西马-阿多诺
三个“西马”理论家的中国面孔——本雅明、阿多诺、马尔库塞在1980年代

克 福 学 派却 是 “ 影 响最 大 的最 新 的假 马克 思 主义
的境 遇 , 也 将 对 此 不 知 所 云④ 。然而 , 他 们 毕 竟
进 人 我 们 眼 中 ,并 且 如 今 还 就 在 我 们 之 中 . 因 此, 所谓 8 O年 代 的本 雅 明 、 阿 多诺 、 马尔 库塞 , 与其 说是他们 在 中国特定历 史时期 的 回响 , 倒 不 如 更 为 准 确 地 说 ,是 我 们 当 下 反 思 的 自我 镜
谓 中 国面 孑 L,难 免 有 些 童 话 小 说 里 爱 丽 丝 梦 游 仙 境 的意 味 。 或如霍耐特所言 , 即便“ 西 马” 理 论 家 再 世 ,面 对 一 套 欧 洲 中心 主 义 的 理 论 在 中 国
本 雅 明 的名 字 早 在 1 9 7 0年代 末 就 出现在 关 于 法 兰 克 福 学 派 的简 要 介 绍 中 ,那 时他 被 认 为
本雅 明 的马 甲
“ 西 马” 理论家来 说 。 则 似 乎 太 过 于 遥 远 。且 不
说 本 雅 明那 时 已经 离 世 3 0年 , 即便 是 属 于 他 们 那 一 代 的风 起 云 涌 的六 七 十 年 代 ,都 早 已成 为
过往烟云 , 曾经 的“ 关 于 普遍 理 论 的 传 统 理 想 已
本 文 系 北 京 市社 会 科 学 基 金 项 目 ( 项 目号 1 4 WY B 0 2 9 ) 、 首都师范大学文化研究院一般项 目( 项 目号 I C S 一 2 0 1 4 一 B 一
0 8 ) 阶段 性 成 果 。
①
②
[ 美] 马丁・ 杰伊 著 , 张晓明译 : 《 ( 辩证法 的想象) 中文版序言》 , 《 哲学译丛) ) 1 9 9 1 年第 5期 。
西方马克思主义批评

第九章 西方马克思主义批评
五、个案分析
独创了诸如灵韵、震惊等批评概念,认为进入机 械复制时代,传统艺术原有的“灵韵”消失了,取而 代之的现代艺术审美特征是“震惊”,形象贴切地表 达了对现代文学艺术的理解。
第九章 西方马克思主义批评
六、学生范文
《从法兰克福学派透视〈手机〉》
本文试图通过《手机》发现,在工业时代,科学 技术对人和物以及人和人之间的关系的异化。手机本 是为了满足人们沟通的需要,但现实中原本近的距离 被拉远了,原本远的距离却近得让人喘不过气来,手 机作为一种科学技术已然悄悄地改变着人们的生活方 式、生存状态和人际关系,这种生活方式所带来的工 具理性思维,以及由此而来的个人生活、心灵世界、 内在向度的丧失,使他们最终成为“单向度的人”。
作为回应,法兰克福学派以及法国 的 “存在主义的马克思主义”、“结构 主义的马克思主义” 迅速发展,西方马 克思主义进入成熟阶段。
第九章 西方马克思主义批评
一、发展过程
多元化阶段(20世纪80年代至今)
德国法兰克福学派进一步发展,德里达、 詹姆逊等后现代文化批评家的努力以及英美 “分析的马克思主义”流派日益兴起,促使 西方马克思主义进入多元化阶段。
第九章 西方马克思主义批评
四、批评特色
批判意识
继承马克思主义的批判立场,还充 分吸收现代西方人本主义理论思潮的文 化批判理论,霍克海默提出的“批判理 论”概念、阿多诺的否定性文论以及马 尔库塞从艺术审美角度的批判,都表现 了西马强烈的批判意识。
“乌托邦意识” “批判意识”与“乌托邦气质”本来就是
相辅相成的,像布洛赫的乌托邦理论、马尔库 塞和弗洛姆的“乌托邦的社会主义”、哈贝马 斯的“交往社会的乌托邦”,都体现了西马的 乌托邦情结。
西方马克思考试

西方马克思主义:第一次世界大战以后,俄国革命取得了胜利,但中西欧革命却遭到了失败。
卢卡奇、柯尔施等人在总结革命失败原因,探索革命道路的过程中,认为革命失败原因就在于无产阶级之阶级意识的丧失,而这又是第二国际庸俗经济决定论所导致的;同时,这也证明俄国革命道路在中西欧是行不通的。
到1923年,卢卡奇、柯尔施就分别著书,试图把马克思主义解释成为一种人道主义,并强调马克思思想与黑格尔思想的连续性。
从总体上说,西方马克思主义是20世纪具有国际性影响的西方社会思潮之一,又是一种具有非马克思主义倾向的非正统马克思主义。
文化革命论:葛兰西认为,对于西方发达国家而言,无产阶级革命的首要任务不是武装夺取政权,而是工资产阶级争夺文化领导权或意识形态领导权。
只有采用阵地战的方式,在市民社会中获得普遍的领导权,才能取得无产阶级革命的胜利。
实践哲学:所谓实践哲学,就是一种绝对的创造性活动。
葛兰西以此为基石,一方面批判了形而上学唯物主义的哲学观与唯心主义哲学观;另一方面,批判了对马克思思想起源和组成部分做僵化的研究。
他认为马克思主义的三个组成部分是内在统一的,是一种总体的知识。
同时,葛兰西也反对庸俗唯物主义和经济唯物主义对马克思主义的曲解。
简言之,葛兰西认为实践哲学开辟了一种新的哲学观。
哲学不是一种理论教条,而是一种历史性的政治实践。
哲学不仅描述了这个世界,而在于推翻非人的旧世界,并建立合理化的新世界。
简述卢卡其《历史与阶级意识》中的基本思想。
(1)历史与阶级意识》是匈牙利大思想家卢卡奇(1885-1971)的所有哲学著作中影响最大、引起争论最多,也许也是最重要的著作之一。
(2)《历代与阶级意识》是一部多层次的哲学著作,或者说政治哲学著作。
整部著作贯穿了必须恢复被第二国际的领袖们所遗忘和歪曲了的马克思主义的真正哲学意义的思想。
卢卡奇在其中深刻地论述了他对有关马克思主义及其辩证法本质一系列极其重要的哲学问题的理解,提出了他对历史及其主体以及物化问题的解释,阐明了无产阶段及其阶级意识的历史作用。
近年来国内学界关于西方马克思主义的评价性研究与争论

近年来国内学界关于西方马克思主义的评价性研究与争论作者:李健来源:《桂海论丛》2020年第05期摘要:围绕西方马克思主义解读马克思主义的逻辑理路,近年来我国学者主要针对三个关键性问题展开争论,一是西方马克思主义研究立场的学术定位是否已经达到政治自觉;二是西方马克思主义在20世纪50至60年代“终结”或“转场”后的多元研究格局与理论构建;三是西方马克思主义在新的历史方位下该往何处去的时代之问和未来展望。
这三次争论启示我们,在发展创新马克思主义的过程中,应该着力把握好两个核心问题,一是自卢卡奇以来所强调的方法,即如何回到马克思的原初语境和把握马克思的真精神;二是打通唯物史观与未来社会形态的内在关联,即如何从历史科学的视角阐述共产主义从产生到实现的在场问题。
关键词:西方马克思主义;马克思主义哲学;历史唯物主义中图分类号:A81文献标识码:A文章编号:1004-1494(2020)05-0035-05我国西方马克思主义研究经历了四十多年的发展,已经成为理解和创新马克思主义的重要组成部分,成为全球化时代下批判资本主义的理论和政治资源。
客观全面呈现西方马克思主义在中国的发展历程,将其内部争论以辩证的张力关系表达出来,从思想史和学术史,从叙述方式和研究方式,从具体和综合等不同角度评判我国西方马克思主义研究取得的成果与未来研究需要加强的地方,这成为当前亟需解决的理论任务,将对我们发展21世纪马克思主义、推进当代中国马克思主义的时代化、大众化以及国际化产生积极效应。
一、政治立场:西方马克思主义的学科定位针对“什么是西方马克思主义”这一原初性问题,我国曾在20世纪末21世纪初产生过两次争论。
一次是20世纪80年代的“徐杜论战”①,一次是21世纪初的“徐王论战②。
这两次论战激发了国内学者研究西方马克思主义的学术兴趣,在理清西方马克思主义的概念、范围、特征,尤其是政治立场方面为后来的研究者提供了有价值的参考。
直至今天,国内学者依然将研究立场视为西方马克思主义研究的前提性问题。
引力波观测原文PhysRevLett.116.061102

Observation of Gravitational Waves from a Binary Black Hole MergerB.P.Abbott et al.*(LIGO Scientific Collaboration and Virgo Collaboration)(Received21January2016;published11February2016)On September14,2015at09:50:45UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal.The signal sweeps upwards in frequency from35to250Hz with a peak gravitational-wave strain of1.0×10−21.It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole.The signal was observed with a matched-filter signal-to-noise ratio of24and a false alarm rate estimated to be less than1event per203000years,equivalent to a significance greaterthan5.1σ.The source lies at a luminosity distance of410þ160−180Mpc corresponding to a redshift z¼0.09þ0.03−0.04.In the source frame,the initial black hole masses are36þ5−4M⊙and29þ4−4M⊙,and the final black hole mass is62þ4−4M⊙,with3.0þ0.5−0.5M⊙c2radiated in gravitational waves.All uncertainties define90%credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems.This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.DOI:10.1103/PhysRevLett.116.061102I.INTRODUCTIONIn1916,the year after the final formulation of the field equations of general relativity,Albert Einstein predicted the existence of gravitational waves.He found that the linearized weak-field equations had wave solutions: transverse waves of spatial strain that travel at the speed of light,generated by time variations of the mass quadrupole moment of the source[1,2].Einstein understood that gravitational-wave amplitudes would be remarkably small;moreover,until the Chapel Hill conference in 1957there was significant debate about the physical reality of gravitational waves[3].Also in1916,Schwarzschild published a solution for the field equations[4]that was later understood to describe a black hole[5,6],and in1963Kerr generalized the solution to rotating black holes[7].Starting in the1970s theoretical work led to the understanding of black hole quasinormal modes[8–10],and in the1990s higher-order post-Newtonian calculations[11]preceded extensive analytical studies of relativistic two-body dynamics[12,13].These advances,together with numerical relativity breakthroughs in the past decade[14–16],have enabled modeling of binary black hole mergers and accurate predictions of their gravitational waveforms.While numerous black hole candidates have now been identified through electromag-netic observations[17–19],black hole mergers have not previously been observed.The discovery of the binary pulsar system PSR B1913þ16 by Hulse and Taylor[20]and subsequent observations of its energy loss by Taylor and Weisberg[21]demonstrated the existence of gravitational waves.This discovery, along with emerging astrophysical understanding[22], led to the recognition that direct observations of the amplitude and phase of gravitational waves would enable studies of additional relativistic systems and provide new tests of general relativity,especially in the dynamic strong-field regime.Experiments to detect gravitational waves began with Weber and his resonant mass detectors in the1960s[23], followed by an international network of cryogenic reso-nant detectors[24].Interferometric detectors were first suggested in the early1960s[25]and the1970s[26].A study of the noise and performance of such detectors[27], and further concepts to improve them[28],led to proposals for long-baseline broadband laser interferome-ters with the potential for significantly increased sensi-tivity[29–32].By the early2000s,a set of initial detectors was completed,including TAMA300in Japan,GEO600 in Germany,the Laser Interferometer Gravitational-Wave Observatory(LIGO)in the United States,and Virgo in binations of these detectors made joint obser-vations from2002through2011,setting upper limits on a variety of gravitational-wave sources while evolving into a global network.In2015,Advanced LIGO became the first of a significantly more sensitive network of advanced detectors to begin observations[33–36].A century after the fundamental predictions of Einstein and Schwarzschild,we report the first direct detection of gravitational waves and the first direct observation of a binary black hole system merging to form a single black hole.Our observations provide unique access to the*Full author list given at the end of the article.Published by the American Physical Society under the terms of the Creative Commons Attribution3.0License.Further distri-bution of this work must maintain attribution to the author(s)and the published article’s title,journal citation,and DOI.properties of space-time in the strong-field,high-velocity regime and confirm predictions of general relativity for the nonlinear dynamics of highly disturbed black holes.II.OBSERVATIONOn September14,2015at09:50:45UTC,the LIGO Hanford,W A,and Livingston,LA,observatories detected the coincident signal GW150914shown in Fig.1.The initial detection was made by low-latency searches for generic gravitational-wave transients[41]and was reported within three minutes of data acquisition[43].Subsequently, matched-filter analyses that use relativistic models of com-pact binary waveforms[44]recovered GW150914as the most significant event from each detector for the observa-tions reported here.Occurring within the10-msintersite FIG.1.The gravitational-wave event GW150914observed by the LIGO Hanford(H1,left column panels)and Livingston(L1,rightcolumn panels)detectors.Times are shown relative to September14,2015at09:50:45UTC.For visualization,all time series are filtered with a35–350Hz bandpass filter to suppress large fluctuations outside the detectors’most sensitive frequency band,and band-reject filters to remove the strong instrumental spectral lines seen in the Fig.3spectra.Top row,left:H1strain.Top row,right:L1strain.GW150914arrived first at L1and6.9þ0.5−0.4ms later at H1;for a visual comparison,the H1data are also shown,shifted in time by this amount and inverted(to account for the detectors’relative orientations).Second row:Gravitational-wave strain projected onto each detector in the35–350Hz band.Solid lines show a numerical relativity waveform for a system with parameters consistent with those recovered from GW150914[37,38]confirmed to99.9%by an independent calculation based on[15].Shaded areas show90%credible regions for two independent waveform reconstructions.One(dark gray)models the signal using binary black hole template waveforms [39].The other(light gray)does not use an astrophysical model,but instead calculates the strain signal as a linear combination of sine-Gaussian wavelets[40,41].These reconstructions have a94%overlap,as shown in[39].Third row:Residuals after subtracting the filtered numerical relativity waveform from the filtered detector time series.Bottom row:A time-frequency representation[42]of the strain data,showing the signal frequency increasing over time.propagation time,the events have a combined signal-to-noise ratio(SNR)of24[45].Only the LIGO detectors were observing at the time of GW150914.The Virgo detector was being upgraded, and GEO600,though not sufficiently sensitive to detect this event,was operating but not in observational mode.With only two detectors the source position is primarily determined by the relative arrival time and localized to an area of approximately600deg2(90% credible region)[39,46].The basic features of GW150914point to it being produced by the coalescence of two black holes—i.e., their orbital inspiral and merger,and subsequent final black hole ringdown.Over0.2s,the signal increases in frequency and amplitude in about8cycles from35to150Hz,where the amplitude reaches a maximum.The most plausible explanation for this evolution is the inspiral of two orbiting masses,m1and m2,due to gravitational-wave emission.At the lower frequencies,such evolution is characterized by the chirp mass[11]M¼ðm1m2Þ3=5121=5¼c3G596π−8=3f−11=3_f3=5;where f and_f are the observed frequency and its time derivative and G and c are the gravitational constant and speed of light.Estimating f and_f from the data in Fig.1, we obtain a chirp mass of M≃30M⊙,implying that the total mass M¼m1þm2is≳70M⊙in the detector frame. This bounds the sum of the Schwarzschild radii of thebinary components to2GM=c2≳210km.To reach an orbital frequency of75Hz(half the gravitational-wave frequency)the objects must have been very close and very compact;equal Newtonian point masses orbiting at this frequency would be only≃350km apart.A pair of neutron stars,while compact,would not have the required mass,while a black hole neutron star binary with the deduced chirp mass would have a very large total mass, and would thus merge at much lower frequency.This leaves black holes as the only known objects compact enough to reach an orbital frequency of75Hz without contact.Furthermore,the decay of the waveform after it peaks is consistent with the damped oscillations of a black hole relaxing to a final stationary Kerr configuration. Below,we present a general-relativistic analysis of GW150914;Fig.2shows the calculated waveform using the resulting source parameters.III.DETECTORSGravitational-wave astronomy exploits multiple,widely separated detectors to distinguish gravitational waves from local instrumental and environmental noise,to provide source sky localization,and to measure wave polarizations. The LIGO sites each operate a single Advanced LIGO detector[33],a modified Michelson interferometer(see Fig.3)that measures gravitational-wave strain as a differ-ence in length of its orthogonal arms.Each arm is formed by two mirrors,acting as test masses,separated by L x¼L y¼L¼4km.A passing gravitational wave effec-tively alters the arm lengths such that the measured difference isΔLðtÞ¼δL x−δL y¼hðtÞL,where h is the gravitational-wave strain amplitude projected onto the detector.This differential length variation alters the phase difference between the two light fields returning to the beam splitter,transmitting an optical signal proportional to the gravitational-wave strain to the output photodetector. To achieve sufficient sensitivity to measure gravitational waves,the detectors include several enhancements to the basic Michelson interferometer.First,each arm contains a resonant optical cavity,formed by its two test mass mirrors, that multiplies the effect of a gravitational wave on the light phase by a factor of300[48].Second,a partially trans-missive power-recycling mirror at the input provides addi-tional resonant buildup of the laser light in the interferometer as a whole[49,50]:20W of laser input is increased to700W incident on the beam splitter,which is further increased to 100kW circulating in each arm cavity.Third,a partially transmissive signal-recycling mirror at the outputoptimizes FIG. 2.Top:Estimated gravitational-wave strain amplitude from GW150914projected onto H1.This shows the full bandwidth of the waveforms,without the filtering used for Fig.1. The inset images show numerical relativity models of the black hole horizons as the black holes coalesce.Bottom:The Keplerian effective black hole separation in units of Schwarzschild radii (R S¼2GM=c2)and the effective relative velocity given by the post-Newtonian parameter v=c¼ðGMπf=c3Þ1=3,where f is the gravitational-wave frequency calculated with numerical relativity and M is the total mass(value from Table I).the gravitational-wave signal extraction by broadening the bandwidth of the arm cavities [51,52].The interferometer is illuminated with a 1064-nm wavelength Nd:Y AG laser,stabilized in amplitude,frequency,and beam geometry [53,54].The gravitational-wave signal is extracted at the output port using a homodyne readout [55].These interferometry techniques are designed to maxi-mize the conversion of strain to optical signal,thereby minimizing the impact of photon shot noise (the principal noise at high frequencies).High strain sensitivity also requires that the test masses have low displacement noise,which is achieved by isolating them from seismic noise (low frequencies)and designing them to have low thermal noise (intermediate frequencies).Each test mass is suspended as the final stage of a quadruple-pendulum system [56],supported by an active seismic isolation platform [57].These systems collectively provide more than 10orders of magnitude of isolation from ground motion for frequen-cies above 10Hz.Thermal noise is minimized by using low-mechanical-loss materials in the test masses and their suspensions:the test masses are 40-kg fused silica substrates with low-loss dielectric optical coatings [58,59],and are suspended with fused silica fibers from the stage above [60].To minimize additional noise sources,all components other than the laser source are mounted on vibration isolation stages in ultrahigh vacuum.To reduce optical phase fluctuations caused by Rayleigh scattering,the pressure in the 1.2-m diameter tubes containing the arm-cavity beams is maintained below 1μPa.Servo controls are used to hold the arm cavities on resonance [61]and maintain proper alignment of the optical components [62].The detector output is calibrated in strain by measuring its response to test mass motion induced by photon pressure from a modulated calibration laser beam [63].The calibration is established to an uncertainty (1σ)of less than 10%in amplitude and 10degrees in phase,and is continuously monitored with calibration laser excitations at selected frequencies.Two alternative methods are used to validate the absolute calibration,one referenced to the main laser wavelength and the other to a radio-frequencyoscillator(a)FIG.3.Simplified diagram of an Advanced LIGO detector (not to scale).A gravitational wave propagating orthogonally to the detector plane and linearly polarized parallel to the 4-km optical cavities will have the effect of lengthening one 4-km arm and shortening the other during one half-cycle of the wave;these length changes are reversed during the other half-cycle.The output photodetector records these differential cavity length variations.While a detector ’s directional response is maximal for this case,it is still significant for most other angles of incidence or polarizations (gravitational waves propagate freely through the Earth).Inset (a):Location and orientation of the LIGO detectors at Hanford,WA (H1)and Livingston,LA (L1).Inset (b):The instrument noise for each detector near the time of the signal detection;this is an amplitude spectral density,expressed in terms of equivalent gravitational-wave strain amplitude.The sensitivity is limited by photon shot noise at frequencies above 150Hz,and by a superposition of other noise sources at lower frequencies [47].Narrow-band features include calibration lines (33–38,330,and 1080Hz),vibrational modes of suspension fibers (500Hz and harmonics),and 60Hz electric power grid harmonics.[64].Additionally,the detector response to gravitational waves is tested by injecting simulated waveforms with the calibration laser.To monitor environmental disturbances and their influ-ence on the detectors,each observatory site is equipped with an array of sensors:seismometers,accelerometers, microphones,magnetometers,radio receivers,weather sensors,ac-power line monitors,and a cosmic-ray detector [65].Another∼105channels record the interferometer’s operating point and the state of the control systems.Data collection is synchronized to Global Positioning System (GPS)time to better than10μs[66].Timing accuracy is verified with an atomic clock and a secondary GPS receiver at each observatory site.In their most sensitive band,100–300Hz,the current LIGO detectors are3to5times more sensitive to strain than initial LIGO[67];at lower frequencies,the improvement is even greater,with more than ten times better sensitivity below60Hz.Because the detectors respond proportionally to gravitational-wave amplitude,at low redshift the volume of space to which they are sensitive increases as the cube of strain sensitivity.For binary black holes with masses similar to GW150914,the space-time volume surveyed by the observations reported here surpasses previous obser-vations by an order of magnitude[68].IV.DETECTOR VALIDATIONBoth detectors were in steady state operation for several hours around GW150914.All performance measures,in particular their average sensitivity and transient noise behavior,were typical of the full analysis period[69,70]. Exhaustive investigations of instrumental and environ-mental disturbances were performed,giving no evidence to suggest that GW150914could be an instrumental artifact [69].The detectors’susceptibility to environmental disturb-ances was quantified by measuring their response to spe-cially generated magnetic,radio-frequency,acoustic,and vibration excitations.These tests indicated that any external disturbance large enough to have caused the observed signal would have been clearly recorded by the array of environ-mental sensors.None of the environmental sensors recorded any disturbances that evolved in time and frequency like GW150914,and all environmental fluctuations during the second that contained GW150914were too small to account for more than6%of its strain amplitude.Special care was taken to search for long-range correlated disturbances that might produce nearly simultaneous signals at the two sites. No significant disturbances were found.The detector strain data exhibit non-Gaussian noise transients that arise from a variety of instrumental mecha-nisms.Many have distinct signatures,visible in auxiliary data channels that are not sensitive to gravitational waves; such instrumental transients are removed from our analyses [69].Any instrumental transients that remain in the data are accounted for in the estimated detector backgrounds described below.There is no evidence for instrumental transients that are temporally correlated between the two detectors.V.SEARCHESWe present the analysis of16days of coincident observations between the two LIGO detectors from September12to October20,2015.This is a subset of the data from Advanced LIGO’s first observational period that ended on January12,2016.GW150914is confidently detected by two different types of searches.One aims to recover signals from the coalescence of compact objects,using optimal matched filtering with waveforms predicted by general relativity. The other search targets a broad range of generic transient signals,with minimal assumptions about waveforms.These searches use independent methods,and their response to detector noise consists of different,uncorrelated,events. However,strong signals from binary black hole mergers are expected to be detected by both searches.Each search identifies candidate events that are detected at both observatories consistent with the intersite propa-gation time.Events are assigned a detection-statistic value that ranks their likelihood of being a gravitational-wave signal.The significance of a candidate event is determined by the search background—the rate at which detector noise produces events with a detection-statistic value equal to or higher than the candidate event.Estimating this back-ground is challenging for two reasons:the detector noise is nonstationary and non-Gaussian,so its properties must be empirically determined;and it is not possible to shield the detector from gravitational waves to directly measure a signal-free background.The specific procedure used to estimate the background is slightly different for the two searches,but both use a time-shift technique:the time stamps of one detector’s data are artificially shifted by an offset that is large compared to the intersite propagation time,and a new set of events is produced based on this time-shifted data set.For instrumental noise that is uncor-related between detectors this is an effective way to estimate the background.In this process a gravitational-wave signal in one detector may coincide with time-shifted noise transients in the other detector,thereby contributing to the background estimate.This leads to an overestimate of the noise background and therefore to a more conservative assessment of the significance of candidate events.The characteristics of non-Gaussian noise vary between different time-frequency regions.This means that the search backgrounds are not uniform across the space of signals being searched.To maximize sensitivity and provide a better estimate of event significance,the searches sort both their background estimates and their event candidates into differ-ent classes according to their time-frequency morphology. The significance of a candidate event is measured against the background of its class.To account for having searchedmultiple classes,this significance is decreased by a trials factor equal to the number of classes [71].A.Generic transient searchDesigned to operate without a specific waveform model,this search identifies coincident excess power in time-frequency representations of the detector strain data [43,72],for signal frequencies up to 1kHz and durations up to a few seconds.The search reconstructs signal waveforms consistent with a common gravitational-wave signal in both detectors using a multidetector maximum likelihood method.Each event is ranked according to the detection statistic ηc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2E c =ð1þE n =E c Þp ,where E c is the dimensionless coherent signal energy obtained by cross-correlating the two reconstructed waveforms,and E n is the dimensionless residual noise energy after the reconstructed signal is subtracted from the data.The statistic ηc thus quantifies the SNR of the event and the consistency of the data between the two detectors.Based on their time-frequency morphology,the events are divided into three mutually exclusive search classes,as described in [41]:events with time-frequency morphology of known populations of noise transients (class C1),events with frequency that increases with time (class C3),and all remaining events (class C2).Detected with ηc ¼20.0,GW150914is the strongest event of the entire search.Consistent with its coalescence signal signature,it is found in the search class C3of events with increasing time-frequency evolution.Measured on a background equivalent to over 67400years of data and including a trials factor of 3to account for the search classes,its false alarm rate is lower than 1in 22500years.This corresponds to a probability <2×10−6of observing one or more noise events as strong as GW150914during the analysis time,equivalent to 4.6σ.The left panel of Fig.4shows the C3class results and background.The selection criteria that define the search class C3reduce the background by introducing a constraint on the signal morphology.In order to illustrate the significance of GW150914against a background of events with arbitrary shapes,we also show the results of a search that uses the same set of events as the one described above but without this constraint.Specifically,we use only two search classes:the C1class and the union of C2and C3classes (C 2þC 3).In this two-class search the GW150914event is found in the C 2þC 3class.The left panel of Fig.4shows the C 2þC 3class results and background.In the background of this class there are four events with ηc ≥32.1,yielding a false alarm rate for GW150914of 1in 8400years.This corresponds to a false alarm probability of 5×10−6equivalent to 4.4σ.FIG.4.Search results from the generic transient search (left)and the binary coalescence search (right).These histograms show the number of candidate events (orange markers)and the mean number of background events (black lines)in the search class where GW150914was found as a function of the search detection statistic and with a bin width of 0.2.The scales on the top give the significance of an event in Gaussian standard deviations based on the corresponding noise background.The significance of GW150914is greater than 5.1σand 4.6σfor the binary coalescence and the generic transient searches,respectively.Left:Along with the primary search (C3)we also show the results (blue markers)and background (green curve)for an alternative search that treats events independently of their frequency evolution (C 2þC 3).The classes C2and C3are defined in the text.Right:The tail in the black-line background of the binary coalescence search is due to random coincidences of GW150914in one detector with noise in the other detector.(This type of event is practically absent in the generic transient search background because they do not pass the time-frequency consistency requirements used in that search.)The purple curve is the background excluding those coincidences,which is used to assess the significance of the second strongest event.For robustness and validation,we also use other generic transient search algorithms[41].A different search[73]and a parameter estimation follow-up[74]detected GW150914 with consistent significance and signal parameters.B.Binary coalescence searchThis search targets gravitational-wave emission from binary systems with individual masses from1to99M⊙, total mass less than100M⊙,and dimensionless spins up to 0.99[44].To model systems with total mass larger than 4M⊙,we use the effective-one-body formalism[75],whichcombines results from the post-Newtonian approach [11,76]with results from black hole perturbation theory and numerical relativity.The waveform model[77,78] assumes that the spins of the merging objects are alignedwith the orbital angular momentum,but the resultingtemplates can,nonetheless,effectively recover systemswith misaligned spins in the parameter region ofGW150914[44].Approximately250000template wave-forms are used to cover this parameter space.The search calculates the matched-filter signal-to-noiseratioρðtÞfor each template in each detector and identifiesmaxima ofρðtÞwith respect to the time of arrival of the signal[79–81].For each maximum we calculate a chi-squared statisticχ2r to test whether the data in several differentfrequency bands are consistent with the matching template [82].Values ofχ2r near unity indicate that the signal is consistent with a coalescence.Ifχ2r is greater than unity,ρðtÞis reweighted asˆρ¼ρ=f½1þðχ2rÞ3 =2g1=6[83,84].The final step enforces coincidence between detectors by selectingevent pairs that occur within a15-ms window and come fromthe same template.The15-ms window is determined by the10-ms intersite propagation time plus5ms for uncertainty inarrival time of weak signals.We rank coincident events basedon the quadrature sumˆρc of theˆρfrom both detectors[45]. To produce background data for this search the SNR maxima of one detector are time shifted and a new set of coincident events is computed.Repeating this procedure ∼107times produces a noise background analysis time equivalent to608000years.To account for the search background noise varying acrossthe target signal space,candidate and background events aredivided into three search classes based on template length.The right panel of Fig.4shows the background for thesearch class of GW150914.The GW150914detection-statistic value ofˆρc¼23.6is larger than any background event,so only an upper bound can be placed on its false alarm rate.Across the three search classes this bound is1in 203000years.This translates to a false alarm probability <2×10−7,corresponding to5.1σ.A second,independent matched-filter analysis that uses adifferent method for estimating the significance of itsevents[85,86],also detected GW150914with identicalsignal parameters and consistent significance.When an event is confidently identified as a real gravitational-wave signal,as for GW150914,the back-ground used to determine the significance of other events is reestimated without the contribution of this event.This is the background distribution shown as a purple line in the right panel of Fig.4.Based on this,the second most significant event has a false alarm rate of1per2.3years and corresponding Poissonian false alarm probability of0.02. Waveform analysis of this event indicates that if it is astrophysical in origin it is also a binary black hole merger[44].VI.SOURCE DISCUSSIONThe matched-filter search is optimized for detecting signals,but it provides only approximate estimates of the source parameters.To refine them we use general relativity-based models[77,78,87,88],some of which include spin precession,and for each model perform a coherent Bayesian analysis to derive posterior distributions of the source parameters[89].The initial and final masses, final spin,distance,and redshift of the source are shown in Table I.The spin of the primary black hole is constrained to be<0.7(90%credible interval)indicating it is not maximally spinning,while the spin of the secondary is only weakly constrained.These source parameters are discussed in detail in[39].The parameter uncertainties include statistical errors and systematic errors from averaging the results of different waveform models.Using the fits to numerical simulations of binary black hole mergers in[92,93],we provide estimates of the mass and spin of the final black hole,the total energy radiated in gravitational waves,and the peak gravitational-wave luminosity[39].The estimated total energy radiated in gravitational waves is3.0þ0.5−0.5M⊙c2.The system reached apeak gravitational-wave luminosity of3.6þ0.5−0.4×1056erg=s,equivalent to200þ30−20M⊙c2=s.Several analyses have been performed to determine whether or not GW150914is consistent with a binary TABLE I.Source parameters for GW150914.We report median values with90%credible intervals that include statistical errors,and systematic errors from averaging the results of different waveform models.Masses are given in the source frame;to convert to the detector frame multiply by(1þz) [90].The source redshift assumes standard cosmology[91]. Primary black hole mass36þ5−4M⊙Secondary black hole mass29þ4−4M⊙Final black hole mass62þ4−4M⊙Final black hole spin0.67þ0.05−0.07 Luminosity distance410þ160−180MpcSource redshift z0.09þ0.03−0.04。
西方马克思主义

西方马克思主义西方马克思主义是一种有别于经典马克思主义的的哲学体系和思想体系。
从地理差异上来看,所谓西方马克思主义其实是一种地缘政治的产物。
代表人物有卢卡奇,霍克海默,阿多诺和本雅明,萨特和阿尔都塞等,西马的代表人物所在国家尽管有着工人运动组织,但共产主义并非官方意识形态,他们的家庭和生活环境也未给他们提供充分进入工人运动的条件。
他们的理论主张的特点也和他们生活的时代和地域有着密不可分的关系。
时代为他们提出了相似又特殊的问题,而他们对时代的难题给出了自己特殊的答案,之所以相似是因为双重幻灭的境遇出事他们选择马克思主义,第一次世界大战用血腥的事实让欧洲人在巨变过程中惊慌恐惧,不仅使自有资本主义美好时代的美梦不再有,也使当时欧洲左翼知识分子信奉的时机成熟之际新秩序应运而生的经济决定论名声扫地。
二战之后法国共产党执行的苏联斯大林主义路线,使得苏联正统的马克思主义成了法国左翼知识分子的反抗对象。
对资本主义本身和苏联模式的社会主义的双重幻灭,使得这批知识分子在批判资本主义和讲话的马克思主义的双重要求下创造出来新定语的马克思主义。
西马理论者已经使文化理论的丰富性战胜了经济和政治理论,他们关注的焦点已经是作为意识形态的文化问题了。
卢卡奇师从席美尔(客观化/对象化)启蒙时期的欧洲的市民社会,尊重个性,提倡自由,堪称主观文化,进入19世纪之后,人的关系受金钱支配,日益变作冷酷无情的客观文化:它倒行逆施,榨取认得单一潜能,导致其它资质荒废。
此一客观化过程,竟将欧洲人亲自打造的现代文化,变作异己之物:它违背其心愿,封闭期心灵。
这文化愈是繁荣,人的精神就愈加贫乏。
如此人与文化的严酷对峙,边酿成了一种文化悲剧,悲剧何在,客观文化有人类活动专门化造成,其手段区分的越细,劳动者所表现的人格就越少。
异化Alliennation异化这一概念与马克思主义有着莫大的关系,但是它有悠久的历史,比如,犹太理论中,异化指的是人逐渐疏远上帝,在过去的某个时候,人类之间,人和自热和谐的生活,后来出现了一种断裂,导致人类与社会和世界的疏远,人类成了异乡人。
现象学诸人物(杂谈)

现象学诸人物(2011-03-26 14:39:30)标签:杂谈综述现象学是二十世纪德法哲学(一般称为欧洲大陆哲学)的主流,其次是结构主义、西方马克思主义等等。
与其对应,上个世纪英美哲学的主流是分析哲学,其次是实用主义、科学哲学。
现象学的代表人物,可以分前三巨头,后三巨头。
前三巨头是,胡塞尔,舍勒,海德格尔。
后三巨头是,萨特,梅洛-庞蒂,伽达默尔。
萨特与梅洛-庞蒂是法国人,其他人都是德国人。
胡塞尔是现象学的创始人,德国犹太人。
舍勒是现象学第二号人物,与胡塞尔亦师亦友。
海德格尔是胡塞尔的学生。
现象学,最著名的人物是海德格尔,人们耳闻目睹的是其著作《存在与时间》。
萨特与梅洛-庞蒂主要受海德格尔的影响。
伽达默尔是海德格尔的学生。
现象学以晦涩难懂而著称。
分析哲学,最杰出的人物是维特根斯坦,奥地利犹太人。
维特根斯坦跟希特勒小时候是同校同学,他们有一张合影照片,他们还是同年同月生。
据有人考证,希特勒仇恨犹太人,跟维特根斯坦有关。
当时,维特根斯坦人长的帅,成绩又好,家庭富裕;希特勒模样一般,成绩不好,家庭贫困,唯一的特长是美术,希特勒擅长风景画。
回到事物本身。
是现象学的口号。
现象学是一种方法。
辩证法也是一种方法。
与我们日常说的"透过现象看本质"是有区别的。
直观到的现象,就是事物的本质。
本质不是独立于现象之外的东西,本质实际是最佳角度显现的现象(特别是对范畴事物来说,从而有本质直观)。
维特根斯坦的回应:所谓直观,不过是语言游戏中的熟悉。
分析哲学,定义无休止的追问,导致循环定义。
现象学截断此一困境,所有的概念都是循环论证的,知识怎么可能?比如出生时,必然有不证自明的东西,本质直观。
维特根斯坦的反驳:所谓的直观不过是一种熟悉,生活世界充满语言游戏。
古希腊:认识你自己。
现象学的意识自识问题,唯识论早在1500年前就进行过深刻讨论。
最后护法提出了意识四分说:相分,见分,自证分,证自证分。
自证分与证自证分,可以参考华严宗金狮子章,双镜喻,两个镜子相互对照,是同一意识内的现量,不存在时间的无限性,不是恶无限。
布迪厄:语言与象征权力

Pierre Bourdieu布迪厄:语言与象征权力Language and Symbolic Power语言是什么?这是一个大难题。
我们学文学、语言、哲学和历史的博士生,读书越多,反而越糊涂:索绪尔说语言是一套严谨自律、抽象静止的“符号系统”。
在哈贝马斯看来,语言是一种不分贫贱、童叟无欺的“普遍交往”。
可在法国社会学家布迪厄目中,语言带有象征力量,其中隐含了福柯所说的“话语权力”。
索绪尔所谓的符号系统,虽然具备某些内在法则,它更是一套象征性的统治工具。
凭借这一隐秘难见的象征权力,西方发达资本主义社会及其文化网络,因而获得了天网恢恢、无处不在的政治功能、以及一种长期延续、自我循环的文化再生产逻辑。
布迪厄的见解从何而来?让我们回到新左派革命时期,去看看当时巴黎高师的学术与政治语境。
1970年,福柯入选法兰西学院,隆重讲演《话语的秩序》(The Order of Discourse)。
此文宗旨,是要以一种新式冲突论,“就西方知识的历史命运,作出政治性解答”。
然而其中关键,并非马克思的阶级斗争,而是尼采喋喋不休的权力意志。
何谓权力意志?根据尼采,它首先是一种力(Macht)。
如何让这种力量获得胜利呢?尼采说:“赋予它一种内在意志,我称为权力意志”。
对于福柯,尼采是个“权力哲学家”:他不但描述权力争斗、张扬强悍意志,而且率先将权力关系,“指定为哲学话语的核心”。
福柯拓展尼采权力观,使之广泛牵扯到:[1] 西方人上天入地、孜孜求知的浮士德精神,[2] 西方人对于“他人”和世界的征服能力;[3] 西方现代机构及其先进精密的统治技术。
尼采权力说,暗藏了他对西洋真理的一大讽喻:古希腊人原本善良天真,他们相信话语的力量,就在于谁说话、怎样说、在何种场合说。
那时节,长老在庄严仪式中发号施令,巫师神秘兮兮念动咒语。
大群愚昧听众,无不诚惶诚恐、心悦诚服。
谁知道,阴微小人柏拉图,竟从长老、国王和巫师的说话仪式中,窥见了垄断真理的手段:原来话语权力,来自神秘言说及其仪式!于是柏拉图发明辩证法、组建专家群,继而著书办学,自诩是苏格拉底的传人,从此他独揽了西方真理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.对“文化工业”特征的研究
许多学者在总结他的思想后给出了自己理解的“文化工业”内涵。虽然具体 定义各不相同,但实质内容大同小异。衣俊卿教授认为,“文化工业是指凭 借现代科学技术手段大规模地复制、传播文化产品、文化商品的娱乐工业体 系”。他还指出大众文化的商品化、齐一化、欺骗性、操控性和统治性特征。 对于这些特征,学者们研究的侧重点各不相同。赵勇教授认为,“文化工业 的商品化特征是商品拜物教的表现形式,文化商品被抽去了所指(使用价值) 而变成了没有实际意义指涉的空洞能指,从而进一步具有了马克思所谓‘幽 灵般的’特征”。有的学者就从马克思对于商品的拜物教性质及其秘密的内 容具体展开来分析商品为何具有神秘特征的整个过程进行研究。而有的学者 从操控性和统治性特征入手,认为“文化工业”是晚期资本主义社会维持其 统治现状的软性策略,起着意识形态的作用,其中还对文化无论是艺术还是 反艺术形式都与幸福有关进行了探究。
5.对阿多诺思想存在局限性的研究
有的学者对阿多诺思想的局限性进行了研究,概括成以下四个方面:过分强 调技术和技术理性的作用;没有对新的文化生产形式产生的必然性给予必要 的肯定;无法解释新的文化现象;存在对大众文化的歧视。赵勇教授认为, “阿多诺在特殊语境下的文化工业批判理论具有悲观主义色彩,同时也打上 了他本人那种‘上流文化保守主义’的烙印。这样,此种理论也就不可避免 地具有了某种精英主义和悲观主义的色彩,这也正是它后来遭人质疑、为人 诟病的地方。”但也有学者从阿多诺的后期文本分析,认为他的思想还是存 在着积极性,并且从四个方面展开具体论述:阿多诺大众文化具有历史性特 征;大众文化在一定程度上也具有否定、超越的特质;大众文化自身存在着 “解毒剂”;大众不易控制并且有选择能动性。有的学者指出,“一般认为 阿多诺的文化工业思想主张大众文化是社会水泥,大众已被大众文化牢牢控 制。
6.对阿多诺思想现实性意义的研究
学术界对阿多诺文化工业思想的评价褒贬不一,有的学者就从这些评价中进 行研究。他们中有的认为,阿多诺的“文化工业”思想体现了法兰克福学派 一贯的批判精神,体现了哲学思辨与经验研究的二者结合,并指出对阿多诺 文化工业理论局限的超越只能是立足于此二者基础上的对当代文化现实的具 体的内在的批判。有的学者认为,“即使在大众文化以不可阻挡之势在全球 范围内发展壮大的今天,法兰克福学派对于大众文化的理论批判,仍具有相 当重要的现实意义。他们提出的许多关于大众文化方面的问题,比如人的物 欲享受与意义世界的对立,不但没有得到很好解决,而且变得越来越严重。 如何让大众从大众文化产品中摆脱出来,既享受大众文化产品所带来的精神 欢愉,又不当其奴隶受其左右,仍然是需要解决的现实问题”。有的学者提 出了法兰克福学派批判理论对中国马克思主义哲学研究和建设有很大的启示 作用,并阐明了具体的启示。有的学者认为,“分析阿多诺的‘文化工业’ 思想给我们的研究带来了更多的要求,对现代文化以及现代社会的理论反思, 其审视的视角不单纯只是文化领域的,也不单纯是政治经济领域的,而体现 为一种复合的视野而从现代文化研究的历史路径来看,这种研究方式的建构, 极大程度上开拓了我们对于现代文化以及社会的理解”。
二、阿多诺的文化工业批判
(一)什么是文化工业 肯定的文化——大众文化——文化工业 “肯定的文化,是指资产阶级时代……所 产生的文化……这种文化的根本特性就是 认可普遍性的义务,认可必须无条件肯定 的永恒美好和更有价值的世界。这个世 界……可以在不改变任何实际情形的条件 下通过每个个体的‘内心’得到实现”。
文化工业是指凭借现代科学技术手段大规 模的复制、传播商品化了的非创造性的文 化产品的娱乐工业体系。
(2)文化工业的四个特征 ①、商品化 ②、技术化 ③、齐一化 ④、强迫化
(4)评价 ①贡献: 一是他对现代资本主义文明的深刻广泛的批判, 这种批判应该说是对马克思主义在现实条件下的 一种丰富。 二是他对艺术的否定性的较为辩证的理解和阐释, 既强调艺术和审美对社会现实的否定与批判功能, 又非常重视艺术和审美的特殊规律。 三是他对现代主义艺术的审美特点进行了全面、 有力的理论分析,这对我们更客观、科学地把握 现代主义艺术是有益的。
学者对阿多诺启蒙思想的研究
有不少学者针对阿多诺的《启蒙辩证法》一书引入启蒙思想这个中介理论。 有的学者论述阿多诺认为“随着社会的演化,科技的发展,理性日益嚣张, 以理性为其内在支撑的启蒙也不可避免地走向自身的反面——对自然、对 人、对人类的统治与压迫。这样,启蒙不但不能承担解救人类的职责,甚 至还将人类推向了异化的深渊”。也有的学者指出,“在神话——启蒙— —真理的启蒙历史结构中,阿多诺认为启蒙倒退为神话一开始就蕴含在以 启蒙为中介的历史结构当中,启蒙与神话在最初的同一并不全是和谐的, 而是蕴含着截然不同的认识方式。这两种不同的认识方式与矛盾,必然在 以后的历史发展过程中辩证地展示出来”。
②局限性: 一是其否定性的艺术和美学思想主要是停留在主 体的精神和意识领域,并没有真正触及现实的社 会制度。 二是他对辩证法的理解和运用在某种程度上有走 极端的不辩证的倾向,比如对资本主义现实的绝 对否定,以及把现代主义的特征普遍化,将其上 升为一切艺术的特征,这些都是有失偏颇的。 三是他将艺术和审美视为资本主义现实中人们拯 救的唯一途径,表现出了其乌托邦的空想。
有的学者将阿多诺的自由思想与马克思的自由思想进行 比较研究,指出“马克思强调要把个人的自由和解放与 全人类的自由和解放统一起来”,而“阿多诺把自由同 社会压抑联系起来考虑,把自由视为对压抑的抵制”。 有的学者认为,阿多诺之所以批判大众文化却捍卫高雅 文化,其真正兴趣不在于文化形式本身,而在于文化作 用下的作为解放力量的人的阶级意识和主体意识的存亡 可能,其实争取人类自由才是阿多诺建构文化工业理论 的出发点和落脚点。
阿多诺集中体现“文化工业”核心思想的著作是《启蒙辩证法》,它写于 法西斯主义盛行猖狂的日子里。很多学者对于阿多诺“文化工业”的研究 都强调他提出这个概念所处的特殊的历史背景:纳粹德国的极权主义和战 后美国的垄断资本主义消费社会。脱离这两个典型的语境去研究他的思想 是片面的。有的学者对阿多诺的文化工业批判与纳粹极权主义批判进行了 比较研究,认为他们都是异化的产物,实质上并无什么本质的不同。二战 期间,为躲避迫害逃亡到美国的阿多诺,“一方面他以饱受心灵创伤的目 光打量着美国的大众文化,这种文化就不可能不反动;另一方面当美国的 大众文化成了他流亡生涯中的一个生活内容后,他又不得不时时带着打量 大众文化的目光来反观法西斯主义,于是心中的创伤就始终无法愈合。这 一切决定了阿多诺不可能对当代资本主义大众文化和文化工业有辩证的看 法,也无法预见现代文明的最终走向”。
海峰副教授仰对阿多诺非同一性的新哲学基础的探索——星从结构作 了较为具体的论述,并且认为阿多诺将批判理论的逻辑推向了极限, 同时也更加揭示出批判理论的内在困境,即在激进的哲学批判背后, 缺乏走向现实实践的理论中介。
较多学者认为阿多诺将马克思这一具有划时代意义的“从天国到人间”的 实践批判理论又转回了天国,只是对现实苍白的斥责时,有的学者就提出 事实上,阿多诺的这一转换,背后蕴含的是他对“实践”这一概念的重新 审视。“他所提出的‘否定’概念,也不仅仅是对资本主义现实的否定, 同样是对于一切物化现实的“技术上的实践”的否定。但这一“否定”并 非否定一切实践,更不是放弃一切实践,恰恰相反,对于被物化的技术世 界(被知性分析和整纳的世界)的否定,是为人类不受外界所决定的内在 自由开辟出道路,从而真正的、自由的实践才成为可能”。
很多学者对阿多诺“文化工业”社会批判的理论基础——哲学思想进行了研 究。不同的学者对阿多诺的哲学思想研究也从不同的角度出发,从研究的关 键词总结起来可以概括为对阿多诺辩证法中反同一性研究、启蒙思想研究和 自由思想研究。
学者对阿多诺“反同一性”辩证法的研究
阿多诺强调辩证法的否定性,他的否定辩证法的核心就是反对同一性。夏 莹副教授从阿多诺的辩证法思想与黑格尔的辩证法思想的联系出发来研究, 指出“阿多诺所发现的这种同一性矛盾显然经过了黑格尔辩证法的洗礼, 如果没有黑格尔对康德的形式主义所作出的深刻批判,特殊性、个别性, 或者说作为认识内容的现实事物本身,在认识(即思维的同一性活动)中 是不可能获得其自身的合法性的。这样一种改造的结果,直接导致了他者 存在的合法性。逻辑的普遍性被阿多诺从逻辑之内打破了。这种示范显然 具有相当的说服力”。
大众文化是指借助于大众传媒而流行于大 众之中的通俗文化。与我们通常的理解不 同,它“是在发达工业社会和后工业社会 中随着文化进入工业生产和市场商品领域 而产生的新的社会现象,是由现代大众传 媒技术和现代信息技术塑造并加以支撑的 文化生产形式和文化传播形式,并因此能 够成为被大众广为使用和利用的文化消费 形式,是基于文化成为大众普遍的消费品 而赖以确立起来的文化形态”。
“西方马克思主义”的理论
——阿多诺的文化工业批判
一、阿多诺简介
(Adorno,1903—1969)德国 著名哲学家、美学家,法兰克福 学派的主要代表之一。阿多诺深 谙现代音乐,他的音乐批判理论 是法兰克福学派社会批判理论中 最具特色的。阿多诺一生著述甚 丰,涉猎广泛,主要的哲学、美 学著作有:《启蒙辩证法》 (1947)、《新音乐哲学》 (1949)、《多棱镜:文化批判 与社会》(1955)、《否定的辩 证法》(1966)、《美学理论》 (1970)等。
刘森林教授根据对《启蒙辩证法》这一文本分析,提出“国内很多相关论文 都把《启蒙辩证法》一书的启蒙观解释为,启蒙已经倒退为神话、欺骗和堕 落,而没有注意到,该书作者说这种话本身就是启蒙话语,就意味着启蒙对 自己身陷囹圄的清醒认知和提醒。这一说法本身就是启蒙精神和力量的体 现”。
学者对阿多诺辩证法中自由思想的研究
赵勇教授在谈到大众文化与法西斯主义之间的联系时这样说:“在法兰克福人那里, 法西斯主义实际上是资本主义的一种特殊形式,只要资本主义制度继续存在下去, 它就会源源不断的生产出法西斯主义的替代形式——极权主义,而大众文化又是孕 育、催生极权主义的巨大温床。”