ξ=3)=320,P (ξ=4)=420=15.故ξ的分布列为所以E (ξ)=0×12+1×120+2×110+3×320+4×15=1.5,D (ξ)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.[互动探究] 在本例条件下,若η=aξ+b ,E (η)=1,D (η)=11,试求a ,b 的值. 解:由D (aξ+b )=a 2D (ξ)=11,E (aξ+b )=aE (ξ)+b =1,及E (ξ)=1.5,D (ξ)=2.75,得2.75a 2=11,1.5a +b =1,解得a =2,b =-2或a =-2,b =4.1.求离散型随机变量X 的均值、方差的步骤: (1)理解X 的意义,写出X 的所有可能的取值; (2)求X 取每一个值的概率; (3)写出随机变量X 的分布列;(4)由均值、方差的定义求E (X ),D (X ).2.对于变量间存在关系的方差,在求解过程中应注意方差性质的应用,如D (aξ+b )=a 2D (ξ),这样处理既避免了求随机变量η=aξ+b 的分布列,又避免了繁杂的计算,简化了1.(1)已知随机变量ξ若E (ξ)=23,则D (ξ)的值为________.解析:由分布列的性质,得 12+13+p =1,解得p =16. ∵E (ξ)=0×12+1×13+16x =23,∴x =2.D (ξ)=⎝⎛⎭⎫0-232×12+⎝⎛⎭⎫1-232×13+⎝⎛⎭⎫2-232×16=1527=59. 答案:59(2)甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第一次由甲投篮;已知每次投篮甲、乙命中的概率分别为13,34.在前3次投篮中,乙投篮的次数为ξ,求ξ的分布列、期望.解:乙投篮的次数ξ的取值为0,1,2.P (ξ=0)=13×13=19;P (ξ=1)=13×23+23×14=718.P (ξ=2)=23×34=12.故ξ的分布列为E (ξ)=0×19+1×718+2×12=2518,D (ξ)=(0-2518)2×19+(1-2518)2×718+(2-2518)2×12=149324.两点分布与二项分布的方差一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率是13.(1)求这位司机遇到红灯数ξ的期望与方差;(2)若遇上红灯,则需等待30 s ,求司机总共等待时间η的期望与方差. [解] (1)易知司机遇上红灯次数ξ服从二项分布,且ξ~B (6,13),故E (ξ)=6×13=2,D (ξ)=6×13×(1-13)=43.(2)由已知η=30ξ,故E (η)=30E (ξ)=60(s),D (η)=900D (ξ)=1 200.解决此类问题的第一步是判断随机变量ξ服从什么分布,第二步代入相应的公式求解.若ξ服从两点分布,则D (ξ)=p (1-p );若ξ服从二项分布,即ξ~B (n ,p ),则D (ξ)=np (1-p ).2.(1)(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:由E (X )=30,D (X )=20,可得⎩⎪⎨⎪⎧np =30,np (1-p )=20,解得p =13.答案:13(2)在某地举办的射击比赛中,规定每位射手射击10次,每次一发.记分的规则为:击中目标一次得3分;未击中目标得0分;并且凡参赛的射手一律另加2分.已知射手小李击中目标的概率为0.8,求小李在比赛中得分的数学期望与方差.解:用ξ表示小李击中目标的次数,η表示他的得分,则由题意知ξ~B(10,0.8),η=3ξ+2.因为E(ξ)=10×0.8=8,D(ξ)=10×0.8×0.2=1.6,所以E(η)=E(3ξ+2)=3E(ξ)+2=3×8+2=26(分),D(η)=D(3ξ+2)=32×D(ξ)=9×1.6=14.4.均值、方差的综合应用甲、乙两名射手在一次射击中得分为两个相互独立的随机变量X与Y,且X,Y 的分布列如下:(1)求a,b的值;(2)计算X,Y的期望与方差,并以此分析甲、乙技术状况.[解](1)由离散型随机变量的分布列的性质可知a+0.1+0.6=1,得a=0.3.同理0.3+b+0.3=1,得b=0.4.(2)E(X)=1×0.3+2×0.1+3×0.6=2.3,E(Y)=1×0.3+2×0.4+3×0.3=2,D(X)=(1-2.3)2×0.3+(2-2.3)2×0.1+(3-2.3)2×0.6=0.81,D(Y)=(1-2)2×0.3+(2-2)2×0.4+(3-2)2×0.3=0.6.由于E(X)>E(Y),说明在一次射击中,甲的平均得分比乙高,但D(X)>D(Y),说明甲得分的稳定性不如乙,因此甲、乙两人技术水平都不够全面,各有优势与劣势.离散型随机变量的期望反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先运算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定,当然不同的模型要求不同,应视情况而定.3.甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相试评定这两个保护区的管理水平.解:甲保护区违规次数ξ的数学期望和方差分别为E (ξ)=0×0.3+1×0.3+2×0.2+3×0.2=1.3;D (ξ)=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.乙保护区的违规次数η的数学期望和方差分别为E (η)=0×0.1+1×0.5+2×0.4=1.3; D (η)=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.因为E (ξ)=E (η),D (ξ)>D (η),所以两个保护区内每个季度发生的违规事件的平均次数相同,但甲保护区的违规事件次数相对分散和波动性大,乙保护区的违规事件次数更集中和稳定,说明乙保护区的管理水平较好.试求D (X )和D (2X -1).[解] E (X )=0×0.2+1×0.2+2×0.3+3×0.2+4×0.1=1.8,所以D (X )=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0.1=1.56.所以D (2X -1)=4D (X )=4×1.56=6.24.[错因与防范] (1)解答本例易将方差的性质用错,即D (aZ +b )=aD (Z )+b . (2)解决此类问题方法,应利用公式E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ),将求E (aX +b ),D (aX +b )的问题转化为求E (X ),D (X )的问题,从而可以避免求aX +b 的分布列的繁琐的计算,解题时可根据两者之间的关系列出等式,进行相关计算.4.已知随机变量X ~B (100,0.2),那么D (4X +3)的值为( ) A .64 B .256 C .259 D .320解析:选B.由X ~B (100,0.2)知n =100,p =0.2, 由公式得D (X )=np (1-p )=100×0.2×0.8=16, 因此D (4X +3)=42D (X )=16×16=256.1.设一随机试验的结果只有A 和A ,且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生,0,A 不发生,则ξ的方差D (ξ)等于( )A .mB .2m (1-m )C .m (m -1)D .m (1-m ) 解析:选D.随机变量ξ∴E (ξ)=0×(1-m )+1×m =m .∴D (ξ)=(0-m )2×(1-m )+(1-m )2×m =m (1-m ).2.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.6解析:选B.由已知随机变量X +Y =8,所以有Y =8-X . 因此,求得E (Y )=8-E (X )=8-10×0.6=2, D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.3.有两台自动包装机甲与乙,包装质量分别为随机变量X 1,X 2,已知E (X 1)=E (X 2),D (X 1)>D (X 2),则自动包装机________的质量较好.解析:因为E (X 1)=E (X 2),D (X 1)>D (X 2),故乙包装机的质量稳定. 答案:乙4.若随机变量X 的分布列为:(1)求m 的值;(2)求E (X )和D (X ).解:(1)由随机变量分布列的性质,得0.1+0.2+0.4+m +0.1=1,解得m =0.2.(2)E (X )=-2×0.1+(-1)×0.2+0×0.4+1×0.2+2×0.1=0,D (X )=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-0)2×0.1=1.2.[A.基础达标]1.下列说法正确的是( )A .离散型随机变量ξ的数学期望E (ξ)反映了ξ取值的概率的平均值B .离散型随机变量ξ的方差D (ξ)反映了ξ取值的平均水平C .离散型随机变量ξ的数学期望E (ξ)反映了ξ取值的平均水平D .离散型随机变量ξ的方差D (ξ)反映了ξ取值的概率的平均值解析:选C.由离散型随机变量的数学期望与方差的定义可知,C 正确.故选C. 2.设X ~B (n ,p ),若D (X )=4,E (X )=12,则n 和p 分别为( ) A .18和23B .16和12C .20和13D .15和14解析:选A.∵X ~B (n ,p ),∴⎩⎪⎨⎪⎧np =12,np (1-p )=4,解得p =23,n =18.3.已知X 的分布列如下表所示,则下列式子:①E (X )=-13;②D (X )=2327;③P (X =0)=13.其中正确的有( )A.0个 B .1个 C .2个D .3个解析:选C.E (X )=(-1)×12+0×13+1×16=-13,D (X )=(-1+13)2×12+(0+13)2×13+(1+13)2×16=59,故只有①③正确. 4.设随机变量ξ的分布列为P (ξ=k )=C k n (23)k ·(13)n -k ,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( ) A .8B .12 C.29D .16解析:选A.由题意可知ξ~B (n ,23),∴23n =E (ξ)=24.∴n =36. ∴D (ξ)=n ×23×(1-23)=29×36=8.5.(2015·滨州高二期末检测)若随机变量X 的分布列为:P (X =m )=13,P (X =n )=a ,若E (X )=2,则D (X )的最小值等于( )A .0B .2C .4D .无法计算解析:选A.依题意有a =1-13=23,所以E (X )=13m +23n =2,即m +2n =6.又D (X )=13(m-2)2+23(n -2)2=2n 2-8n +8=2(n -2)2,所以当n =2时,D (X )有最小值为0.6.(2014·高考浙江卷)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.解析:设P (ξ=1)=a ,P (ξ=2)=b ,则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.答案:257.(2015·扬州高二检测)设一次试验成功的概率为p ,进行100次独立重复试验,当p =________时,成功次数的标准差的值最大,其最大值为________.解析:由独立重复试验的方差公式可以得到 D (ξ)=np (1-p )≤n (p +1-p 2)2=n4,等号在p =1-p =12时成立,所以D (ξ)max =100×12×12=25,D (ξ)max =25=5.答案:1258.随机变量ξ的分布列如下,其中a ,b ,c 成等差数列.若E (ξ)=53,则D (ξ)的值为________.解析:因为a ,b ,c 成等差数列,所以a +c =2b .又因为a +b +c =1,所以b =13.又因为E (ξ)=a +2b +3c =53,所以a =12,b =13,c =16,所以ξ的分布列为所以D (ξ)=(1-53)2×12+(2-53)2×13+(3-53)2×16=59.答案:599.设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取1个,并且取出不再放回,若以ξ表示取出次品的个数,求ξ的分布列、期望值及方差.解:ξ的可能值为0,1,2,P (ξ=0)=C 02C 310C 312=611;P (ξ=1)=C 12C 210C 312=922;P (ξ=2)=C 22C 110C 312=122.∴ξ的分布列为∴E (ξ)=0×611+1×922+2×122=12,D (ξ)=(0-12)2×611+(1-12)2×922+(2-12)2×122=322+988+988=1544.10.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)=3,标准差D (ξ)=62. (1)求n ,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.解:因为每一株沙柳成活率均为p ,种植了n 株沙柳,相当于做n 次独立重复试验,因此ξ服从二项分布ξ~B (n ,p ).(1)由E (ξ)=np =3,D (ξ)=np (1-p )=32,得1-p =12,从而n =6,p =12.ξ的分布列为:(2)记“需要补种沙柳”为事件A ,则P (A )=P (ξ≤3), 得P (A )=1+6+15+2064=2132.[B.能力提升]1.有甲、乙两名学生,经统计,他们在解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布列大致如下表所示:甲:乙:试分析两名学生的成绩水平.解:∵E (X )=80×0.2+90×0.6+100×0.2=90,D (X )=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40,E (Y )=80×0.4+90×0.2+100×0.4=90,D (Y )=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80, ∵E (X )=E (Y ),D (X )<D (Y ),∴甲生与乙生的成绩均值一样,甲的方差较小,因此甲生的学习成绩较稳定.2.如表,左边为四大名著,右边为名著作者,一位小学语文教师为了激发学生阅读名著的热情,在班内进行名著和其作者的连线游戏,作为奖励,参加连线的同学每连对一个奖励一朵小红花.假定一名小学生对四大名著没有了解,只是随机地连线,试求该学生得到小红花数X 的分布列及其均值、方差.解:可能为0个,1个,2个,4个.P (X =0)=9A 44=924,P (X =1)=C 14×2A 44=824, P (X =2)=C 24×1A 44=624,P (X =4)=1A 44=124. 故X 的分布列为:∴E (X )=0×924+1×824+2×624+4×124=1, D (X )=924×(0-1)2+824×(1-1)2+624×(2-1)2+124×(4-1)2=9+0+6+924=1. 3.某学校为高二年级开展第二外语选修课,要求每位同学最多可以选报两门课程.已知有75%的同学选报法语课,有60%的同学选报日语课.假设每个人对课程的选报是相互独立的,且各人的选报相互之间没有影响.(1)任选1名同学,求其选报过第二外语的概率;(2)任选3名同学,记ξ为3人中选报过第二外语的人数,求ξ的分布列、期望和方差. 解:设事件A :选报法语课;事件B :选报日语课.由题设知,事件A 与B 相互独立,且P (A )=0.75,P (B )=0.6.(1)法一:任选1名同学,该同学一门课程都没选报的概率是P 1=P (A -B -)=P (A )·P (B )=0.25×0.4=0.1.所以该人选报过第二外语的概率是P 2=1-P 1=1-0.1=0.9.法二:任选1名同学,该同学只选报一门课程的概率是P 3=P (AB )+P (AB )=0.75×0.4+0.25×0.6=0.45,该人选报两门课程的概率是P 4=P (AB )=0.75×0.6=0.45.所以该同学选报过第二外语的概率是P 5=P 3+P 4=0.45+0.45=0.9.(2)因为每个人的选报是相互独立的,所以3人中选报过第二外语的人数ξ服从二项分布B (3,0.9),P (ξ=k )=C k 3×0.9k ×0.13-k ,k =0,1,2,3, 即ξ的分布列是ξ的期望是E(ξ)=(或ξ的期望是E(ξ)=3×0.9=2.7),ξ的方差是D(ξ)=3×0.9×(1-0.9)=0.27.。
高中数学选择性必修三 7 3 2 离散型随机变量的方差

规律方法 (1)均值体现了随机变量取值的平均大小,在两种产品相比较时,只比较均 值往往是不恰当的,还需比较它们的取值的离散程度,即通过比较方差,才能准确地 得出更恰当的判断. (2)离散型随机变量的分布列、均值、方差之间存在着紧密的联系,利用题目中所给出 的条件,合理地列出方程或方程组求解,同时也应注意合理选择公式,简化问题的解 答过程.
a+c+13=1,
c=14.
答案
5 12
1 4
5.甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第 一次由甲投篮;已知每次投篮甲、乙命中的概率分别为13,34. (1)求第三次由乙投篮的概率; (2)在前 3 次投篮中,乙投篮的次数为 X,求 X 的分布列、期望及标准差. 解 (1)设第三次由乙投篮为事件 A,则 P(A)=13×23+23×34=1138.
【训练3】 袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1, 2,3,4).现从袋中任取一球,X表示所取球的标号. (1)求X的方差; (2)若Y=aX+b,E(Y)=1,D(Y)=11,试求a,b的值.
解 (1)X的分布列为
X0 1 2 3 4
P
1 2
1 20
1 10
3 20
1 5
则 E(X)=0×12+1×210+2×110+3×230+4×15=1.5. D(X)=(0-1.5)2×12+(1-1.5)2×210+(2-1.5)2×110+(3-1.5)2×230+(4-1.5)2×15=2.75. (2)由D(Y)=a2D(X),得a2·2.75=11,得a=±2. 又E(Y)=aE(X)+b,所以当a=2时, 由1=2×1.5+b,得b=-2; 当a=-2时,由1=-2×1.5+b,得b=4. 所以ab= =2-,2或ab= =- 4 2,即为所求.
高中数学第二章概率253离散型随机变量的方差课件北师大版选修2

第20页
◎思考题 2 已知 X 是一个随机变量,随机变量 X+5 的分
布列如下:
X+5 -2 -1 0
1
2
P
0.2 0.1 0.1 0.4 0.2
第29页
n
【思路】 解答本题可先利用分布列的性质 p i=1求出a的
i=1
值,然后写出相应的分布列并计算出相应期望与方差,最后结 合甲、乙两人射中环数的期望与方差分析两人的射击技术的好 坏.
第30页
【解析】 (1)依题意,0.5+3a+a+0.1=1 解得 a=0.1.
∵乙射中 10,9,8 环的概率分别为 0.3,0.3,0.2,
第17页
题型二 方差的性质 例2 已知随机变量ξ的分布列为
ξ1 2 3 4 5 P 0.1 0.2 0.4 0.2 0.1 另一随机变量η=2ξ-3,求E(η),D(η).
第18页
【解析】 E(η)=2E(ξ)-3=2×(1×0.1+2×0.2+3×0.4+ 4×0.2+5×0.1)-3=2×3-3=3,
n
偏离程度,而 D(X)= (xi-E(X))2pi 为这些偏离程度的加权平
i=1
均,刻画了随机变量 X 与其均值 E(X)的平均偏离程度.我们称 D(X)为随机变量 X 的方差,其算术平方根 D(X)为随机变量 X 的标准差.
第5页
3.随机变量的方差和标准差都反映了随机变量的取值偏离 于均值的平均程度,方差(或标准差)越小,则随机变量偏离于均 值的平均程度越小.
样本方差反映了所有样本数据与样本平均值的偏离程度, 用它可以刻画样本数据的稳定性.
2.3.2离散型随机变量的方差

EX=c×1=c = × = DX=( -c)2×1=0 =(c- ) =( =
四、例题讲解
篮球运动员在比赛中每次罚球命中得1分 例1.篮球运动员在比赛中每次罚球命中得 分, 篮球运动员在比赛中每次罚球命中得 罚不中得0分 罚不中得 分.已知某运动员罚球命中的概率为 0.7,则他罚球 次的得分 的方差是多少? 次的得分X的方差是多少 ,则他罚球1次的得分 的方差是多少? 小结: 一般地,如果随机变量X服从两点分布, 小结: 一般地,如果随机变量X服从两点分布,
X P 1 p 0 1-p -
EX = 1 × p + 0 × (1 − p ) = p
服从两点分布, 若 X 服从两点分布,则 DX = p(1 − p )
篮球运动员在比赛中每次罚球命中得1分 例2.篮球运动员在比赛中每次罚球命中得 分, 篮球运动员在比赛中每次罚球命中得 罚不中得0分 罚不中得 分.已知某运动员罚球命中的概率为 0.7,他连续罚球 次;求X的方差。 的方差。 ,他连续罚球3次 的方差 解: (1) X~B(3,0.7) ~ ( , )
ξ
P
1 0.4
2 0.2
3 0.2
4 0.1
5 0.1
商场经销一件该商品,采用 期付款 其利润为200 期付款, 商场经销一件该商品,采用1期付款,其利润为 期或3期付款 期或5 元,分2期或 期付款,其利润为 期或 期付款,其利润为250元,分4期或 元 期或 期付款,其利润为300元, η 表示经销一件该商品的 期付款,其利润为 元 利润。 利润。 位顾客中, (1)求事件 :”购买该商品的 位顾客中,至少有 )求事件A: 购买该商品的3位顾客中 一位采用1期付款 的概率P(A); 期付款” 一位采用 期付款” 的概率 ; 的分布列及期望E (2)求 η 的分布列及期望 η 。 )
高中数学专题讲义-离散型随机变量的期望与方差1

1. 离散型随机变量及其分布列⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y L 表示.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列将离散型随机变量X 所有可能的取值i x 与该取值对应的概率i p (1,2,,)i n =L 列表表示:X 1x 2x … i x … n x P1p2p…i p…n pX 的分布列.2.几类典型的随机分布⑴两点分布如果随机变量X 的分布列为X 1 0 P p q其中01p <<,1q p =-X 服从参数为p 的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布.X 1P 0.8 0.2两点分布又称01-布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列.知识内容数学期望⑶二项分布1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)kk n k n n P k p p -=-(0,1,2,,)k n =L . 2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q -==,其中0,1,2,,k n =L .于是得到由式001110()C CC C n n n k k n k nn n n n n q p p q p qp q p q --+=++++L L 各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p .二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑷正态分布1. 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22()2()x f x μσ--=,x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑶重要结论:①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%.②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.⑷若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数. ()()x P x μξφσ-<=.标准正态分布的值可以通过标准正态分布表查得.分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.3.离散型随机变量的期望与方差1.离散型随机变量的数学期望定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++L ,叫做这个离散型随机变量X 的均值或数学期望(简称期望).离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平. 2.离散型随机变量的方差一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-L 叫做这个离散型随机变量X 的方差.离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度).()D X 叫做离散型随机变量X 的标准差,它也是一个衡量离散型随机变量波动大小的量.3.X 为随机变量,a b ,为常数,则2()()()()E aX b aE X b D aX b a D X +=++=,; 4. 典型分布的期望与方差:⑴二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np .⑵二项分布:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑶超几何分布:若离散型随机变量X 服从参数为N M n ,,的超几何分布,则()nME X N=,2()()()(1)n N n N M M D X N N --=-.4.事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯I I L I L ,并且上式中任意多个事件i A 换成其对立事件后等式仍成立.5.条件概率对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =I (或D AB =).【例1】 投掷1枚骰子的点数为ξ,则ξ的数学期望为( )A .3B .3.5C .4D .4.5【例2】 同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是( )A .20B .25C .30D .40【例3】 从123456,,,,,这6个数中任取两个,则两数之积的数学期望为 .【例4】 一射手对靶射击,直到第一次命中为止,每次命中率为0.6,现共有4颗子弹,命中后尚余子弹数目ξ的期望为( )A .2.44B .3.376C .2.376D .2.4【例5】 一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b 、()01c ∈,),已知他投篮一次得分的数学期望为2(不计其它得分情况),则ab 的最大值为( )A .148B .124C .112D .16【例6】 一家保险公司在投保的50万元的人寿保险的保单中,估计每一千保单每年有15个理赔,若每一保单每年的营运成本及利润的期望值为200元,试求每一保单的保费.【例7】 甲乙两人独立解出某一道数学题的概率依次为1212()P P P P >,,已知该题被甲或乙解出的概率为0.8,甲乙两人同时解出该题的概率为0.3,求:⑴12P P ,; ⑵解出该题的人数X 的分布列及EX .典例分析【例8】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是12,且面试是否合格互不影响.求签约人数ξ的数学期望.【例9】某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:⑴⑵已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.【例10】某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.【例11】某同学如图所示的圆形靶投掷飞镖,飞镖落在靶外(环数记为0)的概率为0.1,飞镖落在靶内的各个点是椭机的.已知圆形靶中三个圆为同心圆,半径分别为30cm、20cm、10cm,飞镖落在不同区域的环数如图中标示.设这位同学投掷一次一次得到的环数这个随机变量X,求X的分布列及数学期望.8910【例12】某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.⑴求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A;⑵求η的分布列及期望Eη.【例13】学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且7Pξ>=.(0)10⑴求文娱队的人数;⑵写出ξ的概率分布列并计算期望.【例14】一接待中心有A、B、C、D四部热线电话.已知某一时刻电话A、B占线的概率为0.5,电话C、D占线的概率为0.4,各部电话是否占线相互之间没有影响.假设该时刻有X部电话占线,试求随机变量X的概率分布和它的期望.【例15】某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.40.50.6,,,且客人是否游览哪个景点互不影响,设X表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.求X的分布及数学期望.【例16】某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45、35、25,且各轮问题能否正确回答互不影响.⑴求该选手被淘汰的概率;⑵该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.(注:本小题结果可用分数表示)【例17】在某次测试中,甲、乙、丙三人能达标的概率分别为0.4,0.5,0.8,在测试过程中,甲、乙、丙能否达标彼此间不受影响.⑴求甲、乙、丙三人均达标的概率;⑵求甲、乙、丙三人中至少一人达标的概率;⑶设X表示测试结束后达标人数与没达标人数之差的绝对值,求X的概率分布及数学期望EX.【例18】在1,2,3,…,9这9个自然数中,任取3个数.⑴求这3个数中恰有1个是偶数的概率;⑵设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.【例19】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为12,乙、丙面试合格的概率都是13,且面试是否合格互不影响.求:⑴至少有1人面试合格的概率;⑵签约人数X的分布列和数学期望.【例20】某公司“咨询热线”电话共有8路外线,经长期统计发现,在8点到10点这段时间内,外线电话同时打入情况如下表所示:①求至少一种电话不能一次接通的概率;②在一周五个工作日中,如果至少有三个工作日的这段时间(8点至10点)内至少一路电话不能一次接通,那么公司的形象将受到损害,现用该事件的概率表示公司形象的“损害度”,求上述情况下公司形象的“损害度”.⑵求一周五个工作日的这段时间(8点至10点)内,电话同时打入数ξ的期望.【例21】某先生居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率,如图.(例如:A C D→→算作两个路段:路段AC发生堵车事件的概率为110,路段CD发生堵车事件的概率为115).记路线A C F B→→→中遇到堵车次数为随机变量X,求X的数学期望()E X.11510【例22】口袋里装有大小相同的4个红球和8个白球,甲、乙两人依规则从袋中有放回摸球,每次摸出一个球,规则如下:若一方摸出一个红球,则此人继续下一次摸球;若一方摸出一个白球,则由对方接替下一次摸球,且每次摸球彼此相互独立,并由甲进行第一次摸球;求在前三次摸球中,甲摸得红球的次数ξ的分布列及数学期望.【例23】 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次,令X 表示甲、乙两人摸球后获得的奖金总额.求:⑴X 的概率分布;⑵X 的期望.【例24】 如图所示,甲、乙两只小蚂蚁分别位于一个单位正方体的A 点和1C 点处,每只小蚂蚁都可以从每一个顶点处等可能地沿各条棱向每个方向移动,但不能按原路线返回.如:甲在A 时可沿AB ,AD ,1AA 三个方向移动,概率都是13,到达B 点时,可沿BC ,1BB 两个方向移动,概率都是12.已知小蚂蚁每秒钟移动的距离为1个单位.⑴如果甲、乙两只小蚂蚁都移动1秒,则它们所走的路线是异面直线的概率是多少?⑵若乙蚂蚁不动,甲蚂蚁移动3秒后,甲、乙两只小蚂蚁间的距离的期望值是多少?D1C1(乙)B1A(甲)B CDA1【例25】从集合{}12345,,,,的所有非空子集....中,等可能地取出一个.⑴记性质:γ集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;⑵记所取出的非空子集的元素个数为ξ,求ξ的分布列和数学期望Eξ.【例26】某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B 肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是12.同样也假定D受A、B和C感染的概率都是13.在这种假定之下,B、C、D中直接..受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).【例27】⑴用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?⑵用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.求恰有两个区域用红色鲜花的概率.⑶条件同⑵,记花圃中红色鲜花区域的块数为X,求它的分布列及其数学期望EX.图二图一【例28】有甲、乙两个箱子,甲箱中有6张卡片,其中有2张写有数字0,2张写有数字1,2张写有数字2;乙箱中有6张卡片,其中3张写有数字0,2张写有数字1,1张写有数字2.⑴如果从甲箱中取出1张卡片,乙箱中取出2张卡片,那么取得的3张卡片都写有数字0的概率是多少?⑵从甲、乙两个箱子中各取一张卡片,设取出的2张卡片数字之积为X,求X的分布列和期望.【例29】 A B ,两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是123A A A ,,,B 队队员是123B B B ,,,按以往多次比赛的统计,对阵队员之间胜负概率如下:现按表中对阵方式出场,每场胜队得1分,负队得0分.设A 队、B 队最后总分分别为ξη,.求ξη,的期望.【例30】 连续抛掷同一颗均匀的骰子,令第i 次得到的点数为i a ,若存在正整数k ,使126k a a a ++=L ,则称k 为你的幸运数字.⑴求你的幸运数字为4的概率;⑵若1k =,则你的得分为6分;若2k =,则你的得分为4分;若3k =,则你的得分为2分;若抛掷三次还没找到你的幸运数字则记0分.求得分ξ的分布列和数学期望.【例31】 在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A 处的命中率1q 为0.25,在B 处的命中率为2q ,该同学选择先在A 处投一球,以后都在B 处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为⑴ 2⑵ 求随机变量ξ的数学期望E ξ;⑶ 试比较该同学选择都在B 处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.【例32】 在奥运会射箭决赛中,参赛号码为1~4号的四名射箭运动员参加射箭比赛.⑴通过抽签将他们安排到1~4号靶位,试求恰有两名运动员所抽靶位号与其参赛号码相同的概率;⑵记1号、2号射箭运动员射箭的环数为ξ(ξ所有取值为01210L ,,,,)的概率分别为1P 、2P .根据教练员提供的资料,其概率分布如下表:②判断1号,2号射箭运动员谁射箭的水平高?并说明理由.【例33】某人有10万元,准备用于投资房地产或购买股票,如果根据盈利表进行决策,那么,合理的投资方案应该是哪种?【例34】甲、乙两名工人加工同一种零件,分别检测5个工件,结果分别如下:试比较他们的加工水平.【例35】一软件开发商开发一种新的软件,投资50万元,开发成功的概率为0.9,若开发不成功,则只能收回10万元的资金,若开发成功,投放市场前,召开一次新闻发布会,召开一次新闻发布会不论是否成功都需要花费10万元,召开新闻发布会成功的概率为0.8,若发布成功则可以销售100万元,否则将起到负面作用只能销售60万元,而不召开新闻发布会则可销售75万元.⑴求软件成功开发且成功在发布会上发布的概率.⑵如果开发成功就召开新闻发布会的话,求开发商的盈利期望.⑶如果不召开新闻发布会,求开发商盈利的期望值,并由此决定是否应该召开新闻发布会.【例36】某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用.单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85.若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值.)【例37】 最近,李师傅一家三口就如何将手中的10万块钱投资理财,提出了三种方案:第一种方案:将10万块钱全部用来买股票.据分析预测:投资股市一年可能获利40%,也可能亏损20%(只有这两种可能),且获利的概率为12; 第二种方案:将10万块钱全部用来买基金.据分析预测:投资基金一年可能获利20%,也可能损失10%,也可能不赔不赚,且三种情况发生的概率分别为311555,,; 第三种方案:将10万块钱全部存入银行一年,现在存款利率为4%,存款利息税率为5%.针对以上三种投资方案,请你为李师傅家选择一种合理的理财方法,并说明理由.【例38】 某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令(12)i i ξ=,表示方案i实施两年后柑桔产量达到灾前产量的倍数.⑴写出12ξξ,的分布列;⑵实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?⑶不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?【例39】某企业准备投产一批特殊型号的产品,已知该种产品的成本C与产量q的函数关系式为3232010(0)3qC q q q=-++>,该种产品的市场前景无法确定,有三种可能出现的情况,各种情形发生的概率及产品价格p与产量q的函数关系式如下表所示:123k q ,而市场前景无法确定的利润. ⑴分别求利润123L L L ,,与产量q 的函数关系式;⑵当产量q 确定时,求期望k E ξ;⑶试问产量q 取何值时,市场无法确定的利润取得最大值.【例40】 某电器商由多年的经验发现本店出售的电冰箱的台数ξ是一个随机变量,它的分布列1()(1212)12P k ξξ===L ,,,,设每售出一台电冰箱,该台冰箱可获利300元,若售不出则囤积在仓库,每台需支付保管费100元/月,问:该电器商月初购进多少台电冰箱才能使自己的月平均收入最大?【例41】 某鲜花店每天以每束2.5元购入新鲜玫瑰花并以每束5元的价格销售,店主根据以往的销售统计得到每天能以此价格售出的玫瑰花数ξ的分布列如表所示,若某天所购进的玫瑰花未售完,则当天未售出的玫瑰花将以每束1.5元的价格降价处理完毕.⑴若某天店主购入玫瑰花40束,试求该天其从玫瑰花销售中所获利润的期望; ⑵店主每天玫瑰花的进货量x (3050x ≤≤,单位:束)为多少时,其有望从玫瑰花销售中获取最大利润?。
高中数学《离散型随机变量的方差》导学案

2.3.2 离散型随机变量的方差知识点 方差、标准差的定义及方差的性质(1)设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则称D (X )=□01∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,其算术平方根D (X )为随机变量X 的□02标准差. (2)随机变量的方差和标准差都反映了随机变量取值偏离于均值的□03平均程度,方差或标准差越小,则随机变量偏离于均值的□04平均程度越小. 知识点 两点分布与二项分布的方差X X 服从两点分布X ~B (n ,p ) D (X ) □01p (1-p )(其中p 为成功概率) □02np (1-p )方差的性质: D (aX +b )=a 2D (X ), D (C )=0(C 是常数).1.判一判(正确的打“√”,错误的打“×”)(1)离散型随机变量的方差越大,随机变量越稳定.( ) (2)若a 是常数,则D (a )=0.( )(3)离散型随机变量的方差反映了随机变量偏离于期望的平均程度.( ) 答案 (1)× (2)√ (3)√ 2.做一做(1)若随机变量X 服从两点分布,且成功的概率p =0.5,则E (X )和D (X )分别为________.(2)设随机变量ξ~B ⎝ ⎛⎭⎪⎫6,12,则D (ξ)=________.(3)如果X 是离散型随机变量,Y =3X +2,那么D (Y )=________D (X ). 答案 (1)0.5和0.25 (2)32 (3)9 解析 (1)因为X 服从两点分布, 所以X 的概率分布为X 0 1 P0.50.5所以E (X )=0×0.5+1×0.5=0.5, D (X )=0.52×0.5+(1-0.5)2×0.5=0.25. (2)因为随机变量ξ~B ⎝ ⎛⎭⎪⎫6,12,所以D (ξ)=6×12×⎝ ⎛⎭⎪⎫1-12=32.(3)由于X 是离散型随机变量,Y =3X +2呈线性关系,代入公式,则D (Y )=32D (X )=9D (X ).探究1 方差及标准差的计算 例1 已知随机变量X 的分布列为X 0 10 20 50 60 P1325115215115(1)求X 的方差及标准差; (2)设Y =2X -E (X ),求D (Y ).[解] (1)E (X )=0×13+10×25+20×115+50×215+60×115=16,D (X )=(0-16)2×13+(10-16)2×25+(20-16)2×115+(50-16)2×215+(60-16)2×115=384.∴D(X)=8 6.(2)∵Y=2X-E(X),∴D(Y)=D(2X-E(X))=4D(X)=4×384=1536.拓展提升求方差和标准差的关键是求分布列,只要有了分布列,就可以依据定义求数学期望,进而求出方差、标准差,同时还要注意随机变量aX+b的方差可用D(aX +b)=a2D(X)求解.[跟踪训练1]已知随机变量ξ的分布列如下表:(1)求ξ的均值、方差和标准差;(2)设η=2ξ+3,求E(η),D(η).解(1)均值E(ξ)=(-1)×12+0×13+1×16=-13;方差D(ξ)=(x1-E(ξ))2·p1+(x2-E(ξ))2·p2+(x3-E(ξ))2·p3=59;标准差D(ξ)=53.(2)E(η)=2E(ξ)+3=73;D(η)=4D(ξ)=209.探究2两点分布与二项分布的方差例2(1)篮球比赛中每次罚球命中得1分,不中得0分.已知某运动员罚球命中的概率为0.7,求他一次罚球得分的方差;(2)将一枚硬币连续抛掷5次,求正面向上的次数的方差;(3)老师要从10名同学中随机抽3名同学参加社会实践活动,其中男同学有6名,求抽到男同学人数的方差.[解](1)设一次罚球得分为X,X服从两点分布,即∴D (X )=p (1-p )=0.7×0.3=0.21.(2)设正面向上的次数为Y ,则Y ~B ⎝ ⎛⎭⎪⎫5,12,D (Y )=np (1-p )=5×12×12=1.25. (3)设抽到男同学的人数为ξ. ξ服从超几何分布,分布列为即∴E (ξ)=0×130+1×310+2×12+3×16=0.3+1+0.5=1.8,D (ξ)=(0-1.8)2×130+(1-1.8)2×310+(2-1.8)2×12+(3-1.8)2×16=0.56.拓展提升解决此类问题的第一步是判断随机变量ξ服从什么分布,第二步代入相应的公式求解.若ξ服从两点分布,则D (ξ)=p (1-p );若ξ服从二项分布,即ξ~B (n ,p ),则D (ξ)=np (1-p ).[跟踪训练2] (1)若随机变量X 的分布列如下表所示则E (X )=________,D (X )=________;(2)若随机变量X ~B (3,p ),D (X )=23,则p =________. 答案 (1)0.6 0.24 (2)13或23解析(1)∵E(X)=0×0.4+1×0.6=0.6,D(X)=0.6×(1-0.6)=0.6×0.4=0.24.(2)∵X~B(3,p),∴D(X)=3p(1-p),由3p(1-p)=23,得p=13或p=23.探究3方差的实际应用例3有甲、乙两名同学,据统计,他们在解答同一份数学试卷时,各自的分数在80分,90分,100分的概率分布大致如下表所示:试分析甲、乙两名同学谁的成绩好一些.[解]在解答同一份数学试卷时,甲、乙两人成绩的均值分别为E(X甲)=80×0.2+90×0.6+100×0.2=90,E(X乙) =80×0.4+90×0.2+100×0.4=90.方差分别为D(X甲)=(80 -90)2×0.2+(90 -90)2×0.6+(100-90)2×0.2 =40,D(X乙)=(80-90)2×0.4+(90-90)2×0.2+(100 -90)2×0.4=80.由上面数据,可知E(X甲)=E(X乙),D(X甲)<D(X乙).这表示甲、乙两人所得分数的均值相等,但两人的分数的稳定程度不同,甲同学分数较稳定,乙同学分数波动较大,所以甲同学的成绩较好.拓展提升离散型随机变量的均值反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此,在实际决策问题中,需先计算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定.因此,在利用均值和方差的意义去分析解决实际问题时,两者都要分析.[跟踪训练3]甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ与η,且ξ,η的分布列为:ξ12 3P a 0.10.6η12 3P 0.3 b 0.3(1)求a,b的值;(2)计算ξ,η的期望与方差,并依此分析甲、乙技术状况.解(1)由离散型随机变量分布列的性质得a+0.1+0.6=1,解得a=0.3;同理0.3+b+0.3=1,解得b=0.4.(2)E(ξ)=1×0.3+2×0.1+3×0.6=2.3;E(η)=1×0.3+2×0.4+3×0.3=2;D(ξ)=(1-2.3)2×0.3+(2-2.3)2×0.1+(3-2.3)2×0.6=0.81;D(η)=(1-2)2×0.3+(2-2)2×0.4+(3-2)2×0.3=0.6.由于E(ξ)>E(η),说明在一次射击中,甲的平均得分比乙高,但D(ξ)>D(η),说明甲得分的稳定性不如乙,因此甲、乙两人技术水平都不够全面,各有优势与劣势.1.随机变量的方差和标准差都反映了随机变量取值的稳定与波动、集中与离散的程度,以及随机变量取值偏离于均值的平均程度.方差D (X )或标准差越小,则随机变量X 偏离均值的平均程度越小;方差越大,表明平均偏离的程度越大,说明X 的取值越分散.2.求离散型随机变量X 的均值、方差的步骤 (1)理解X 的意义,写出X 的所有可能的取值; (2)求X 取每一个值的概率; (3)写出随机变量X 的分布列; (4)由均值、方差的定义求E (X ),D (X ).特别地,若随机变量服从两点分布或二项分布,可根据公式直接计算E (X )和D (X ).1.已知随机变量X 的分布列为X 0 1 2 P131313设Y =2X +3,则D (Y )=( ) A.83 B.53 C.23 D.13 答案 A解析 ∵E (X )=0×13+1×13+2×13=1,∴D (X )=(0-1)2×13+(1-1)2×13+(2-1)2×13=23, ∴D (Y )=D (2X +3)=4D (X )=83.2.一批产品中,次品率为14,现有放回地连续抽取4次,若抽取的次品件数记为X ,则D (X )的值为( )A.43B.83C.34D.116 答案 C解析 由题意,次品件数X 服从二项分布,即X ~B ⎝ ⎛⎭⎪⎫4,14,故D (X )=np ·(1-p )=4×14×34=34.3.已知ξ~B (n ,p ),且E (3ξ+2)=9.2,D (3ξ+2)=12.96,则二项分布的参数n ,p 的值为( )A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.1 答案 B解析 由E (3ξ+2)=3E (ξ)+2,D (3ξ+2)=9D (ξ),及ξ~B (n ,p )时,E (ξ)=np ,D (ξ)=np (1-p )可知⎩⎪⎨⎪⎧ 3np +2=9.2,9np (1-p )=12.96,所以⎩⎪⎨⎪⎧n =6,p =0.4.故选B. 4.袋中有大小相同的三个球,编号分别为1,2,3,从袋中每次取出一个球,若取到球的编号为奇数,则取球停止,用 X 表示所有被取到的球的编号之和,则X 的方差为________.答案 179解析 X 的分布列为则E (X )=1×13+3×12+5×16=83,D (X )=179.5.一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是13.(1)求这位司机遇到红灯数ξ的期望与方差;(2)若遇上红灯,则需等待30秒,求司机总共等待时间η的期望与方差. 解 (1)易知司机遇上红灯次数ξ服从二项分布,且 ξ~B ⎝ ⎛⎭⎪⎫6,13,∴E (ξ)=6×13=2,D (ξ)=6×13×⎝ ⎛⎭⎪⎫1-13=43.(2)由已知η=30ξ,∴E (η)=30E (ξ)=60, D (η)=900D (ξ)=1200.A 级:基础巩固练一、选择题1.已知X 的分布列为X -1 0 1 P131313则①E (X )=13,②D (X )=2327,③P (X =0)=13,其中正确的个数为( ) A .0 B .1 C .2 D .3 答案 B解析 E (X )=(-1)×13+0×13+1×13=0,故①不正确;D (X )=(-1+0)2×13+(0+0)2×13+(1+0)2×13=23,故②不正确;③P (X =0)=13显然正确.2.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取1球,有放回地摸取5次,设摸得白球的个数为X ,已知E (X )=3,则D (X )=( )A.85B.65C.45D.25 答案 B解析 由题意知X ~B ⎝ ⎛⎭⎪⎫5,3m +3,所以E (X )=5×3m +3=3,解得m =2,所以X ~B ⎝ ⎛⎭⎪⎫5,35,故D (X )=5×35×25=65.3.设随机变量ξ的分布列为P (ξ=k )=C k n ⎝ ⎛⎭⎪⎫23k ·⎝ ⎛⎭⎪⎫13n -k,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( )A .8B .12 C.29 D .16 答案 A解析 由题意可知ξ~B ⎝ ⎛⎭⎪⎫n ,23,∴23n =E (ξ)=24.∴n =36.又D (ξ)=n ×23×⎝ ⎛⎭⎪⎫1-23=29×36=8.4.掷一枚质地均匀的骰子12次,则出现向上的一面是3的次数的均值和方差分别是( )A .2和5B .2和53C .4和83 D.72和1 答案 B解析 由题意知出现向上的一面为3的次数符合二项分布,掷12次骰子相当于做12次独立重复试验,且每次试验出现向上的一面为3的概率是16,∴E (ξ)=12×16=2,D (ξ)=12×16×56=53.故选B.5.随机变量X 的分布列为若a ,b ,c 成等差数列,E (X )=13,则D (X )=( ) A.49 B.59 C.13 D.23 答案 B解析 由题可得⎩⎪⎨⎪⎧a +b +c =1,-a +c =13,2b =a +c ,解得⎩⎪⎨⎪⎧a =16,b =13,c =12,所以D (X )=169×16+19×13+49×12=59.故选B.二、填空题6.设X ~B (n ,p ),且E (X )=15,D (X )=454,则n ,p 的值分别为________和________.答案 60 14 解析由题意,可知⎩⎨⎧E (x )=np =15,D (X )=np (1-p )=454,解得⎩⎨⎧n =60,p =14.7.两封信随机投入A ,B ,C 三个空邮箱中,则A 邮箱的信件数ξ的方差D (ξ)=________.答案 49解析 ξ的所有可能取值为0,1,2,P (ξ=0)=2×29=49,P (ξ=1)=C 12×29=49,P (ξ=2)=19,所以E (ξ)=0×49+1×49+2×19=23,D (ξ)=⎝ ⎛⎭⎪⎫0-232×49+⎝ ⎛⎭⎪⎫1-232×49+⎝ ⎛⎭⎪⎫2-232×19=49. 8.设p 为非负实数,随机变量X 的分布列为则E (X )的最大值为________,D (X )的最大值为________. 答案 32 1解析 E (X )=0×⎝ ⎛⎭⎪⎫12-p +1×p +2×12=p +1.又0≤12-p ≤12,∴0≤p ≤12. ∴E (X )max =32.D (X )=(p +1)2⎝ ⎛⎭⎪⎫12-p +p 2·p +(p -1)2·12=-p 2-p +1=-⎝ ⎛⎭⎪⎫p +122+54≤1, ∴当p =0时,D (X )max =1. 三、解答题9.如图,左边为四大名著,右边为名著作者,一位小学语文教师为了激发学生阅读名著的热情,在班内进行名著和其作者的连线游戏,作为奖励,参加连线的同学每连对一个奖励一朵小红花.假定一名小学生对四大名著没有了解,只是随机地连线,试求该学生得到小红花数X 的分布列及其均值、方差.《三国演义》罗贯中《水浒传》施耐庵《西游记》吴承恩《红楼梦》曹雪芹解该小学生连线的情况有都连错,连对一个,连对二个,连对四个,故其得小红花数可能为0个,1个,2个,4个.P(X=0)=9A44=924=38,P(X=1)=C14×2A44=824=13,P(X=2)=C24×1A44=624=14,P(X=4)=1A44=124.故所以E(X)=0×38+1×13+2×14+4×124=1,D(X)=38×(0-1)2+13×(1-1)2+14×(2-1)2+124×(4-1)2=9+0+6+924=1.B级:能力提升练10.甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.这两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:甲保护区:乙保护区:解甲保护区的违规次数ξ1的均值和方差为:E(ξ1)=0×0.3+1×0.3+2×0.2+3×0.2=1.3;D(ξ1)=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.乙保护区的违规次数ξ2的均值和方差为:E(ξ2)=0×0.1+1×0.5+2×0.4=1.3;D(ξ2)=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.因为E(ξ1)=E(ξ2),D(ξ1)>D(ξ2),所以两个保护区内每季度发生的违规事件平均次数是相同的,但乙保护区内发生的违规事件次数更集中和稳定,而甲保护区内发生的违规事件次数相对分散和波动.因此乙保护区的管理水平较高.。
高中数学_离散型随机变量的方差教学设计学情分析教材分析课后反思

2.3.2离散型随机变量的方差教学目标:知识与技能:掌握离散型随机变量的方差、标准差的意义;会根据离散型随机变量的分布列求出方差或标准差;掌握特殊分布的方差公式,会利用公式计算.过程与方法:通过两名同学射中目标靶环数情况引入本节内容,之后与样本方差比较,给出相应公式。
然后学会用公式计算有关随机变量的方差 。
情感、态度与价值观:感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:离散型随机变量的方差、标准差. 教学难点:离散型随机变量方差的实际应用。
教学过程: 一、复习回顾:1、数学期望:离散型随机变量X 的概率分布为则称11221()ni i n n i ii E X x p x p x p x p x p ==+++++=∑L L 的均值或数学期望,简称期望.数学期望的意义:它反映了离散型随机变量取值的平均水平2、期望的一个性质: ()()E aX b aE X b +=+3、两个特殊分布的均值 若X 服从两点分布,则E(X) =p若X :B (n,p )(二项分布),则E(X)=np.二、师生互动,新课讲解:问题:要从两名同学中挑选出一名,代表班级参加射击比赛.根据以往的成绩记录, 第一名同学击中目标靶的环数X 1的分布列为第二名同学击中目标靶的环数X 2的分布列为应派哪位同学参赛?通过计算得到的期望值相等12()8,()8.E X E X ==因此只通过均值并不能决定派哪名同学参赛,还有没有其他的指标来判断两名同学的射击情况?学生易联想到方差,在必修三中学过样本的方差,它反映的是样本数据的稳定性。
通过对样本方差的回顾2222121n S x x x x x x n ---⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦L 211.n i i i x x p n -=⎛⎫=- ⎪⎝⎭∑引出本节方差的定义. 三、方差的定义1.设离散型随机变量X 的概率分布为则:2(())i xE X -描述职x i ( i=1,2,3,……)相对于均值E(X)的偏离程度,()()()()()()2221122()n n D X x E x p x E x p x E x p =-+-++-L ()()21.ni i i x E X p ==-∑为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度,我们称D (X )为随机变量X ()X σ)为随机变量X 的标准差。
人教版高中数学选修二23.3离散型随机变量的期望、方差

一年内,一辆车保险公司平均收益多少?
X -2000 1000 P 0.03 0.97
EX 2000 0.03 1000 0.97 910
人教版高中数学选修二23.3离散型随 机变量 的期望 、方差
教学过程
人教版高中数学选修二23.3离散型随 机变量 的期望 、方差
思考
m
p
一年中一辆车受损的概率为0.03。现保
温故知新:
1.一般地,若离散型随机变量X的概率分布为
X
x1 x2 …
xi … xn
P
p1 p2 …
pi … pn
则X的期望为:EX x1 p1 x2 p2 xi pi xn pn
它反映了离散型随机变量取值的平均水平。
X的方差为:
D ( x1 E )2 p1 ( xi E )2 pi ( xn E )2 pn
人教版高中数学选修二23.3离散型随 机变量 的期望 、方差
pm
据统计,一年中一辆车受损的概率为0.03。现保险公司拟 开设一年期租车保险,一辆车一年的保费为1000元,若在一 年内该车受损,则保险公司需赔偿3000元。
n ③ m , n , p应满足什么关系,保险公司方可盈利?
解:设 X 表示盈利数,则随机变量的分布列为
D np(1 p)
练习:
1.已知随机变量x的分布列为则Ex与Dx的值为(D)
(A) 0.6和0.7 (B)1.7和0.3 1 2 (C) 0.3和0.7 (D)1.7和0.21 P 0.3 0.7
2.已知x~B(100,0.5),则Ex=5__0_,Dx=2__5__,x=_5__. E(2x-1)=_9_9__, D(2x-1)=_1_0_0_, (2x-1)=__1_0__
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若X ~ B(n, p),则DX np(1 p)
题型一 求离散型随机变量的方差
袋中有 20 个大小相同的球,其中记上 0 号的 有 10 个,记上 n 号的有 n 个(n=1,2,3,4).现从袋中任取一球, ξ 表示所取球的标号.
(1)求 ξ 的分布列、均值和方差; (2)若 η=aξ+b,E(η)=1,D(η)=11,试求 a,b 的值.
课堂练习 书本第68页
1、已知随机变量X的分布列
X01234 P 0.1 0.2 0.4 0.2 0.1 求DX和σX.
解:EX 00.110.2 20.4 30.2 40.1 2 DX (0 2)2 0.1 (1 2)2 0.2 (2 2)2 0.4 (3 2)2 0.2 (4 2)2 0.1 1.2
人教A版选修2-3 第二章
2.3.2 离散型随机变量的方差
一、复习回顾
1、离散型随机变量的数学期望
X x1 x2 ··· xi ··· xn P p1 p2 ··· pi ··· pn
E X x1 p1 x2 p2 L xi pi L xn pn
数学期望是反映离散型随机变量的平均水平 2、数学期望的性质
0.2 0.1
根据工资待遇的差异情况,你愿意选择哪家单位?
解:EX1 1400, EX 2 1400 DX1 40000, DX 2 160000
在两个单位工资的数学期望相等的情况下, 如果认为自己能力很强,应选择工资方差大 的单位,即乙单位;如果认为自己能力不强, 就应选择工资方差小的单位,即甲单位。
X DX 1.2 1.095
2、若随机变量X满足P(X=c)=1,其中c为 常数,求EX和DX。
解:离散型随机变量X的分布列为:
Xc P1
单点分布
EX=c×1=c DX=(c-c)2×1=0
二.随机变量方差的性质
你能证明下面结论吗?
D(aX b) a2DX
三.特殊分布列的方差
练习册 第36页
练习 一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率 分布直方图,如图:
将日销售量落入各组的频率视为概率,并假设每天的销售量 相互独立. (1)求在未来连续3天里,有连续2天的日销售量都不低于100 个且另1天的日销售量低于50个的概率; (2)用X表示在未来3天里日销售量不低于100个的天数,求 随机变量X的分布列,期望及方差.
【解】 (1)由题意得,ξ 的所有可能取值为 0,1,2,3,4,P(ξ
=0)=1200=12,P(ξ=1)=210,P(ξ=2)=220=110,P(ξ=3)=230,
P(ξ=4)=240=15.
故 ξ 的分布列为
ξ0 1 2 3 4
P
1 2
1 20
1 10
3 20
1 5
所以 E(ξ)=0×12+1×210+2×110+3×230+4×15=1.5,D(ξ) =(0-1.5)2×12+(1-1.5)2×210+(2-1.5)2×110+(3-1.5)2×230 +(4-1.5)2×15=2.75.
(2)由 D(aξ+b)=a2D(ξ)=11,E(aξ+b)=aE(ξ)+b=1,及 E(ξ)=1.5,D(ξ)=2.75 得,2.75a2=11,1.5a+b=1,解得 a=2, b=-2 或 a=-2,b=4.
利用公式 E(aX+b)=aE(X)+b,D(aX+b)=a2D(X),将求 E(aX+b),D(aX+b)的问题转化为求 E(X),D(X)的问题,从而 可以避免求 aX+b 的分布列的繁琐的计算,解题时可根据两者 之间的关系列出等式,进行相关计算.
题型二 方差的实际应用
例2 有甲乙两个单位都愿意聘用你,而你能获得如下 信息:
甲单位不同职位月工资X1/元 1200 1400
获得相应职位的概率P1
0.4 0.3
1600 1800 0.2 0.1
乙单位不同职位月工资X2/元 1000 1400 1800 2200
获得相应职位的概率P2
0.4 0.3
E(aX b) aE X b
3 特殊分布列的数学期望
(1)X服从两点分布,则
X
1
P
p
则 EX p
0 1-p
(2)X服从二项分布,即X~B(n,p),则
EX np
一.离散型随机变量取值的方差
一般地,若离散型随机变量X的概率分布为:
X x1 x2 ··· xi ··· xn P p1 p2 ··· pi ··· pn
题型二 特殊分布列的均值与方差
1、已知X~B(n, p),EX 8,DX 1.6, 则n 10, p 0.8
2、有一批数量很大的商品,其中次品占 1%,现从中任意地连续取出200件商品, 设其次品数为X,求EX和DX。
2,1.98
例3. 如图是某城市通过抽样得到的居民某年的月均用水量(单 位:吨)的频率分布直方图. (1)求直方图中x的值; (2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放 回抽样),求月均用水量在3~4吨的居民数X的分布列和数学期 望及其方差.
则称
DX ( x1 EX )2 p1 ( xi EX )2 pi ( xn EX )2 pn
n
( xi EX )2 pi 为随机变量X的方差。
i 1
称 X
DX 为随机变量X的标准差。
它们都是反映离散型随机变量偏离于均值的 平均程度的量,它们的值越小,则随机变量偏 离于均值的平均程度越小,即越集中于均值.