最新数学中考模拟试题六优秀名师资料
2023年江苏省南京市中考数学名师模拟试卷附解析

2023年江苏省南京市中考数学名师模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,A 、B 、C 是⊙O 上三点,∠AOB= 50°,则∠ACB= ( ) A .25° B .50° C .30°D .100°2.已知3x =是关于x 的方程242103x a -+=的一个根,则2a 的值是( )A .11B .l2C .13D .l43.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生 产零件的平均数为a ,中位数为b ,众数为c ,则a ,b ,c 的大小关系为 .4.已知y 与x 成正比例,如果x=2时,y=-1,那么x=-3时,y 的值为( ) A . 2B .3C .32D .05.点P (x ,y )的坐标x ,y 满足0xy =,则P 点在( ) A .x 轴上 B .y 轴上C .x 轴或y 轴上D .原点6.不等式组x ax b >⎧⎨>⎩的解集为x b >(a b ≠),则a 与b 的关系是( ) A .a b >B .a b <C .0a b >>D .0a b <<7.如图,为了测出湖两岸A 、B 间的距离.一个观测者在在C 处设桩,使三角形ABC 恰为直角三角形,通过测量得到AC 的长为160 m ,BC 长为l28 m ,那么从点A 穿过湖到点B 的距离为( ) A .86 mB .90 mC .96 mD .l00 m8.如图,有下列说法:①∠1与∠C 是内错角;②∠2与∠B 是同旁内角;③∠1与∠B 是同位角;④∠2与∠C 是内错角.其中正确的是( )A .①②B .③④C .②③D .①④9.下列事件中,属于随机事件的是( ) A .掷一枚普通正六面体骰子所得点数不超过 6 B .买一张体育彩票中奖 C .太阳从西边落下D .口袋中只装有 10个红球,从中摸出一个白球 10. 下列方程中,是二元一次方程的是( ) A .230x +=B .122x y-= C .351x y -= D .3xy =11.如图所示的几张图中,相似图形是( )A .①和②B .①和③C .①和④D .②和③12.在∠AOB 的内部任取一点C ,作射线0C ,则一定存在( )A .∠AOB>∠AOCB .∠AOC>∠BOC C .∠BCE<∠AOCD .∠AOC=∠BOC 13.要在直线AB 上找一点C ,使BC=2AC ,则点C 在 ( )A .点A 的左边B .点B 的右边C .点A 和点8之间D .点A 的左边或点A 与点B 之间 14.杭州湾跨海大桥全长 36千米,其中 36千米属于( )A .计数B . 测量C .标号D .排序二、填空题15. 如图所示,将两条宽度为 3cm 的纸带交叉叠放,若α已知,则阴影部分的面积为 .16.已知平行四边形的两邻边之比为2:3,周长为20cm ,•则这个平行四边形的两条邻边长分别为 .17.如图所示,AD ∥BC ,△ABC 的面积为25cm 2,则△BDC 的面积为 .18.如图,已知AB ⊥l 于F ,CD 与l 斜交于F ,求证:AB 与CD 必相交. 证明:(反证法)假设AB 与CD 不相交,则 ∥ , ∵AB ⊥l ,∴CD ⊥ .这与直线CD 与l 斜交矛盾. ∴假设AB 与CD 不相交 , ∴AB 与CD .19.如图,点E 是∠AOB 的平分线上一点,EC ⊥OA,ED ⊥OB,垂足分别是C 、D ,若OE=4,∠AOB=60°,则DE=_______.20.如图,已知D 为等边三角形内一点,DB=DA ,BF=AB ,∠1=∠2,则∠BFD= .21. 如图,1l ∥2l ,∠CAB= 90°,CB=10,AC=8,BA= 6,则1l ,2l 之间的距离是 .22.图,数轴上点M 表示数 ,它到原点的距离是 ,N 、Q 两点之间的距的距离是 ,到点 N 的距离为 2 的点是 .三、解答题A OBE CD23.如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.24.已知二次函数y =ax2 +bx-1的图象经过点 (2,-1),且这个函数有最小值-3 ,求这个函数的关系式.y =2x2 -4x-1.25.如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连接AE,试判断AE与DF的位置关系,并证明你的结论;(3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论)26.为了促进长三角区域的便捷沟通,实现节时、节能,杭州湾跨海大桥于2008年5线路弯路(宁波一杭州一上海)直路(宁波跨海大桥一上海)路程316 km196 km过路费140元180元(2)若小车每公里的油耗为x(L),汽油价格为5.80元/升,问x为何值时,走哪条线路的总费用较少(总费用=过路费+油耗费)?(3)据杭州湾跨海大桥管理部门统计:从宁波经跨海大桥到上海的小车中,其中五类不同油耗的小车平均每小时通过的车辆数,得到如图所示的频数分布直方图,请你估算1天内这五类小车走直路比走弯路共节省多少升汽油?27.如图所示,在四边形ABCD中,AD∥BC,OE=OF,OA=OC,求证:四边形ABCD是平行四边形.28.如图,0是□ABCD的对称中心,过点0任作直线分别交AD,BC于E,F,试问OE=OF 吗?请说明理由.29.如图,已知直线l,求作一条直线m,使l与m的距离为 1.4 cm(只作一条).30.如图所示,△ABC≌△ADE,试说明BE=CD的理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.b>a>c4.C5.C6.B7.C8.B9.B10.C11.C12.A13.D14.B二、填空题15.9sin a16.4cm,6cm17.25 cm218.AB,CD,l,不成立,必相交19.220.30°21.822.3,3 个单位长度,3,P 和M三、解答题23.解:(1)∵在△ABO中,OA=OB,∠OAB=30°∴∠AOB=180°-2×30°=120°∵PA、PB是⊙O的切线∴OA⊥PA,OB⊥PB.即∠OAP=∠OBP=90°∴在四边形OAPB中,∠APB=360°-120°-90°-90°=60°.(2)如图①,连结OP,∵PA、PB是⊙O的切线,图①∴PO 平分∠APB ,即∠APO =12∠APB =30° 又∵在Rt △OAP 中,OA =3, ∠APO =30°,∴AP =tan 30OA°=33.24.25.解:(1)△ADC ≌△ABC ,△ADF ≌△ABF ,△CDF ≌△CBF . (2)AE ⊥DF .证明:设AE 与DF 相交于点H∵四边形ABCD 是正方形,∴AD =AB ,∠DAF =∠BAF 又∵AF =AF,∴△ADF ≌△ABF,∴∠1=∠2, 又∵AD =BC ,∠ADE =∠BCE =90°,DE =CE , ∴△ADE ≌△BCE,∴∠3=∠4,∵∠2+∠4=90°, ∴∠1+∠3=90°,∴∠AHD =90°,∴AE ⊥DF . (3)BM =MC .26. (1)32h (2)①当587x =时,小车走直路的总费用与走弯路的总费用相等;③当587x <时,小车走弯路的总费用较少;③当587x >时,小车走直路的总费用较少 (3) (316-196)×(100×0.06+200×0.08+500×0.10+500×0.12+100×0.18)×24=432000 L 27.先证明四边形EAFC 是平行四边形,得CE ∥AF,即CD ∥AB ,而AD ∥BC ,则四边形ABCD 是平行四边形28.OE=OF ,连结AC ,证△AOE ≌△COF 即可29.略30.略。
2024年浙江省宁波市中考数学模拟试题(六)

2024年浙江省宁波市中考数学模拟试题(六)一、单选题1.下列算式的结果等于6-的是( )A .()122--B .()122÷-C .()42+-D .()42⨯- 2.下列运算正确的是( )AB -C5±D 347=+ 3.下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅= 4.设a b c ,,均为实数,( )A .若a b >,则ac bc >B .若a b =,则ac bc =C .若ac bc >,则a b >D .若ac bc =,则a b =5.某中老年合唱团成员的平均年龄为52岁,方差为210岁,在人员没有变动的情况下,两年后这批成员的( )A .平均年龄为52岁,方差为210岁B .平均年龄为54岁,方差为210岁C .平均年龄为52岁,方差为212岁D .平均年龄为54岁,方差为212岁 6.如图,设O 为ABC V 的边AB 上一点,O e 经过点B 且恰好与边AC 相切于点C .若30,3B AC ∠=︒=,则阴影部分的面积为( )A 2πB 2πC πD π- 7.在面积等于3的所有矩形卡片中,周长不可能是( )A .12B .10C .8D .68.如图,锐角三角形ABC 中,AB AC =,D ,E 分别在边AB ,AC 上,连接BE ,CD ,下列命题中,假命题是( )A .若CD BE =,则DCB EBC ∠=∠B .若DCB EBC ∠=∠,则CD BE =C .若BD CE =,则DCB EBC ∠=∠D .若DCB EBC ∠=∠,则BD CE =9.四名同学在研究函数22y x bx c =++(b c ,为已知数)时,甲发现该函数的图象经过点()1,0;乙发现当2x =时,该函数有最小值;丙发现3x =是方程222x bx c ++=的一个根;丁发现该函数图象与y 轴交点的坐标为()0,6.已知这四名同学中只有一人发现的结论是错误的( )A .甲B .乙C .丙D .丁10.如图,ABC V 的两条高线AD BE ,交于点F ,过B ,C ,E 三点作O e ,延长AD 交O e 于点G ,连接GO GC ,.设53AF DF ==,,则下列线段中可求长度的是( )A .GB B .GDC .GOD .GC二、填空题11.分解因式:224x y -+=.12.在一个不透明的纸箱中装有4个白球和n 个黄球,它们只有颜色不同.为了估计黄球的个数,杨老师进行了如下试验:每次从中随机摸出1个球,杨老师发现摸到白球的频率稳定在13附近,则纸箱中大约有黄球个. 13.某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.8元,设每箱中有凉茶x 罐,则可列方程:.14.如图,在Rt ABC V 中,已知90C ∠=︒,3CD BD =,cos ABC ∠sin BAD ∠=.15.第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(Rt DAE V ,Rt ABF V ,Rt BCG V ,Rt CDH △)和中间一个小正方形EFGH 拼成的大正方形ABCD 中,连接BE .设BAF α∠=,BEF β∠=,正方形EFGH 和正方形ABCD 的面积分别为1S 和2S ,若90αβ+=︒,则21S S =:.16.已知关于x 的一元二次方程20x ax b ++=有两个根1x ,2x ,且满足1212x x <<<.记=+t a b ,则t 的取值范围是 .三、解答题17.(1)计算:212tan 6012-⎛⎫︒+ ⎪⎝⎭; (2)已知2410x x --=,求代数式()()()22311x x x --+-的值. 18.圆圆和方方在做一道练习题:已知0a b <<,试比较a b 与11a b ++的大小. 圆圆说:“当12a b ==,时,有12a b =,1213a b +=+;因为1223<,所以11a ab b +<+”. 方方说:“圆圆的做法不正确,因为12a b ==,只是一个特例,不具一般性.可以……”请你将方方的做法补充完整.19.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理和分析,部分信息如下:a .七年级成绩频数分布直方图;b .七年级成绩在7080x ≤<这一组的是:70,72,74,75,76,76,77,77,77,77,78;c .七、八年级成绩的平均数、中位数如表:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有 人,表中m 的值为 ;(2)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级50名测试学生中的排名谁更靠前;(3)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.8分的人数. 20.某同学尝试在已知的ABCD Y 中利用尺规作出一个菱形,如图所示.(1)根据作图痕迹,能确定四边形AECF 是菱形吗?请说明理由.(2)若=60B ∠︒,2BA =,4BC =,求四边形AECF 的面积.21.小丽家饮水机中水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温()y ℃与开机时间()min x 满足一次函数关系,随后水温开始下降,此过程中水温()y ℃与开机时间()min x 成反比例关系,当水温降至20℃时,根据图中提供的信息,解答问题.(1)当010x ≤≤时,求水温()y ℃关于开机时间()min x(2)求图中t 的值.(3)若小丽在将饮水机通电开机后外出散步,请你预测小丽散步70min 回到家时,饮水机中水的温度.22.在等边三角形ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接CD ,交AP 于点E ,连接BE .(1)依题意补全如图;(2)若20PAB ∠=︒,求ACE ∠;(3)若060PAB ︒<∠<︒,用等式表示线段DE ,EC ,CA 之间的数量关系并证明.23.已知二次函数214y x bx c =-++的图象经过原点O 和点()8,0A t +,其中0t ≥. (1)当0t =时.①求y 关于x 的函数解析式,求出当x 为何值时,y 有最大值?最大值为多少? ②当x a =和x b =时()a b ≠,函数值相等,求a 的值.(2)当0t >时,在08x ≤≤范围内,y 有最大值18,求相应的t 和x 的值.24.如图,作半径为3的O e 的内接矩形ABCD ,设E 是弦BC 的中点,连接AE 并延长,交O e 于点F ,G 是»AB 的中点,CG 分别交AB AF ,于点H ,P ,若4BC =.(1)求BH ;(2)求:AP PE .(3)求tan APH .。
2024年中考数学模拟试卷及答案

20
21
22
23
-6-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
x+3≥-2,
5.在数轴上表示不等式组ቊ
的解集,正确的
7-x>5
是( C )
【解析】解不等式x+3≥-2,得x≥-5,解不等式7-
x>5,得x<2,∴-5≤x<2,只有C项符合题意.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4
5
6
7
8
9
10
C.80°
11
12
13
14
15
16
D.85°
17
18
19
20
21
22
23
-8-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
【解析】∵AC∥DF,∠A=45°,∴∠FGB=∠A=
45°.∵∠DEF=90°,∠D=60°,∴∠F=180°-
∠DEF-∠D=180°-90°-60°=30°(依据:三角
知某电阻式粮食水分测量仪的内部电路如图1所示,将粮食放在湿
敏电阻R1上,使R1的阻值发生变化,其阻值随粮食水分含量的变化
关系如图2所示.观察图象,下列说法不正确的是(
D)
A.当没有粮食放置时,R1的阻值为40 Ω
B.R1的阻值随着粮食水分含量的增大而减小
C.该装置能检测的粮食水分含量的最大值是12.5%
16
17
18
19
20
21
22
23
-14-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
最新江苏省徐州市中考数学名师模拟试卷附解析

江苏省徐州市中考数学名师模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.人走在路灯下的影子的变化是()A.长→短→长B.短→长→短C.长→长→短D.短→短→长2.如图,以点O为圆心的同心圆中,大圆的弦AB切小圆于点C,两圆的半径分别为5cm和3cm,则AB=()A.8cm B.4cm C.234cm D.34cm3.如图,⊙O1和⊙O2内切,它们的半径分别为3和1,过O1作⊙O2的切线,切点为A,则O1A的长为()A.2 B.4 C.3D.54.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2008的值为()A.2006 B.2007 C.2008 D.20095.已知正比例函数y=k1x(k1≠0)与反比例函数y=k2x(k2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是()A.(2,1)B.(-2,-1)C.(-2,1)D.(2,-1)6.如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于()A.5cm个 B.6cm个 C.7cm个 D.8cm7.如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E的度数为()A. 70 B. 80°C. 90°D. 100°8.下列事件中,为不确定事件的是()A.在空气中,汽油遇上火就燃烧B.向上用力抛石头,石头落地C.下星期六是晴天D.任何数和0相乘,积仍为 09.已知分式11xx-+的值为零,那么x的值是()A.-1 B.0 C.1 D.1±10.从长度为 1,3,5,7,9 的五条线段中任取三条,组成三角形的机会是()A. 50% B. 30% C. 10% D. 100%二、填空题11.右图是某物体的三视图,那么物体形状是 .12.一斜坡的坡比为 1:2,斜面长为 l5m,则斜面上最高点离地面的高度为 m.13.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD= .14.在梯形ABCD中,AD∥BC,∠B=85°,∠C=45°,则∠D= ,∠A= .15.Rt△ABC中,AB=AC,∠A=90°,D是BC的中点,AD=2,则AC= .16.在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的成绩(单位:分)如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3.9.5,9.3.则这组数据的众数是 .17.如图所示,△ABC中,DE是AC的中垂线,AE=5,△ABC的周长为30,则△ABD的周长是.18.如图数轴的单位长度是 1,如果点 B.C 表示的数的绝对值相等,那么点 A 表示的数是.19.方程1(1)3x x-=-的解是.三、解答题20.如图所示,一根 4m 的竹竿斜靠在墙上.(1)如果竹竿与地面 60°角,那么竹竿下湍离墙角有多远?(2)如果竹竿上端顺墙下滑到高度为2. 3 m处停止,那么此时竹竿与地面所成的锐角的大小是多少?21.如图所示,河对岸有一棵树,在 C点折断刚好倒在另一岸的A 点处,AB=l2m,已知树高l8m,小明想通过这棵折断后的树通过这条河,由于各种原因,小明通过坡度大于12的斜坡会有危险,请.问小明通过 AC 会有危险吗?一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)A BO 23. 如图,△ABC 中,∠A 是锐角,求证:1sin 2ABC S AB AC A ∆=⋅⋅.24.如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB 的顶点都在格点上,请在网格中画出.....△OAB 的一个位似图形,使两个图形以 O 为位似中心,且所画图形与△OAB 的位似比为2︰1.25.如图,在四边形ABCD 中,AD ∥BC ,BE ⊥AC ,DF ⊥AC ,E ,F 分别为垂足,且∠CDF=∠ABE ,试说明四边形BEDF 是平行四边形.26.若规定两数a ,b 通过“※”运算,得到4ab ,即a ※b =4ab ,例如 2※6=4×2×6 =48.(1)求3※5 的值;(2)求x ※x +2※x -2※4=0中x 的值.C BA27.画出如图所示的几何体的三视图.28.如图,P、Q是△ABC边BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.29.已知一个角的补角比它的余角的2倍多100,求这个角的度数.30.下列各图中,有∠1和∠2是对顶角的图吗?若没有请画一对对顶角.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.C4.D5.A6.C7.C8.C9.C10.B二、填空题11.圆柱12.13.314.135°,95°15..9.3分17.2018.-419.14x =三、解答题20.(1)如图,AB= 4 , ∠B =60° ,∠ACB=90°,01cos602BC AB ==,∴BC=2 m (2)如图, 2.3A C '=,4A B ''=,∴ 2.3sin 4A B C ''∠=,∴35559o A B C '''''∠≈ 21.设 BC=x ,则 AC=18-x,则222(18)12x x -=+,x= 5 , 18 -x= 13, ∴51tan 122BC A AB ==<,∴小明通过 AC 不会有危险. 22.解:过C 作AB 的垂线,交直线AB 于点D ,得到Rt △ACD 与Rt △BCD . 设BD =x 海里,在Rt △BCD 中,tan ∠CBD =CD BD , ∴CD =x ·tan63.5°. 在Rt △ACD 中,AD =AB +BD =(60+x)海里,tan ∠A =CDAD ,B C D A∴CD =( 60+x ) ·tan21.3°.∴x·tan63.5°=(60+x)·tan21.3°,即 ()22605x x =+. 解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近 23.画AB 边上高CD ,则A AC CD sin ⋅=,∴S △ABC A AC AB CD AB sin 2121⋅⋅=⋅=. 24.略25.方法不唯一,如:先证四边形ABCD 为□,再证 //DF BE 26.(1) 60 (2)12x =,24x =-27.略28.120°29.10°30.没有,图略。
2023年数学中考真题模拟试卷(含解析)

2023年数学中考真题模拟试卷(含解析)一、单选题1.不等式组21x x <⎧⎨>-⎩的解集在数轴上表示为()A .B .C .D .2.不等式组24030x x -<⎧⎨+≥⎩的解集在数轴上表示为()A .B .C .D .3.如图,AB 与CD 相交于点O ,OE 是AOC ∠的平分线,且OC 恰好平分EOB ∠,则下列结论中:①AOE EOC ∠=∠;②EOC COB ∠=∠;③AOD AOE ∠=∠;④2DOB AOD ∠=∠,正确的个数有()A .1个B .2个C .3个D .4个4.如果从1,2,3,4,5,6这六个数中任意选取一个数,那么取到的数恰好是3的整数倍的概率是()A .12B .13C .14D .165.如图所示,该几何体的俯视图是()A .B .C .D .6.如图,已知抛物线2y ax bx c =++的对称轴为直线1x =.给出下列结论:①<0abc ;②20a b +=;③0a b c -+=;④2am bm a b +≥+.其中,正确的结论有()A .1个B .2个C .3个D .4个7.如图,正方形ABCD 中,点P 、F 分别是边BC 、AB 的中点,连接AP 、DF 交于点E ,则下列结论错误的是()A .AP DF =B .AP DF ⊥C .CE CD =D .CE EP EF=+8.如图,正方形ABCD 的边长为定值,E 是边CD 上的动点(不与点C ,D 重合),AE 交对角线BD 于点F , FG AE ⊥交BC 于点G ,GH BD ⊥于点H ,连结AG 交BD 于点N .现给出下列命题:① AF FG =;②DF DE =;③FH 的长度为定值;④GE BG DE =+;⑤222BN DF NF +=.真命题有()A .2个B .3个C .4个D .5个二、填空题9.如图,直线a ∥b ,EF ⊥CD 于点F ,∠2=65°,则∠1的度数是_____.10.抛物线24(3)2y x =+-的顶点坐标是______.11.在一次数学探究活动课中,某同学有一块矩形纸片ABCD ,已知AD =13,AB =5,M 为射线AD 上的一个动点,将△ABM 沿BM 折叠得到△NBM ,若△NBC 是直角三角形,则所有符合条件的M 点所对应的AM 的和为__________.12.小红买书需用48元,付款时小红恰好用了1元和5元的纸币共12张,则小红所用的5元纸币为______张.13.阅读下列材料:在平面直角坐标系中,点00(,)P x y 到直线Ax +By +C =0(A 2+B 2≠0)的距离公式为:0022Ax By Cd A B ++=+.例如:求点P (1,3)到直线4330x y +-=的距离.解:由直线4330x y +-=知:A =4,B =3,C =-3,所以P (1,3)到直线4x +3y -3=0的距离为:224133343d ⨯+⨯-=+.根据以上材料,求点1(0,2)P 到直线51126y x =-的距离是_______.14.如图,AC 与BD 交于O ,AB CD =,要使ABC DCB ∆≅∆,可以补充一个边或角的条件是_______.15.已知,BD 为等腰三角形ABC 的腰上的高,=1BD ,tan 3ABD ∠=,则CD 的长为___________.16.如图,在平面直角坐标系中,直线l :33交x 轴于点A ,交y 轴于点B ,点A1、A2、A3,…在x 轴的正半轴上,点B1、B2、B3,…在直线l 上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是______.三、解答题17.如图,平行四边形ABCD中E,F是直线AC上两点,且AE=CF.求证:BE∥DF.18.“五一”小长假期间,小李一家想到以下四个5A级风景区旅游:A.石林风景区;B.香格里拉普达措国家公园;C.腾冲火山地质公园;D.玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.19.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.设该旅游团租住三人间客房x间,两人间客房y间,请列出满足题意的方程组_____.20.解不等式123214xx x +<⎧⎪⎨--≥-⎪⎩,并利用数轴确定该不等式组的解.21.如图,直线AB∥CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.22.2020年的全球新冠肺炎,使许多国家经济受到严重的打击,我国的疫情也很严重.某记者随机调查了部分市民,发现市民们对新冠肺炎成因所持的观点不一,经对调查结果整理,绘制了如下尚不完全的统计图表.组别观点频数(人数)A食用野生动物160B家禽感染人mC牲畜感染人nD有人制造病毒240E其他120请根据图表中提供的信息解答下列问题:(1)求出统计表中,m n的值,并求出扇形统计图中E组所占的百分比;(2)若宁波市常住人口约有850万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽取一人,则此人持C组“观点”的概率是多少?(如23.在平面直角坐标系xOy中,已知点A坐标是(2,4),点B在x轴上,OB AB图所示),二次函数的图像经过点O、A、B三点,顶点为D.(1)求点B与点D的坐标;(2)求二次函数图像的对称轴与线段AB的交点E的坐标;(3)二次函数的图像经过平移后,点A落在原二次函数图像的对称轴上,点D落在线段AB上,求图像平移后得到的二次函数解析式.24.如图,抛物线与x轴交两点A(﹣1,0),B(3,0),过点A作直线AC与抛物线交于C点,它的坐标为(2,﹣3).(1)求抛物线及直线AC的解析式;(2)P是线段AC上的一个动点,(不与A,C重合),过P点作y轴的平行线交抛物线于E点,点E与点A、C围成三角形,求出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,如果不存在,请说明理由.25.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB2F(m,0)是x轴的正半轴上一点,将抛物线C 绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N 能否成为正方形?若能,求出m的值;若不能,请说明理由.参考答案与解析1.B【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再比较得到答案.【详解】解:不等式组21x x <⎧⎨>-⎩的解集为:-1<x <2,解集在数轴上的表示为:.故选:B .【点睛】本题考查了求解不等式组的解集,及把不等式的解集在数轴上表示出来,解题的关键是掌握在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.C【分析】先解不等式组,求出不等式组的解集,再根据“小于和大于用空心圆,有等于的时候用实心圆解集;找到那个数在数轴上位置,往上引垂线,大于左画,小于右画”判断即可.【详解】解:24030x x -<⎧⎨+≥⎩①②解不等式①得:2x <解不等式②得:3x ≥-∴不等式组的解集为:32x -≤<,在数轴上表示不等式组的解集为:故选:C .【点睛】本题考查的知识点是在数轴上表示不等式(组)的解集,解答本题的关键是正确的求出不等式组的解集.3.D【分析】根据角平分线的定义和对顶角的性质,逐项判断即可求解.【详解】解:∵OE 是AOC ∠的平分线,∴AOE EOC ∠=∠,故①正确;∵OC 恰好平分EOB ∠,∴EOC COB ∠=∠,故②正确;∴AOE COB ∠=∠,∵COB AOD ∠=∠,∴AOD AOE ∠=∠,故③正确;∵2AOC AOE ∠=∠,∴2AOC AOD ∠=∠,∵AOC BOD ∠=∠,∴2DOB AOD ∠=∠,故④正确;∴正确的有4个.故选:D【点睛】本题主要考查了角平分线的定义和对顶角的性质,熟练掌握一般地,从一个角的顶点出发,在角的内部把这个角分成两个相等的角的射线,叫做这个角的平分线;对顶角相等是解题的关键.4.B【分析】由题意得取到的数恰好是3的整数倍的数有3和6,进而问题可求解.【详解】解:由题意得:取到的数恰好是3的整数倍的数有3和6,∴取到的数恰好是3的整数倍的概率是2163P ==;故选B .【点睛】本题主要考查概率,熟练掌握概率的求解是解题的关键.5.B【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看是1个正方形,左下角的正方形的边是浅线,故选B .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.C【分析】根据二次函数的图象与系数的关系,二次函数的性质即可求出答案.【详解】解:由图象可得:a <0,c >0,﹣2b a=1,∴b =-2a >0,∴<0abc ;∴①正确,∵﹣2b a=1,∴b =-2a ,∴20a b +=,∴②正确,∵对称轴为直线1x =,∴312x +=,解得x =-1,∴(3,0)的对称点为(-1,0)当x =﹣1时,y =a ﹣b +c ,∴a ﹣b +c =0,∴③正确,当x =m 时,y =a 2m +bm +c ,当x =1时,y 有最大值为a +b +c ,∴a 2m +bm +c ≤a +b +c ,∴a 2m +bm ≤a +b ,∴④不正确,故选:C .【点睛】本题考查了二次函数的图像,二次函数的对称轴,二次函数的最值,熟练掌握二次函数图像与各系数的关系,理解最值的意义是解题的关键.7.D【详解】分析:证明△ABP ≌△DAF 可判断AP 与DF 的位置关系与数量关系;延长AP 与DC 的延长线交于点G ,用EC 是斜边DG 上的中线证明;过点C 作CH ⊥EG 于点H ,可证PH =EF ,则EP =EF =EH ,比较EH 与EC 的关系.详解:A .易证△ABP ≌△DAF (SAS )得,AP =DF ;B .由△ABP ≌△DAF (SAS )得,∠BAP =∠ADF ,因为∠ADF +∠AFD =90°,所以∠BAP +∠AFD =90°,所以∠AEF =90°,所以AP ⊥DF ;C.延长AP与DC的延长线交于点G,易证△ABP≌△GCP(ASA),所以CG=AB,又AB=CD,所以CG=CD,因为∠DEG=90°,所以CE=CD;D.过点C作CH⊥EG于点H,易证△AEF≌△CHP(ASA),所以EF=HP,所以EP+EF=EP+PH=EH<EC,即EP+EF<CD.故选D.点睛:正方形中如果有中点,一般采用倍中线法,构建全等三角形,把已知条件和要解决的问题集中在一起.8.C【分析】根据题意,连接CF,由正方形的性质,可以得到△ABF≌△CBF,则AF=CF,∠BAF=∠BCF,由∠BAF=∠FGC=∠BCF,得到AF=CF=FG,故①正确;连接AC,与BD 相交于点O,由正方形性质和等腰直角三角形性质,证明△AOF≌△FHG,即可得到EH=AO,则③正确;把△ADE顺时针旋转90°,得到△ABM,则证明△MAG≌△EAG,得到MG=EG,即可得到EG=DE+BG,故④正确;②无法证明成立,即可得到答案.【详解】解:连接CF,在正方形ABCD 中,AB=BC ,∠ABF=∠CBF=45°,在△ABF 和△CBF 中,45AB BC ABF CBF BF BF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△CBF (SAS ),∴AF=CF ,∠BAF=∠BCF ,∵FG ⊥AE ,∴在四边形ABGF 中,∠BAF+∠BGF=360°-90°-90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF ,∴∠CGF=∠BCF∴CF=FG ,∴AF=FG ;①正确;连接AC 交BD 于O.∵四边形ABCD 是正方形,HG ⊥BD ,∴∠AOF=∠FHG=90°,∵∠OAF+∠AFO=90°,∠GFH+∠AFO=90°,∴∠OAF=∠GFH ,∵FA=FG ,∴△AOF ≌△FHG ,∴FH=OA=定值,③正确;如图,把△ADE 顺时针旋转90°,得到△ABM,∴AM=AE ,BM=DE ,∠BAM=∠DAE ,∵AF=FG ,AF ⊥FG ,∴△AFG 是等腰直角三角形,∴∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△AMG 和△AEG 中,45AM AE EAG MAG AG AG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AMG ≌△AEG ,∴MG=EG ,∵MG=MB+BG=DE+BG ,∴GE=DE+BG ,故④正确;如图,△ADE 顺时针旋转90°,得到△ABM ,记F 的对应点为P ,连接BP 、PN ,则有BP=DF ,∠ABP=∠ADB=45°,∵∠ABD=45°,∴∠PBN=90°,∴BP 2+BN 2=PN 2,由上可知△AFG 是等腰直角三角形,∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△ANP 和△ANF 中,45AP AF EAG MAG AN AN =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ANP ≌△ANF ,∴PN=NF ,∴BP 2+BN 2=NF 2,即DF 2+BN 2=NF 2,故⑤正确;根据题意,无法证明②正确,∴真命题有四个,故选C.【点睛】本题考查了正方形的性质,全等三角形的判定与性质等知识,解题的关键是作辅助线构造出等腰三角形和全等三角形.9.25°.【详解】∵a ∥b ,∴∠FDE =∠2=65°.∵EF ⊥CD ,∴∠EFD =90°.∴∠1=180°-∠EFD -∠FDE =180°-90°-65°=25°.10.()3,2--【分析】直接利用二次函数的顶点式解析式读取即可.【详解】解:∵()2432y x =+-,∴顶点坐标为()3,2--,故答案为:()3,2--.【点睛】本题考查了二次函数的顶点式解析式,解题关键是掌握()()20y a x h k a =++≠的顶点坐标为(),h k -.11.26【详解】解:①若M 接近A ,如图1,此时∠BNC =90°,但∠BNM =∠A =90°,∴M 、N 、C 共线,由面积法S △BMC =12MC •BN =12×13×5,∵BN =AB =5,∴MC =13,由勾股定理得:DM =12,AM =1.②若M 在AD 上,但使∠ABM >45°,如图2,此时∠BNC >∠BNM =∠A =90°,∴△BCN 不可能是直角三角形.③若M 在AD 的延长线上,如图3,要使∠BNC =∠BNM =∠A =90°,则M 、C 、N 共线.设MD =x ,则,AM =13+x ,MN =13+x .∵CN =12,∴MC =13+x -12=x +1.在R t △CDM 中,由勾股定理得:2225(1)x x +=+,解得:x =12,∴AM =25.综上所述:所有MA 的和=1+25=26.故答案为26.【点睛】本题是矩形与折叠问题.解题的关键是分三种情况讨论.难度比较大.12.9【分析】设小红所用的1元纸币为x 张,小红所用的5元纸币为y 张,根据“买书需用48元,用了1元和5元的纸币共12张”列方程组,解方程组即可得.【详解】解:设小红所用的1元纸币为x 张,小红所用的5元纸币为y 张,54812x y x y +=⎧⎨+=⎩解得:39x y =⎧⎨=⎩∴小红所用的1元纸币为3张,5元纸币为9张,故答案为:9.【点睛】本题考查了二元一次方程组的应用,理解题意得出等量关系是列方程组求解的关键.13.2【分析】根据点到直线的距离公式,列出方程即可解决问题.【详解】解:∵51126y x =-,∴51220x y --=,∴求点1(0,2)P 到直线51220x y --=的距离为:26213d ===;故答案为:2.【点睛】本题考查一次函数图象上点的坐标特征,点到直线的距离公式的知识,解题的关键是理解题意,学会把直线的解析式转化为Ax+By+C=0的形式,学会构建方程解决问题.14.AC BD =或ABC DCB ∠=∠或A D ∠=∠或ABO DCO∠=∠【分析】由已知可知有两条边对应相等,据此结合全等三角形的判定定理,针对边角进行分析判断即可得到答案.【详解】解:由题意,∵AB CD =,BC 为公共边,∴当AC BD =,满足SSS ,符合题意;当ABC DCB ∠=∠,满足SAS ,符合题意;当A D ∠=∠,先证明△ABO ≌△DCO ,然后得到ABC DCB ∠=∠,符合题意;当ABO DCO ∠=∠,先证明△ABO ≌△DCO ,然后得到ABC DCB ∠=∠,符合题意;故答案为:AC BD =或ABC DCB ∠=∠或A D ∠=∠或ABO DCO ∠=∠.【点睛】本题考查了全等三角形的判定定理,熟练掌握SSS ,SAS ,ASA ,AAS 证明三角形全等的方法是解题的关键.15.(2+或(2【分析】分两种情况,当A ∠为锐角时,当A ∠为钝角时,利用勾股定理求解.【详解】解: BD 为等腰三角形ABC 的腰上的高,=1BD ,tan ABD ∠=,当A ∠为锐角时,如图1,当=AB AC 时,tan AD ABD BD∠==,∴AD =2AB ∴=,2AC AB ∴==,2CD AC AD ∴=-=-;如图2,当=AC BC 时,tan AD ABD BD∠==,∴AD =设=CD x ,则AC AD CD x BC =--=,)2221x x ∴=+,解得3x =,即3CD =;当A ∠为钝角时,如图3,当=AB AC 时,tan AD ABD BD ∠==,∴AD =2AB ∴=,2CD AC AD ∴=+=+综上所述,CD 的长度为(2+或(2或3.【点睛】本题主要考查了等腰三角形的性质,勾股定理,分类讨论是解答本题的关键.16.【详解】试题解析:当x=0时,y=1,则B (0,1),当y=0时,x=A 0),∴OB=1,∵tan ∠OAB=3OB OA ==,∴∠OAB=30°,∵△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,∴∠A1OB1=∠A2A1B2=∠A3A2B3=60°,∴∠OB1A=∠AB2A1=∠AB3A2=30°,∴OB1=OA=,A1B2=AA1,A2B3=AA2,则OA1=OB1A1B2=AA1∴A1A2=A1B2=AA1=2OA1同理:A2A3=A2B3=2A1A2A3A4=2A2A3A4A5=2A3A4A5A6=2A4A5∴A6A7=2A5A6∴△A6B7A7的周长是:17.见解析【分析】根据平行四边形的性质,证得△CFD≌△AEB,即可得证结论.【详解】证:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ACD=∠CAB.∵CF=AE,∴△CFD≌△AEB(SAS),∴∠F=∠E,∴BE∥DF.【点睛】此题考查了平行四边形的性质和全等三角形的证明,熟练掌握平行四边形的有关性质和全等三角形的证明是解题的关键.18.(1)共有12种等可能结果;(2)12【分析】(1)用A、B、C、D分别表示石林风景区;香格里拉普达措国家公园;腾冲火山地质公园;玉龙雪山景区四个景区,然后画树状图展示所有12种等可能的结果数;(2)在12种等可能的结果中找出玉龙风景区被选中的结果数,然后根据概率公式求解.【详解】解:(1)画树状图如下:由树状图知,共有12种等可能结果;(2)∵抽到玉龙雪山风景区的结果数为6,∴抽到玉龙雪山风景区的概率为12.【点睛】本题考查利用列举法求概率,学生们要熟练掌握画树状图法和列表法,是解本题的关键.19.325075701510x y x y +=⎧⎨+=⎩【分析】因为求两个未知量,因此可设两个未知数,设租住三人间x 间,两人间y 间,根据题意可列二元一次方程组即可.【详解】解:根据题意可得三人间每间住宿费为25×3=75元;两人间每间住宿费为:35×2=70元;设租住三人间x 间,两人间y 间,可列方程:325075701510x y x y +=⎧⎨+=⎩20.21x -£<,数轴见解析【分析】分别计算出各不等式的解集,再求出其公共解集即可.【详解】解:123214x x x +<⎧⎪⎨--≥-⎪⎩①②由①得,1x <由②得,2x ≥-在数轴上表示为:,故原不等式组的解集为:21x -£<.【点睛】本题考查解一元一次不等式组,掌握不等式组取解集的方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.21.∠2=22°.【分析】根据平行线的性质求得∠1=∠QPA=50°,由于∠2+∠QPA=90°,即可求得∠2的度数.【详解】解:∵AB ∥CD ,∠1=68°,∴∠1=∠QPA=68°.∵PM ⊥EF ,∴∠2+∠QPA=90°.∴∠2+68°=90°,∴∠2=22°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是本题的关键.22.(1)80m =;200n =;15%;(2)255万人;(3)14【分析】(1)总人数=A 组人数÷所占百分比,m =总人数×所占百分比,n =总人数-80-m -120-60,E 组的百分比=E 组的人数除以总人数;(2)算出D 组所占的百分比,然后用850乘以D 组所占的百分几即可求解;(3)根据概率公式计算即可.【详解】解:(1)总人数为16020%800÷=(人),80010%80m =⨯=,80016080240120200n =----=,E 组所占的百分比为120100%15%800⨯=;(2)240850255800⨯=(万人);(3)P (持C 组观点)20018004==.【点睛】本题考查扇形统计图,以及用样本来估计总体,掌握扇形统计图的统计意义是解题的关键.23.(1)点B 的坐标为(5,0),点D 的坐标为(52,256)(2)(52,103)(3)()228333y x =--+【分析】(1)设点B 的坐标为(m ,0),经过A 、B 、O 三点的二次函数解析式为2y ax bx c =++,先根据OB =AB ,利用勾股定理求出点B 的坐标,然后用待定系数法求出二次函数解析式即可求出点D 的坐标;(2)先求出直线AB 的解析式,再根据(1)所求得到抛物线对称轴,即可求出点E 的坐标;(3)只需要求出平移后的抛物线顶点坐标即可得到答案.(1)解:设点B 的坐标为(m ,0),经过A 、B 、O 三点的二次函数解析式为2y ax bx c =++,∵OB =AB ,∴()22224m m =-+,∴5m =,∴点B 的坐标为(5,0),∴42425500a b c a b c c ++=⎧⎪++=⎨⎪=⎩,∴231030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴二次函数解析式为22210252533326y x x x ⎛⎫=-+=--+ ⎪⎝⎭,∴点D 的坐标为(52,256);(2)解:设直线AB 的解析式为1y kx b =+,∴112450k b k b +=⎧⎨+=⎩,∴143203k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为42033=-+y x ,∵二次函数解析式为22210252533326y x x x ⎛⎫=-+=--+ ⎪⎝⎭,∴二次函数的对称轴为直线52x =,当52x =时,4520103233y =-⨯+=,∴点E 的坐标为(52,103);(3)解:∵二次函数的图像经过平移后,点A 落在原二次函数图像的对称轴上,∴点A 向右平移了51222-=个单位长度;∴平移后抛物线的顶点的横坐标为51322+=,当3x =时,42083333y =-⨯+=,∴平移后的抛物线顶点坐标为(3,83),∴平移后的抛物线解析式为()228333y x =--+.【点睛】本题主要考查了勾股定理,一次函数与二次函数综合,待定系数法求函数解析式,二次函数图象的平移等等,熟知二次函数的相关知识是解题的关键.24.(1)直线AC 的函数解析式是y=﹣x ﹣1;(2)S △ACE =278;(3)存在4个符合条件的F 点.【分析】(1)将A 、B 坐标代入y=x 2+bx+c ,利用待定系数法可求得二次函数解析式,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入,利用待定系数法即可求得直线AC 的解析式;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),由S △ACE =12PE•|x C ﹣x A |,而|x C ﹣x A |的值是确定的,因此只要求得PE 的最大值即可;(3)分CG 与AF 平行、CF 与AG 平行,分别画出符合题意的图形,分别进行求解即可得.【详解】(1)将A (﹣1,0),B (3,0)代入y=x 2+bx+c ,得01093b c b c =-+⎧⎨=++⎩,解得:23b c =-⎧⎨=-⎩,∴y=x 2﹣2x ﹣3,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入得032m n m n =-+⎧⎨-=+⎩,解得:11m n =-⎧⎨=-⎩,∴直线AC 的函数解析式是y=﹣x ﹣1;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),∵点P 在点E 的上方,∴PE=(﹣x ﹣1)﹣(x 2﹣2x ﹣3)=﹣x 2+x+2=﹣(x ﹣12)2+94,∴当x=12时,PE 的最大值为94,∴S △ACE =12PE•|x C ﹣x A |=12×94×3=278;(3)①如图,连接C 与抛物线和y 轴的交点,∵C (2,﹣3),G (0,﹣3)∴CG ∥X 轴,此时AF=CG=2,∴F 点的坐标是(﹣3,0);②如图,AF=CG=2,A 点的坐标为(﹣1,0),因此F 点的坐标为(1,0);③如图,此时C,G两点的纵坐标互为相反数,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(73),由于直线GF的斜率与直线AC的相同,因此可设直线GF 的解析式为y=﹣x+h,将G点代入后可得出直线的解析式为y=﹣7.因此直线GF与x轴的交点F的坐标为(70);④如图,同③可求出F的坐标为(47,0);综合四种情况可得出,存在4个这样的点F ,分别是F 1(1,0),F 2(﹣3,0),F 3(7,0),F 4(47,0).【点睛】本题考查了待定系数法求抛物线解析式、一次函数解析式,二次函数的性质,平行四边形的性质等,综合性较强,熟练掌握待定系数法是解题的关键.25.(1)2142y x =-+;(2)2<m <22;(3)m =6或m 173.【分析】(1)由题意抛物线的顶点C (0,4),A (220),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题;(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C (0,4),A (220),设抛物线的解析式为24y ax =+,把A(0)代入可得a =12-,∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解得2<m<∴满足条件的m 的取值范围为2<m<(3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H.由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m﹣3﹣3(舍弃),∴m﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m ﹣3时,四边形PMP ′N 是正方形.。
2024年河南省九年级中考数学模拟试卷(六)

2024年河南省九年级中考数学模拟试卷(六)一、单选题1.实数3-,2,12024,02024,)A.-3 B.12024C.20240D2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查4.不等式组2111313412x xxx+≥⎧⎪-⎨-<⎪⎩的解集在数轴上表示正确的是()A.B.C.D.5.如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=()A .30°B .60°C .120°D .150°6.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( ) A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+7.人体红细胞的直径约为0.0000077米,数据0.0000077用科学记数法表示为7.710n ⨯,则n 的值是( ) A .5B .5-C .6D .6-8.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .B C .4 D .29.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论错误的是( ) A .该函数有最大值B .该函数图象的对称轴为直线1x =C .当2x >时,函数值y 随x 增大而减小D .方程20ax bx c ++=有一个根大于310.如图,A 是平面直角坐标系中y 轴上的一点,AO =AO 为底构造等腰ABO V ,且120ABO ∠=︒,将ABO V 沿着射线OB 方向平移,每次平移的距离都等于线段OB 的长,则第2024次平移结束时,点B 的对应点2024B 的坐标为( )A .()B .()C .(D .(二、填空题11.分解因式:34x x -=.12.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是. 13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是21.2S =甲,22.3S =乙,211.5S =丙,你认为适合选参加决赛.(填“甲”“乙”或“丙”)14.如图,B 、E 是以AD 为直接的半圆O 的三等分点,弧BE 的长为23π,作BC ⊥AE ,交AE 的延长线于点C ,则图中阴影部分的面积为.15.如图,在平行四边形ABCD 中,4AB =,6AD =,120A ∠=︒,点F ,N 分别为CD ,AB 的中点,点E 在边AD 上运动,将EDF V 沿EF 折叠,使得点D 落在D ¢处,连接BD ',点M 为BD '中点,则MN 的最小值是.三、解答题16.(1)计算:111245-⎛⎫⎛⎫÷--+ ⎪ ⎪⎝⎭⎝⎭;(2)化简: 11111a a a a ⎛⎫+÷ ⎪+--⎝⎭. 17.如图,一次函数y x b =+与反比例函数ky x=的图象相交于点A ,B 两点,点B 的坐标为()4,2--.(1)分别求出一次函数和反比例函数的解析式; (2)已知点C 坐标为()2,0,求ABC V 的面积.18.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理、描述和分析(成绩用m 表示),共分成四个组:A . 8085m ≤<,B . 8590m ≤<, C . 9095m ≤<,D . 95100m ≤≤.另外给出了部分信息如下: 八年级10名学生的成绩: 99, 80,99,86, 99,96,90,100,89,82. 九年级10名学生的成绩在C 组的数据:94,90,94. 八、九年级抽取学生成绩统计表九年级抽取学生成绩扇形统计图根据以上信息,解答下列问题: (1)上面图表中的a =,b =, c =;(2)扇形统计图中“D 组”所对应的圆心角的度数为;(3)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人?(4)现准备从九年级中D 组中的甲、乙、丙、丁四个学生中随机选取两个参加市区的比赛,请用树状图或列表法求出恰好选中甲和丁的概率.19.如图,某建筑物楼顶挂有广告牌BC ,张伟准备利用所学的三角函数知识估测该建筑CO的高度.由于场地有限,不便测量,所以张伟从点A 沿坡度为i =30米到达点P ,测得广告牌底部C 点的仰角为45︒,广告牌顶部B 点的仰角为53︒,张伟的身高忽略不计,已知广告牌12BC =米,求建筑物CO 的高度.(参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)20.重庆市涪陵区是中国规模最大、最集中的榨菜产区,享有中国“榨菜之乡”的美誉.已知3件鲜脆榨菜丝和4件麻辣萝卜干的进价共240元,5件鲜脆榨菜丝和2件麻辣萝卜干的进价共260元.(1)请分别求出每件鲜脆榨菜丝和麻辣萝卜干的进价.(2)某特产店计划用不超过5600元购进鲜脆榨菜丝和麻辣萝卜干共150件,且鲜脆榨菜丝的数量不少于麻辣萝卜干数量的32.在销售过程中,每件鲜脆榨菜丝的售价为50元,每件麻辣萝卜干的售价为42元.为了方便顾客选择喜欢的口味,特产店拿出一件鲜脆榨菜丝和一件麻辣萝卜干作为样品让顾客免费品尝(此样品不再销售给顾客).若剩下的特产全部都卖完,该特产店应如何进货,可使利润最大?最大利润为多少元? 21.阅读与思考下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.阿基米德折弦定理从圆上任意一点出发的两条弦所组成的折线,称为该圆的一条折弦,如图1.古希腊数学家阿基米德发现,若PA ,PB 是O e 的折弦.C 是»AB 的中点,CE PA ⊥于点E ,则AE PE PB =+.这就是著名的“阿基米德折弦定理”. 证明如下:如图2,在AE 上截取AF PB =,连接CA ,CF ,CP ,CB .则FAC PBC ∠=∠(依据1).∵C 是»AB 的中点,∴AC BC =n n,∴AC BC =. 在FAC V 和PBC V 中,AC BC = FAC PBC ∠=∠AF BP =∴()FAC PBC SAS V V ≌,∴CF CP =. ∵CE PA ⊥于点E ,∴FE PE =(依据2).∴AE FE AF PE PB =+=+.任务:(1)填空:材料中的依据1是指________________;依据2是指________________. (2)如图3,BC 是O e 的直径,D 是»AC 上一点,且满足45DAC ∠=︒,若12AB =,O e 的半径为10,求AD 的长.22.如图,已知抛物线 ²y x bx c =-++₁的顶点 D 的坐标为()14,,与x 轴的正半轴交于点 A ,与y 轴交于点B ,连接AB .(1)求b ,c 的值;(2)点(),P m n 在抛物线y 1上,当2m <时, 请根据图象直接写出n 的取值范围;(3)将抛物线1y 向右平移1个单位得到抛物线2y ,1y 与2y 交于点 C ,将点C 向下平移k 个单位,使得点C 落在线段AB 上,求k 的值.23.随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节:【观察猜想】-【探究证明】-【拓展延伸】.下面同学们从这三个方面试看解决下列问题:已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B ∠重含,连接 AN 、CM ,E 是AN 的中点,连接BE .【观察猜想】(1)CM 与 BE 的数量关系是________,CM 与BE 的位置关系是___________; 【探究证明】(2)如图2所示,把三角板 BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM与BE 的关系是否仍然成立,并说明理由; 【拓展延伸】(3)若旋转角45α=︒,且2NBE ABE ∠=∠,求BCBN的值.。
最新江苏省扬州市中考数学名师模拟试卷附解析
江苏省扬州市中考数学名师模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是()A.4 个B.5 个C.6 个D.7 个2.如图,将矩形 ABCD 沿着对角线 BD 折叠,使点C落在点E处,BE 交 AD 于点 F,则下列结论中不一定成立的是()A.AD=BE B.∠FBD=∠FDB C.△ABF∽△CBD D.AF=FE3.在一组50个数据的数组中,平均数是42,将其中两个数l30和50舍去,则余下的数的平均数为()A.38 B.39 C. 40 D.414.下列计算正确的是()A.(2a)3=6a3B.a2·a=a2C.a3+a3=a6D.(a3)2=a65.有A、B、C三座城市,已知A、B两市的距离为50 km,B、C两市的距离是30 km,那么A.C两市问的距离是()A.80 km B.20 km C.40 km D.介于20 km至80 km之间6.对于如图中的两个统计图,下列说法中错误的是()A.一中的女生比例比二中的女生比例高B.一中的男生比例比二中的女生比例低C .二中的男生比例比一中的女生比例高D .一中的男生比例比二中的男生比例低7.用计算器求0.35×15时,按键顺序正确的是 ( )A .B .C .D .以上都不正确8.31254--可以读作( )A .35减负2减负14B .正35,正 2 与正14的和C .正35,负 2与负14的差 D .35减 2减14二、填空题9.对某中学在校生的血型调查,任意抽查20名学生的血型,结果如下:A,B,A,B,B,O,AB,A,A,O,A,B,A,A,B,AB,O,A,B,A.则血型为A 型的频率为 .10.绝对值小于4的所有负整数的和是 ,积是 .11.判断正误,正确的打“√”,错误的打“×(1)6662x x x ⋅= ( )(2)336x x x += ( )(3)4416x x x ⋅= ( )(4)348()()()ab ab ab ab ⋅⋅= ( )(5)6253473a a a a a a a ⋅+⋅+= ( )12.方程112=-x 的解为x = . 13.若213254b a b x y ---=是二元一次方程,则a = ,b = .14.若分式27x x -无意义,则x 的值为 . 15.如图是某市晚报记者在抽样调查了一些市民用于读书、读报、参加“全民健身运动”等休闲娱乐活动的时间后,绘制的频率分布直方图(共六组),已知从左往右前五组的频率之和为0.94,如果第六组有12个数,则此次抽样的样本容量是 .16.放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小明 对小丽说:“我已经加工了28kg ,你呢?”小丽思考了—会儿说:“我来考考你,图①、图②分别表示你和我的工作量与工作时间的关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了 kg ”17.在阳光下,同一时刻两个物体高度之比等于其对应的之比.18.某村共有银行储户110户,存款在2~3万元之间的银行储户的频率是0.2,•则该村存款在2~3万元的银行储户有________人.19.某超市一月份的营业额为200万元,第一季度的营业额共1000万元,如果平均每月增长率为x,则有题意列方程为.20.若反比例函数kyx中,当x =6 时,y =-2,则其函数关系式为.21.如图,正方形 ABCD 的边长为 2,AE = EB,MN =1,线段 MN的两端在 CB、CD 上滑动,当 CM= 时,△AED 与以M、N、C 为顶点的三角形相似.22.如图,已知△ACP∽△ABC,AC = 4,AB = 2,则AP的长为.23.数3和12的比例中项是 _.24.如图所示,∠l与∠2是直线、直线被直线所截而得的角.三、解答题25.如图一个矩形长为 a,宽为 b(a≠b),若在矩形外侧增加宽度为c的边矩,那么所得到的矩形和原来的矩形相似吗?为什么?26.利用二次函数图象求方程230x x --=的近似解.27.如图所示,图①是棱长为 1 的正方体,图②、图③由这样的小正方体摆放而成,按照这样的方法继续摆放,自上而下分别叫第 1 层、第2层、…、第n 层.第n 层的小正方体的个数记为 S ,解答下列问题:(1)按要求填写下表: n1 2 3 4 … S 1 3 6… (2)写出当 n=10 时,S= .(3)根据上表中的数据,把 S 作为纵坐标,把n 作为横坐标,在平面直角坐标系中指出相应各点.(4)请你猜一猜上述各点全在某一函数的图象上吗?如果在某一函数的图象上,求出该函数的解析式.28.如图所示,在△ABC 中,∠BAC 的平分线AD 平分BC ,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F .求证:AB=AC .29.某校七年级甲、乙两个班共103人(其中甲班超过50人,乙班不足50人)去景点游玩,如果两班都以班为单位分别购票,那么一共需付486元.购票人数(人) 1-50人 51-100人 100人以上1.两班分别有多少名学生?2.若两班联合起来,作为一个团体购票,可以节约多少钱?30.一个三角形一边长为a b-,求+,另一边长比这条边大2a b+,第三边长比这条边小3a b这个三角形的周长 C.+25a b【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.D5.D6.B7.B8.D二、填空题9.0.4510.-6,-611.(1)× (2)× (3)× (4)× (5)√12.313.1,114.3.515.20016.2017.影长18.2219.200+200(1+x)+200(1+x)2=1000 20.12yx=-21.22.823.6±24.AD,BC,BD,内错三、解答题25.不相似.根据题意,外面矩形的长为a+2c,宽为b+2c,∵两个矩形的长之比为221a c c a a +=+,两个矩形的宽之比为221b c cb b+=+,又∵a b ≠,∴22c c a b ≠,∴2211c c a b +≠+,即22a c b c a b++≠,∴两个矩形不相似. 26.设23y x x =--,则方程23=0x x --的解是该函数与 x 轴交点的横坐标,如图,可得交点坐标A(2.3,0),B(—1.3,0)∴ 方程230x x --=的近似解是1 2.3x ≈,2 1.3x ≈- 27.(1)10;(2)55;(3)如下图(4)各点全在二次函数图象上.设此函数为2S an bn c =++,把点 (1,1)、(2,3)、(3,6)代入可得12a =,12b =,0c =,∴此函数的解析式为21122s n n =+. 28.证明△BDE ≌△CDF(HL),则∠B=∠C ,所以AB=AC29.(1)设甲班有x 名学生,乙班有y 名学生.根据题意得:⎩⎨⎧=+=+48655.4103y x y x ,解得:⎩⎨⎧==4558y x (2)744103486=⨯- .30.25a b +。
2024年山西省中考模拟示范数学试卷(六)
2024年山西省中考模拟示范数学试卷(六)一、单选题1.下面有理数比较大小的式子中,正确的是( ) A .12-<-B .12<-C .1123< D .1123-<-2.在我国传统的房屋建筑中,窗棂是门窗重要的组成部分,它们不仅具有功能性作用,而且具有高度的艺术价值.下列关于窗棂的图案中,不是中心对称图形的是( )A .B .C .D .3.自山西省惠民惠农财政补贴资金“一卡通”管理平台上线以来,已发放惠民惠农财政补贴资金61366.53万元,惠及全省1695847人次.数据61366.53万元用科学记数法表示为( ) A .96.13665310⨯元 B .86.13665310⨯元 C .90.613665310⨯元D .761.3665310⨯元4.下列一元二次方程中,没有实数根的是( ) A .2560x x ++= B .210x x +-= C .2250x x -+=D .269x x =-5.如图,小明在横格作业纸(横线等距)上画了个“×”,与横格线交于A ,B ,C ,D ,O 五点,若线段4cm AB =,则线段CD 的长等于( )A .4cmB .6cmC .8cmD .12cm6.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数B .方差C .平均数D .中位数7.如图,这是某几何体的展开图,则该几何体需要剪开的棱数为( )A .2条B .3条C .4条D .5条8.数学课上,李老师与学生们做“用频率估计概率”的试验:不透明袋子中有2个白球、3个黄球和5个红球,这些球除颜色外无其他差别.从袋子中随机取出一个球,某种颜色的球出现的频率如图所示,则该球的颜色最有可能是( )A .白球B .黄球C .红球D .黑球9.某树苗的初始高度为50cm ,如图,这是该树苗的高度与生长的月数的有关数据示意图,假设以后一段时间内,该树苗高度的变化与月数保持此关系,则该树苗的高度y cm ()与生长月数x 之间的函数关系式为( )A .505(1)y x =+-B .505y x =+C .5010(1)y x =+-D .5010y x =+10.如图,在Y ABCD 中,4AB =,以点A 为圆心,以AB 的长为半径画弧,交AD 于点E ,且E 为AD 的中点,若»BE的长度为π,则图中阴影部分的面积为( )A .4πB .2πC .164π-D .2π二、填空题11.计算:2=.12.如图,AB 是O e 的直径,点C ,D 在O e 上,连接AC ,AD ,CD ,若38ADC ∠=︒,则BAC ∠的度数为.13.如图,8块相同的小长方形地砖拼成一个大长方形,设每块小长方形地砖的长为x cm ,宽为y cm ,可列方程组:.14.如图,在ABC V 中,AB AC =,120BAC ∠=︒,分别以点A ,C 为圆心,大于12AC 的长为半径作弧,两弧分别相交于点E ,F ,连接EF 交边BC 于点D ,连接AD .若8BD =,则ACD V 的周长为.15.如图,E 为正方形ABCD 内一点,ED EA ⊥,连接CE ,F ,G 分别是CE ,CB 的中点,若4AB =,则FG 的最小值是.三、解答题16.(1)计算:()2312233tan 302⎛⎫⨯---++︒ ⎪⎝⎭(2)解不等式组:24223x x -<-⎧⎨-<⎩17.为加快城乡发展,我省持续推进美丽乡村建设.某村计划将一块长为18米、宽为12米的矩形场地建成绿化广场.如图,广场内部修建三条同样宽的小路,其中一条路与广场的长边平行,另外两条路与广场的短边平行,其余区域进行绿化.若绿化面积为140平方米,求小路的宽.18.如图,正比例函数(0)y ax a ≠=与反比例函数(0)ky k x=>的图象交于A ,B 两点,过点A 作AC y ⊥轴,垂足为C ,连接BC ,2ABC S ∆=.(1)求反比例函数ky x=的表达式. (2)若(1,)A a ,以AB ,AC 为边作平行四边形ABDC ,点D 在第三象限内,求点D 的坐标. 19.为了加强手机管理,某校要求“禁止手机进校园”为了解该校学生对手机管理的满意程度,学校团支部对该校的学生进行了随机抽样调查调查分为四个类别:A .非常满意;B 满意;C 不满意;D .无所谓.根据调查数据绘制成如图所示的统计图(不完整).根据以上信息,解答下列问题:(1)本次接受调查的学生共有人,并补全条形统计图. (2)在扇形统计图中,B 所在扇形的圆心角的度数是.(3)若本校有学生2000人,估计“满意”及“非常满意”的学生共有多少人? (4)请对该校学生对手机管理的满意程度作出合理的评价.20.图1是某红色文化主题公园内的雕塑(胜利的号角),将其抽象成如图2所示的示意图.测得AB BC ⊥,DE BC ⊥,52BAM ∠=︒, 1.86m AB =,2 1.24m DE CE ==.连接AE ,交BC 于点F ,若AE MN ⊥,求 AE (即雕塑的高度)的长.(结果精确到0.1m ,参考数据sin380.62︒≈,cos380.79︒≈,tan380.78︒≈)21.阅读与思考下面是小逸同学的数学学习笔记,请仔细阅读并完成相应任务.用“平移法”解答几何问题解答几何问题常常需要添辅助线,其中平移图形是重要的添辅助线的策略.如图1,在正方形ABCD 中,E ,F ,G 分别是BC ,AB ,CD 上的点,FG AE ⊥于点Q .求证:=AE FG .图1小逸在分析解题思路时想到了两种平移法:方法一:平移线段FG 使点F 与点B 重合,构造全等三角形. 如图2,平移线段FG 至BH 交AE 于点K , 由平移的性质得FG BH ∥,图2∵四边形ABCD 是正方形, ∴AB CD ∥,∴四边形BFGH 是平行四边形(依据1), ∴BH FG =, ∵FG AE ⊥, ∴BH AE ⊥, ∴90BKE ∠=︒, ∴90KBE BEK ∠+∠=︒, ∵90BEK BAE ∠+∠=︒, ∴BAE CBH ∠=∠,在ABE V 和BCH V 中,BAE CBHAB BC ABE C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABE BCH V V ≌, ∴AE BH =(依据2),图4任务:(1)填空:材料中的依据1是指___________________,依据2________________. (2)补全材料中方法二的剩余证明过程.(3)如图4,在正方形网格中,A ,B ,C ,D 为格点(网格线的交点),AB 交CD 于点O .则t a n A O C ∠=_____________.22.综合与实践 问题情境如图1,将一把含45︒角的三角尺放在边长为2的正方形ABCD 上,并使它的直角顶点始终与A 点重合,其一条直角边与CB 的延长线交于点E ,另一条直角边与DC 交于点F . 猜想证明(1)在三角尺绕着点A 旋转的过程中. ①请判断AE 与AF 的数量关系,并加以证明.②四边形AECF 的面积是否为定值?如果是,求出这个值;如果不是,试说明理由. 问题解决(2)如图2,将这把三角尺45︒角的顶点始终与点A 重合,角的一边与BC 交于点E ,另一边与DC 交于点F .在旋转的过程中,求点A 到线段EF 的距离.23.综合与探究如图,在平面直角坐标系中,抛物线214y ax x c =++与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C ,连接AC .已知点(3,0)B -,(0,3)C .(1)求该抛物线的表达式及直线AC的表达式.(2)D是直线AC上方抛物线上的一动点,过点D作DP AC于点P,求PD的最大值.(3)在(2)的条件下,将该抛物线向左平移5个单位长度,M为点D的对应点,平移后的抛物线与y轴交于点N,Q为平移后抛物线的对称轴上的任意一点.直接写出所有使得以QN为腰的QMNV是等腰三角形的点Q的坐标.。
初三数学中考模拟测试题六附答案(可编辑修改word版)
初三数学中考模拟测试题六附答案x M D N初三数学中考模拟测试题六(考试时间:120 分钟巻面总分 150 分)8. 如图 3,圆锥的母线长是 3,底面半径是 1,A 是底面圆周上一点,从点 A 出发绕侧面一周,再回到点 A 的最短的路线长是第一部分选择题(共 36 分)一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题 3 分,共 36 分)(A) 6 (B)3 32(C) 3 (D)39. 某青年排球队 12 名队员的年龄情况如下:年龄(单位:岁) 18 19 20 21 22人数143221. 若 = 2a + 4 ,则 a 的取值范围为( )则这个队队员年龄的众数和中位数是( ) A 、19,20 B 、19,19 C 、19,20.5D 、20,19(A)a≥2 (B)a≤2(C)a≥―2(D)a≤―22. .下列计算,正确的是( )10. 一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入 8 个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球 400A. (2a 2 b 3 )2 = 2a 4b 5x 2 + y 2B. (a - b )2 = a 2 - b 2 次,其中 88 次摸到黑球,估计盒中大约有白球( ) A 、28 个 B 、30 个 C 、36 个 D 、42 个 11. 下列四个函数:C.x + y= x + yD. (x + y )( - )= x - y① y = kx (k 为常数,k 0);② y = kx + b (k , b 为常数,k 0); 3. 图 1 中几何体的主视图是③ y =k(k 为常数,k 0);x④ y = ax 2 (a 为常数,a 0);正面图 1A BC4. 抛物线y=(x-1)2 +2 的对称轴是()其中,函数 y 的值随着 x 值得增大而减少的是A 、 ① ,B 、② ,C 、③ ,D 、④ ; A D12. 用一块等边三角形的硬纸片(如图 4)做一个底面 为等边三 角形且高相等的无盖的盒子(边缝忽略不计,如图 5),在△ABC 的每个顶点处各剪掉一个四边形,其中四边形AMDN 中,∠MDN 的度数为( )A、直线 x=-1 B、直线 x=1 C、直线 x=-2 D、直线 x=25. “神舟六号”宇航员费俊龙、聂海胜在太空共看到了 76 次日出日落,日行程约 676000 公里,用科学记数法表示日行程为( ) A .6.76×107公里 B .6.76×105公里 C .0.676×106公里 D .67.6×106公里6. 如图 2,⊙O 是△ABC 的外接圆,连接 OA 、OC , ⊙O 的半径 R=2, sin B = 3 ,则A. 100°B. 110°C. 120°D. 130°第二部分 非选择题(共 114 分)二、填空题:(每题 3 分,共 24 分)BC图 4图 54弦 AC 的长为 ( )A. 3B. 7 13. 请写出一个你喜欢的:当 x<0 时,函数值随自变量的增大而增大的函数关 北 式:。
最新浙江省杭州市中考数学名师模拟试卷附解析
浙江省杭州市中考数学名师模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图所示,有 6 张纸牌,从中任意抽取两张,点数和是奇数的概率是( )A .45B .56C .715D .8152.在Rt △ABC 中,∠C=90°,下列式子不一定成立的是( )A .sinA=cosB B .sinB=cosAC .tanA=tanBD .sin 2A+sin 2B=13.下列命题中,是真命题的为 ( )A .轴对称图形都是中心对称图形B .如果a b =,那么a b =C .对角线相等的四边形是平行四边形D .平行四边形是中心对称图形4.已知方程20x bx a ++=有一个根是()0a a -≠,则下列代数式的值恒为常数的是( )A .abB .a bC .a b +D .a b -5.哈尔滨市政府为了申办2010年冬奥会,决定改善城市容貌,绿化环境,计划经过两年时间,绿地面积增加44%,那么这两年平均每年绿地面积的增长率是( )A .19%B .20%C .21%D .22%6. 把31a a -根号外的因式移入根号内,得( ) A 1a B 1a -C .1a -D .1a-- 7.有一旅客带了30 kg 的行李乘飞机.按民航规定,旅客最多可免费携带20 k9的行李,超重部分每千克按飞机票价的1.5%支付行李费,现该旅客支付了120元的行李费,则他的飞机票价是( )A .600元B .800元C .1000元D .1200元二、填空题8.升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m ,则旗杆高度约为_________.(取3 1.73=,结果精确到0.1m ) 9.若将二次函数245y x x =-+,配方成为2()y x k h =++的形式(其中k h ,为常数),则y = .10.正五边形每个内角是 ,正六边形每个内角是 ,正n 边形每个内角 是 .11.一个多边形内角和与外角和共l440°,其边数是 .12. 若21(1)250m m x x +-+-=是关于x 的一元二次方程,则m .13. 世界上最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,其质量只有0.000005 g ,用科学记数法表示3只卵蜂的质量是 g.14.当3=x 或5-=x 时,代数式c bx x ++2的值都等于1,则bc 的值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年数学中考模拟试题六考生须知:1.本试卷分试题卷和答题卷两部分。
满分120分,考试时间120分钟。
2.答题时,必须在答题卷密封区内写明校名,姓名和准考证号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,上交试题卷和答题卷。
一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填在答题卷中相应的格子内。
1.计算12--||结果正确的是( )A. 3B. 1C. -1D. -32.李刚同学设计了四种正多边形的瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是( )A. (1)(2)(4)B. (2)(3)(4)C. (1)(3)(4)D. (1)(2)(3)3. 若每人每天浪费水0.32L ,那么100万人每天浪费的水,用科学记数法表示为( )A. L 7102.3⨯ B. L 6102.3⨯ C. L 5102.3⨯D. L 4102.3⨯4.如果圆锥的母线长为6cm ,底面圆半径为3cm ,则这个圆锥的侧面积为( )A. 29cm πB. 218cm πC. 227cm πD. 236cm π5. 如图所示,右面水杯的俯视图是( )6.已知D 、E 为△ABC 的边AB 、AC 上的两点,且AB=8,AC=6,AD=4,AE=3,则A D E S ∆∶ABC S ∆=( )A 、1∶2B 、1∶4C 、1∶3D 、2∶57.一个袋中里有4个珠子,其中2个红色,2个兰色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是兰色珠子的概率是 ( )A .12B . 13C .14D .168.如图,已知⊙O 的弦AB 、CD 相交于点E ,的度数为60°,的度数为100°,则∠AEC 等于 ( )(A )60° (B )100° (C )80° (D )130°9.若二次函数y =2 x 2-2 mx +2 m 2-2的图象的顶点在y 轴上,则m 的值是( )(A )0 (B )±1 (C )±2 (D )±2 10.如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( )A .S=2B .S=2.4C .S=4D .S 与BE 长度有关 二、填空题(本题有6个小题,每小题4分,共24分) 11.分式方程121x x =+的解是x=_________。
12.如图:AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =10cm , CD =8cm ,那么AE 的长为 cm .13.吕晓同学想利用树影的长测量校园内一棵大树的高度,他在某一时刻测得一棵小树的高为1.5米,其影长为1.2米,同时,他测得这棵大树的影长为3米,则这棵大树的实际高度为 ▲ 米。
14.某商场一天中售出李宁运动鞋11双,其中各种尺码的鞋的销售量如下表所示,则这11双鞋的尺码组成的一组数据中,众数是 中位数是 。
15“”形的对角线(即一次对角线为一步)棋盘上从点A 到点B ,马走的最少步称为A 与B 的“马步距离”, 作A B d →。
在图中画出了中国象棋的一部分,上面标有A ,B ,C ,D ,E 共5个点,则在A B d →,A C d →,A D d →,A E d →中小的是 ,最小是 步。
16.如果点P 在坐标轴上,以点P 为圆心,512为半径的圆与直线l :(第12题)434+-=x y 相切,则点P 的坐标是三、解答题(本题有8个小题,共66分)解答应写出文字说明,证明过程或推演步骤。
17(本小题满分6分)请写一个顶点不在坐标原点的二次函数,要求该二次函数图像关于Y轴对称, 并求出这个二次函数图像顶点坐标。
18.(本小题满分6分)如图,要在一块形状为直角三角形(∠C 为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心在线段AC 上,且与AB 、BC 都相切.请你用直尺圆规画出来(要求用直尺和圆规作图,保留作图痕迹,不要求写作法).19(本小题满分6分)李明、王鹏、齐轩三位同学对本校九年级250名学生进行一次每周课余的“上网”时间抽样调查,结果如下图(t 为上网时间)。
根据图中提供的信息,解答下列问题: (1)本次抽样调查的学生人数是人 ; (2)每周上网时间在32 t ≤小时这组的频率是 ;(3)请估计该校九年级学生每周上网时间不少于4小时的人数是多少人?20.(本小题满分8分)如图,某中学科学楼高15米,计划在科学楼正北方向的同一水平地上建一幢宿舍楼,第一层是高2.5米的自行车场,第二层起为宿舍。
已知该地区一年之中“冬至”正午时分太阳高度最低,此时太阳光线AB 的入射角∠ABD =55°,为使第二层起能照到阳光,两楼间距EF 至少是多少米?(精确到0.1米)。
(参考数据:tan55°=1.4281,tan35°=0.7002)。
CBA21.(本小题满分8分)王叔叔家有一块等腰三角形的菜地,腰长为40米,一条笔直的水渠从菜地穿过,这条水渠恰好垂直平分等腰三角形的一腰,水渠穿过菜地部分的长为15米(水渠的宽不计),请你计算这块等腰三角形菜地的面积.22.(本小题满分10分)如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上移动,但A 到EF 的距离AH 始终保持与AB 长相等,问在E 、F 移动过程中:(1) 求证:∠EAF = 45o(2) △ECF 的周长是否有变化?请说明理由23.(本小题满分10分).阅读下列材料:十六大提出全面建设小康社会,国际上常用恩格尔系数(记作n ) 来衡量一个国家和地区人民生活水平的状况,它的计算公式为: n=100% 食品消费支出总额消费支出总额各类家庭的恩格尔系数如下表所示:E F根据以上材料,解答下列问题:小明对我市一个乡的农民家庭进行抽样调查,从1998年至2003年间,该乡每户家庭消费支出总额每年平均增加 500元;其中食品消费支出总额平均每年增加200元.1998年该乡农民家庭平均刚达到温饱水平,已知该年每户家庭消费支出总额平均为8000元. ⑴ 1998年该乡平均每户家庭食品消费支出总额为多少元?⑵ 设从1998年起m 年后该乡平均每户的恩格尔系数n m (m 为正整数),请用m 的代数式表示该乡平均每户当年恩格尔系数n m ,则并利用这个公式计算2004年该乡平均每户以恩格尔系数(百分号前保留整数)⑶ 按这样的发展,该乡农民能否实现十六大提出的 2020年我国全面进人小康社会的目标?24.(本小题满分12分)如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似?(3) 当t 为何值时,△APQ 的面积为524个平方单位?2009年数学中考模拟试题六参考答案一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案.二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.三. 全面答一答 (本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以.17、(本小题6分)写出解析式y=aX2+c 得4分写出顶点坐标(0,c)得2分18、(本小题6分)作出角平分线得3分,作出半圆再得2分,小结1分上图即为所求图形 19、(本小题6分)每小题2分(1)本次抽样调查的学生人数是人 50 ;(2)每周上网时间在32 t 小时这组的频率是 0.22 ;(3)(7+6+5)÷50×250=90(人)20、(本小题8分)(1)(2) 由矩形BCEF 得到CE=BF ,BC=EF2分(3) 得到∠CAB=55o 2分 (4)(5) 得到BC=ACtan55o 2分 (6)(7) BC=17.9米 1分 (8) 作答 1分21、(本小题8分) 情况1:锐角(1)证明△ADE ∽△AFC 2分(2)得到CF=24 1分 (3)S△ABC =480 1分情况2:钝角(1)证明△BDE ∽△B FA 2分 (2)得到AF=24,BC=64 1分 (3)S △=768 1分22、(本小题10分) (1)求证:∠EAF = 45o(1) 得到∠AHE=90o,Rt △ABE ≌Rt △ABE 2分 (2) 得到∠BAE=∠HAE 1分 (3) 同理:∠DAF=∠HAF 1分(4) 得到2∠EAF=∠BAD ,∠EAF=45o2分(2)△ECF 的周长是否有变化?请说明理由 (1) 不变 1分(2) 由Rt △ABE ≌Rt △ABE 得到BE=HE 1分 (3) 同理:DF=HF 1分(4) C △ABC = CE+CF+EF=CE+CF+BE+DF=2AB 1分 23、(本小题10分)(1) 4800元 2分 (2)当m=6时,n m =55% 4分(3)n m =0.5时解得m=16,即1998+16=2014<2020年所以能实现 4分 24、(本小题12分) (1)设直线AB 的解析式为y =k x +b 由题意,得b=680k b ⎧⎨+=⎩ 解得346k b ⎧=-⎪⎨⎪=⎩所以,直线AB 的解析式为y =-43x +6. 4分 (2)由AO =6, BO =8 得AB =10 所以AP =t ,AQ =10-2t1) 当∠APQ=∠AOB 时,△APQ∽△AOB.所以 6t =10210t- 解得 t =1130(秒) 2分2) 当∠AQP=∠AOB 时,△AQP∽△AOB. 所以10t =6210t - 解得t =1350(秒) 2分(3)过点Q 作QE 垂直AO 于点E . 在Rt△AOB 中,Sin∠BAO=ABBO =54在Rt△AEQ 中,QE =AQ·Sin∠BAO=(10-2t )·54=8 -58t 2分S △APQ =21AP·QE=21t ·(8-58t )=-254t +4t =524 解得t =2(秒)或t =3(秒). 2分。