对口单招数学模拟试卷

合集下载

2023年高职对口招生考试模拟试题数学模拟

2023年高职对口招生考试模拟试题数学模拟

对口升学数学模拟试题(第Ⅰ卷)注意事项:1、 答第Ⅰ卷前,考生务必将自己旳姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2、 每题选出答案后,用铅笔把答题卡上对应题目旳答案标号黑,如需改动,用橡皮擦洁净后,再选涂其他答案,不能答在试题卷上。

一、选择题(本大题共20个小题,每题3分,共60分)1、已知集合P={(x ,y )|y = x+1},Q={( x ,y )| x 2+y 2=1},则集合P ∩Q 旳子集旳个数是( )A 、2B 、4C 、6D 、8 2、设命题p :a 2+b 2=0,则⌝p 是( )A 、a=0且b=0,B 、a ≠0且b ≠0,C 、a ≠0或b ≠0,D 、a=0或b=0 3、不等式|x +5|>1旳解集是( )A 、{x|x>-4}B 、{x|-6<x<-4}C 、{x|x<-6或x>-4}D 、{x|x<-6}4、已知奇函数f(x)在(0,+∞)上是增函数,偶函数g(x)在(0,∞)上是减函数,则在 (-∞,0)上,有( )A 、f(x)为减函数,g(x)为增函数;B 、f(x)为增函数,g(x)为减函数;C 、f(x)、g(x)都是增函数;D 、f(x)、g(x)都是减函数 5、已知tan θ=2,则sin θcos θ=( )A 、53B 、52C 、±52D 、±536、已知f (e x)= x ,则f (5)=( )A 、e5B 、5C 、ln5D 、log 5 e7、 将二次函数y= (x -2)2+1 图像旳顶点A 平移向量a = (-2,3)后得到点A ’旳坐标是( )A 、(0, 4)B 、(4, -4)C 、(4, 0)D 、(-4, 4)8、在△ABC 中,若∠A 、∠B 、∠C 成等差数列,且BC= 2,BA=1, 则AC 等于( )A 、332 B 、 1 C 、3 D 、 7 9、若a 与b 都是单位向量,则下列式子恒成立旳是( )A 、a ·b =0;B 、|a |=|b |,C 、a -b =0;D 、a 、b =110、若等差数列{a n }中旳前n 项和为s n =4n 2–n ,则这个数列旳通项公式是( )A 、a n =4n -1B 、a n =8n -5C 、a n =4n+3D 、a n =8n+511、把6本不一样旳书平均放在三只抽屉里,不一样旳放法有( )A 、90B 、45C 、30D 、1512、若(1+x )8展开式旳中间三项依次成等差数列,则x 旳值为( )A 、21或2 B 、21或4 C 、2或4 D 、2或41 13、甲、乙两人同步解答一道题,甲解出旳概率是p ,乙解出旳概率是q ,则这道题被解出旳概率是( )A 、pqB 、p+qC 、p (1-q)+q (1-p)D 、p+q –pq14、对任意实数k,直线(k+1)x -ky -1=0与圆x 2+y 2-2x -2y -2=0旳位置关系是 ( ) A.相交 B.相切 C.相离 D.与k 旳值有关 15、二次函数f(x)=ax 2+bx+c ,满足f(4)=f(1),则( )A、f(2)>f(3) B、f(3)>f(2) C、f(3)=f(2) D、不确定 16、已知抛物线y 2=8x 上一点P 到焦点旳距离为5,则点P 旳横坐标为( )A 、2B 、3C 、5D 、717、双曲线116922=-y x 旳渐近线方程为( )A 、y=x 43±B 、y=x 34±C 、y=43± D 、y=x 34± 18、已知点P (2,a )是第一象限内旳点,且到直线4x -3y+2=0旳距离等于4,则a 旳值为( )A 、4B 、6C 、8D 、1019、洗衣机旳洗衣桶内用清水洗衣服,假如每次能洗去污垢旳32,则要使存留在衣服上旳污垢不超过最初衣服上旳污垢旳2%,该冼衣机至少要清洗旳次数为( )A 、2B 、3C 、4D 、5 20下列四个命题:①平行于同一条直线旳两条直线平行; ②平行于同一条直线旳两个平面平行;③平行于同一种平面旳两条直线平行 ④平行于同一种平面旳两个平面平行。

中职数学 2024年湖南省对口招生高考数学模拟试卷

中职数学 2024年湖南省对口招生高考数学模拟试卷

2024年湖南省对口招生高考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)A .∅B .{d }C .{a ,c }D .{b ,e }1.(4分)已知全集U ={a ,b ,c ,d ,e },集合N ={b ,d ,e },M ={a ,c ,d },则∁U (M ∪N )=( )A .{x |x <1}B .{x |x >4}C .{x |1<x <4}D .{x |x <1或x >4}2.(4分)不等式-x 2+5x -4>0的解集是( )A .6B .-4C .4或-6D .6或-43.(4分)已知点P (a ,2)到直线4x -3y +2=0的距离等于4,则a =( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(4分)已知直线m 、n 和平面α,且n ⊆α,则“m ⊥α”是“m ⊥n ”的( )A .4B .4+4C .4D .4+45.(4分)设正四棱锥的底面边长和侧棱长都是2,则该四棱锥的表面积为( )M 3M 3M 5M 5A .2B .-2C .1D .-16.(4分)已知向量a =(-2,1),b =(4,3),c =(-1,λ).若(a +b )∥c ,则λ的值为( )→→→→→→A .(0,]B .[0,]C .(-∞,]D .[,+∞)7.(4分)已知函数f (x )=log a x (a >0且a ≠1)满足f (2)=-1,则不等式f (x )≥3的解集是( )18181818二、填空题(本大题共5个小题,每小题4分,共20分)A .10B .9C .8D .78.(4分)从某小学随机抽取100名学生,将他们的身高数据绘制成频率分布直方图如图所示,若要从身高在[120,130)、[130,140)、[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[120,130)内的学生中选取的人数应为( )A .f (-π)>f (-2)>-f (3)B .-f (3)>f (-π)>f (-2)C .f (-2)>-f (3)>f (-π)D .f (-π)>-f (3)>f (-2)9.(4分)已知f (x )是R 上的奇函数,且在区间[0,+∞)上是减函数,则f (-2),f (-π),-f (3)的大小关系是(A .函数y =sin 2x 的周期为πB .函数y =sinx 在区间(,)内是减函数C .函数y =sinx +cosx 的值域是[-2,2]D .函数y =sin 2x 的图像可由y =sin (2x -)的图像向左平移个单位得到10.(4分)下列命题中错误的是( )3π45π4π5π1011.(4分)已知sin (π+α)=-,α∈(,π),则sin 2α= .45π212.(4分)不等式|x -a |<2的解集为{x |-1<x <3},则实数a = .13.(4分)从7名运动员中选出4人参加校运会的4×100米接力赛,则甲、乙两人都不跑中间两棒的方法有 种.14.(4分)过点P (2,-1)作圆C :(x -1)2+(y -2)2=2的切线,切点为A 、B .则|PA |= .15.(4分)已知等差数列{a n }中a 1=13,且S 3=S 11,则S n 的最大值为 .三、解答题(本大题共7个小题,其中第21、22小题为选做题.满分50分.解答应写出文字说明、证明过程或演算步选做题:请考生在第21、22题中选择一题作答.若两题都做,则按所做的第21题计分.作答时,请写清题号.老师建科类做第21题,服务类做22题.16.(10分)已知点(4,2)在函数f (x )=的图象上.(1)求a 的值,并画出函数f (x )的图象;(2)求不等式f (x )<1的解集.{x +4,x ≤0x ,x >0log a 17.(10分)我校学生心理咨询中心服务电话的接通率为.21机2班的3名同学分别就某一问题在某天咨询该服务中心,只拨打一次电话,设X 表示他们中成功咨询的人数.求:(1)恰有2人成功咨询的概率;(2)随机变量X 的概率分布和数学期望、方差.3418.(10分)已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N +).(1)求a 1,a 2,a 3的值;(2)设b n =a n +3,证明数列{b n }为等比数列,并求通项公式a n .19.(10分)如图四棱锥P -ABCD 的底面是边长为2的菱形,且∠ABC =60°,PA =PC =2,PB =PD .(1)若O 是AC 与BD 的交点,证明:PO ⊥平面ABCD .(2)若点M 是PD 的中点,求异面直线AD 与CM 所成角的余弦值.20.(10分)已知椭圆C 的中心在坐标原点O ,焦点在x 轴上,离心率为,椭圆上一点P 到椭圆左右两焦点的距离之和为(1)求椭圆C 的标准方程;(2)已知直线l :y =x +m 与椭圆C 交于A 、B 两个不同的点,且弦AB 的中点恰好在圆+=上,求直线l 的方程.M 32x 2y 2172521.(10分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.M222.某公司计划在今年内同时出售变频空调机和智能洗衣机.由于这两种产品的市场需求量非常大,有多少就能销售多少,该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的是资金和劳动力.通过调查,得到关于这两种产品的有关数据如表:资金(表中单位:百元)单位产品所需资金月资金供应量空调机洗衣机成本3020300劳动力:工资510110单位利润6试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?。

2104年江苏省对口单招数学模拟试卷(二)

2104年江苏省对口单招数学模拟试卷(二)

2104年江苏省对口单招数学模拟试卷(二)一、选择题(本大题共10小题,每小题4分,共40分)1、已知集合A={x| x 0232=+-x },B={x| 2x 0232=--x },则A B ⋃等于( )A .{1,2,-21,2}B .{2}C .{1,-21,2} D .{-1,1,2} 2、已知R a ∈,“3||<a ”成立的一个必要不充分条件是 ( )A .3<aB .2||<aC .92<a D .20<<a3、已知向量a =)2,4(,则下列向量中与a 向量平行的向量是 ( ) A .)4,2(- B .)1,2(- C .)55,552(D .)552,55(- 4、设)(x f 为定义在R 上的奇函数,当0≥x 时,m x x f x ++=33)((m 为常数),则)1(-f 等于( )A .5B .311-C .311D .-55、商场中某商品的销售量y (件)与销售价格x (元/件)负相关,则其线性回归方程可能是 ( )A .50020+=x yB .50020+-=x yC .50020-=x yD .50020--=x y6、直线l 垂直于已知直线074=--y x ,若垂足的横坐标为1,则直线l 的方程是( ) A .074=+-y xB . 0114=-+y xC .0114=++y xD .0114=+-y x7、某中专学校三年级学生中,共有三个专业,其中机械专业有学生162人,计算机专业有学生108人,财会专业有270人 ,若用饼图来表示学生年级的构成,,则机械专业的学生所占饼图的圆心角为 ( ) A .036 B .054 C .090 D .01088、某商品原原售价为200元,商家为促售,决定每周对商品对九五折优惠,这样连续三周后,该商品的售价约是 ( ) A .162元 B .172元 C .176元 D .180元9、函数f (x )=cos 2x +sin x 在区间[-4π,4π]上的最小值是 ( )A 、212- B 、-221+ C 、-1 D 、221- 10、若实数y x ,满足不等式组⎪⎩⎪⎨⎧≥+-≤-+≥-+0108202y x y x y x ,则y x +的最大值为 ( )D 1C 1B 1A 1DCBAA .2B .2-C .317 D .3二、填空题(本大题共5小题,每小题4分,共20分)11、复数iei-14π= 。

三校生对口高职单招数学模拟试卷15套1

三校生对口高职单招数学模拟试卷15套1

三校⽣对⼝⾼职单招数学模拟试卷15套1⾼职单招数学模拟试卷⼀姓名:__________ 考号:__________得分:__________⼀、选择题:(本⼤题共12⼩题,每⼩题7分,共84分)1.已知集合{1,3,4,5,7}A =,集合{1,2,5,9}B =,则A B =I ()A .{1,3,4,5,7}B .{1,2,5,9}C .{1,5}D .{1,2,4,5,7,9}2.10sin 3π= ()AB. C .12 D .12-3.6⼈排成⼀排,甲、⼄两⼈必须相邻的站法有多少种()A .720B .480C .240D .1204.已知2sin cos 3αα-=,则sin 2α= ()A .13B .23C .49D .595.函数()sin(2)36f x x π=-+的最⼤值和最⼩正周期为()A .4与2πC .1与πD .1与2π6.若⽅程222x ky +=表⽰焦点在y 轴上的椭圆,那么实数k 的取值范围是()A .(,1)-∞B .(0,2)C .(1,)+∞D .(0,1)7.倾斜⾓为2π,且过点(3,2)P -的直线⽅程是() A .50x y -+= B .20y -=C .30x +=D .230x y +=8.命题“260x x +-=”是命题“3x =-”的() A .充分条件 B .必要条件 C .充要条件 D .既不充分也不必要条件 9.不等式2 21x x +>+的解集是() A .(1,0)(0,1)-UB .(,1)(0,1)-∞-UC .(1,0)(1,)-+∞UD .(,1)(1,)-∞-+∞U10.10件产品中有3件次品,从中任取3件,⾄少有⼀件次品的抽取⽅法有() A .85种 B .84种 C .18个 D .24个11.在等差数列{}n a 中,已知1232,13a a a =+=,则456a a a ++= ()A .40B .42C .43D .4512.若⽅程2222220x y kx k k +-+-=表⽰⼀个圆,则k 的取值范围是()A .[0,2]B .(0,2)C .[0,2)D .(0,2] ⼆、填空题:(本⼤题共6⼩题,每⼩题7分,共42分)13.双曲线22x y -=上任意⼀点P 到此双曲线距离较远的⼀个焦点的距离是12,则点P 到另⼀焦点的距离是.14.在x 轴上有⼀定P ,它与A (1,4)-的距离等于5,则P 点的坐标是. 15.经过椭圆22143x y +=的⼀个焦点1F 的直线交椭圆与A 、B 两点,则2ABF ?的周长是.16.若⽅程2221211x y m m -=--表⽰双曲线,则m 的取值范围是.17.以直线1x =为准线的抛物线的标准⽅程是.18.已知直线l 的倾斜⾓是直线31y x =-的倾斜⾓的2倍,求直线l 的斜率.三、解答题:(本⼤题共6⼩题,共74分)19.计算(本⼩题满分12分)1232133sin tan 64P C ππ++-20.(本⼩题满分12分)直线2370x y-+=与x轴、y轴分别交于A、B两点.求:线段AB的垂直平分线的⽅程.21.(本⼩题满分12分)直线过(2,3)A-且与两轴围成的三⾓形⾯积为4.求:直线l的⽅程.22.(本⼩题满分12分)若p是圆224210x y x y+-++=上的动点.求:点p到直线:43240l x y-+=的最短距离.23.(本⼩题满分12分)椭圆两焦点12(4,0),(4,0)F F-,P在椭圆上,若12PF F的⾯积最⼤为12,求此椭圆⽅程.24.(本⼩题满分14分)已知直线l过(2,3)A且与圆22C x y+=相切.求:直线l的⽅程.。

三校生对口高职单招数学模拟试卷15套12

三校生对口高职单招数学模拟试卷15套12

高职单招数学模拟试卷十二姓名:__________ 考号:__________得分:__________一、选择题:(本大题共12小题,每小题7分,共84分)1.设全集U ={0,1,2,3},集合M ={0,1,2}N ={0,2,3},则U M N =U ð ( ) A .空集 B .{1}C .{0,1,2}D .{2,3}2.13sin()6π-= ( ) A. B .12-C .12D3.圆221060x y x y ++-=的圆心坐标和半径为 ( ) A .(5,3)-和8B .(5,3)-C .(5,3)-和8D .(5,3)-4.29x =是3x =的 ( ) A .充分条件 B .必要条件 C .充要条件 D .非充分条件也非必要条件5.函数2sin(3)212y x π=++的最小正周期和最大值为 ( )A .23π和4 B .2π和4C .π和2D .3π和2 6.已知角α的终边经过点(3,4)--,则cos α的值为 ( )A .35- B .35C .45-D .347.函数2()f x x bx c =++,若(3)(5)f f =则b = ( ) A .8- B .3 C .5 D .88.6名同学站在一起照相,其中甲乙必须相邻的站法有 ( ) A .120 B .240C .480D .7209.直线210ax y --=和直线640x y c -+=平行,则 ( ) A .3,2a c ==- B .3,2a c =≠- C .3,2a c ≠=- D .3,2a c ≠≠-10.函数y = ( )A .偶函数B .奇函数C .非奇非偶函数D .即是奇函数也是偶函数 11.等差数列{}n a 中598,16a a ==,则13a = ( ) A .18 B .22 C .24 D .2612.若果方程222141x y a a +=-+表示焦点在y 轴上的双曲线,则a 的取值范围为 ( )A .(2,2)-B .(1,2)-C .(0,2)D .(1,2)二、填空题:(本大题共6小题,每小题7分,共42分)13.设函数2(1)23f x x x +=-+,则(0)f = . 14.不等式213x -≤的解集为 . 15.函数13y x =+-的定义域为 . 16.已知等比数列{}n a 的首项11,3a q ==若*81,()n a n N =∈则n = . 17.若抛物线22(0)y px p =>的准线经过点(2,1)-则p 的值为 .18.设椭圆的焦点与双曲线221169x y -=的焦点相同,且长轴长为12,则椭圆的标准方程为 .三、解答题:(本大题共6小题,共74分)19.(本小题满分12分)已知直线1l 的方程为3411x y -+=,圆C 的方程为22(1)(2)1x y -+-=,若直线2l 平行于1l 且与圆C 相切,求直线2l 的方程.20.(本小题满分12分)计算:1lg 2221()lg2lg510tan()C 24π-++----21.(本小题满分12分)设锐角ABC ∆的三个内角A,B,C 所对的边长分别为a,b,c 若4sin ,54A B π=∠=.(1)求cos A 及sin C 的值.(2)若b =求a 及ABC ∆面积S22.(本小题满分12分)某商场销售一批衬衫,平均每天可出售20件,每件盈利40元,为了扩大销售增加盈利,尽快减少库存,商场决定采取每件减少盈利措施,经调查发 现,每件衬衫减少盈利1元,商场平均每天可以多出售2件.问: (1)若每件减少盈利x 元,每天盈利y 元,求y 与x 的关系式; (2)若商场平均每天要盈利1200元,每件衬衫应减少盈利多少元? (3)每件衬衫减少盈利多少元时,商场每天盈利最多?盈利多少元?23.(本小题满分12分)已知三个正数成等差数列,他们的和等于9,若这三个数分别加 上1,1,3后,得到的三个数依次成等比数列,求原来三个数.24.(本小题满分14分)如图所示若过抛物线焦点(4,0)F 且斜率为1-的直线L 与抛物线交与A ,B 两点.求:(1)直线L 的方程 (2)抛物线C 的方程 (3)AOB ∆的面积。

三校生对口高职单招数学模拟试卷15套6

三校生对口高职单招数学模拟试卷15套6

高职单招数学模拟试卷六姓名:__________ 考号:__________得分:__________一、选择题:(本大题共12小题,每小题7分,共84分)1.设全集{1,3,5,7}U =,集合{3,5}A =,{1,3,7}B =,则()U A B = ( )A .{5}B .{3,5}C .{1,5,7}D .∅2.函数2()23f x x x =--,则(1)f x -= ( ) A .24x -- B .24x - C .2(1)4x --D .24x -3.下列式子正确的是 ( ) A .2020sin 40sin 501+= B .22sin cos sin x x x =- C .2sin 0x += D .22cos2sin sin x x x =-4.从5名男兵和4名女兵中选两人参加上海世博会服务工作,要求必需有男有女,则不同的选法为 ( ) A .9种 B .20种 C .48种D .60种5.数列{}n a 满足11,,n a S n ==则2010a = ( ) A .1 B .2009 C .2010D .20116.圆经过点(3,4),圆心在原点,则圆的方程为 ( ) A .225x y += B .2225x y += C .227x y += D .()()223425x y -+-= 7.方程22193x y k k +=--表示焦点在x 轴上的椭圆,则k 的取值范围为 ( )A .(3,)+∞B .(,9)-∞C .(3,6)D .(,6)-∞8.等比数列{}n a 满足:112n n a a +=,22a =,则5a = ( )A .8B .16C .32D .64 9.函数y =的定义域是 ( )A .[1,1]-B .(1,1)-C .(,1)-∞D .(1,)-+∞10.函数2()(sin 2cos 2)f x x x =-的最小正周期和最大值分别是 ( ) A .π,1B .π,2C .2π,2 D .2π,3 11.不等式211x ≥+的解集是 ( ) A .{/11}x x -<≤ B .{/1}x x ≤ C .{/1}x x >- D .{/11}x x x ≤>-或 12.垂直于x 轴的直线L 交抛物线24y x =与A 、B两点,且AB =,则该抛物线的 焦点到直线L 的距离是 ( ) A . 1B .2C .3D .4二、填空题:(本大题共6小题,每小题7分,共42分)13.已知直线l 过点(0,4)且倾斜角为090,则直线l 的方程是 . 14.已知点(2,)A n 点(,3)B m 关于点(2,2)对称,则m 和n 的值为 . 15.已知1sin()3πα-=,(,)2παπ∈,则tan α= .16.抛物线24y x =上一点P (,)a b 到焦点的距离为2,则b = .17.已知等比数列{}n a 满足1234561,8a a a a a a ++=++=-则{}n a 的公比q = . 18.经过点(0,1)-和(1,0),且圆心在直线1y x =+上的圆的方程是 . 三、解答题:(本大题共6小题,共74分)19.计算(本小题满分12分)23log 2333lg2log 27lg53sin2A π-+-++20.(本小题满分12分)已知二次函数2()f x x bx c =++满足(0)3,(1)(3)f f f =-=. (1)求b ,c 的值; (2)若()0f x ≥求x 的解集.21.(本小题满分12分)若22()cos sin 21f x x x x =-++,求:()f x 的最值及周期.22.(本小题满分12分)ABC ∆中,已知02,4,30a c A ==∠=. (1)求b ,B ,C ; (2)求ABC ∆的面积.23.(本小题满分12分)某商品的价格为40元时,月销售为10000件,价格每提高2元, 月销售量就会减少400件,在不考虑其他因素时, (1)试求这种商品的月销售量与价格之间的函数关系; (2)当价格提高到多少元时,这种商品就会卖不出去.24.(本小题满分14分)已知直线l 的倾斜角α满足cos 2α=,椭圆满足:焦点在x 轴 上,长轴长为4,离心率为双曲线2213y x -=的离心率的倒数。

单招数学模拟试题及答案

单招数学模拟试题及答案

单招数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 32. 若函数f(x) = x^2 - 4x + 3,求f(5)的值。

A. 8B. 18C. 28D. 383. 已知等差数列的首项a1=3,公差d=2,求第10项的值。

A. 23B. 25C. 27D. 294. 圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π5. 已知三角形ABC,∠A=30°,∠B=45°,求∠C的度数。

A. 75°C. 105°D. 120°6. 一个长方体的长、宽、高分别为2米、3米和4米,求其体积。

A. 24立方米B. 26立方米C. 28立方米D. 30立方米7. 已知方程x^2 - 5x + 6 = 0,求x的值。

A. 2, 3B. 1, 6C. 3, 4D. 2, 48. 一个数的平方根是4,求这个数。

A. 16B. 8C. 12D. 209. 已知正弦函数sin(x) = 1/2,求x的值(x在第一象限)。

A. π/6B. π/4C. π/3D. 5π/610. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6D. 8二、填空题(本题共5小题,每小题4分,共20分)11. 若一个数的平方是25,那么这个数是________。

12. 一个圆的直径为10,那么这个圆的周长是________。

13. 已知三角形的面积是18平方米,高是6米,求底边的长度。

14. 一个等腰三角形的两个底角相等,如果其中一个底角是40°,那么顶角的度数是________。

15. 一个直角三角形的斜边长度是10,一个锐角是30°,求对边的长度。

三、解答题(本题共3小题,每小题10分,共30分)16. 解不等式:3x + 5 > 14 - 2x。

2023年广西省对口单招数学模拟题(答案) (5)

2023年广西省对口单招数学模拟题(答案) (5)

2023年广西省对口单独招生模拟题数学试卷(答案)(满分120分,考试时间120分钟)一.选择题:(本题共20小题,每小题3分,共60分)1.设集合{1,2,4,6}A =,{2,3,5}B =,则韦恩图中阴影部分表示的集合为()A.{}2 B.{}3,5 C.{}1,4,6 D.{}3,5,7,82.函数21)(--=x x x f 的定义域为()A.[)()+∞⋃,22,1 B.()+∞,1 C.[)2,1 D.[)+∞,13.下列四个函数中,与y=x 表示同一函数的是()A.y=(x )2B.y=33xC.y=2xD.y=xx 24.△ABC 的内角A.B.C 的对边分别为a.b.c,且asinC=bsinB.则B ∠=___.()A.6π B.4π C.3π D.34π5.某学校周五安排有语文.数学.英语.物理.化学.体育六节课,要求体育不排在第一节课,数学不排在第四节课,则这天课表的不同排法种数为()A.600B.288C.480D.5046.角2017°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角7.直线12y =+的倾斜角为()A.30° B.60°C.120°D.150°8.直线l1210y ++=与直线l2:30x -+=的位置关系是()A.平行B.垂直C.重合D.非垂直相交9.在圆:22670x y x +--=内部的点是()A.(0) B.(7,0)C.(-2,0) D.(2,1)10.函数2()|1|f x x =+的定义域为()A.[-2,+∞)B.(-2,+∞)C.[-2,-1)∪(-1,+∞)D.(-2,-1)∪(-1,+∞)11.命题p :a=1,命题q :2(1)0a -=.p是q 的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件12.在△ABC 中,向量表达式正确的是()A.AB BC CA += B.AB CA BC -= C.AB AC CB-= D.0AB BC CA ++= 13.如图,在数轴上表示的区间是下列哪个不等式的解集()A.260xx --≤ B.260xx --≥ C.15||22x -≥ D.32x x -+14.已知椭圆方程:224312x y +=,下列说法错误的是()A.焦点为(0,-1),(0,1)B.离心率12e =C.长轴在x 轴上D.短轴长为15.下列函数中,满足“在其定义域上任取x1,x2,若x1<x2,则f (x1)>f (x2)”的函数为()A.3y x=B.32x y =- C.1()2xy -= D.ln y x=16.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数和小于5的概率为()A.16B.18C.19D.51817.已知圆锥底面半径为4,侧面面积为60,则母线长为()A.152B.15C.152pD.15p18.函数y =sin2x的图像如何平移得到函数sin(2)3y x p=+的图像()A.向左平移6p个单位 B.向右平移6p个单位C.向左平移3p个单位D.向右平移3p个单位19.设动点M 到1( 0)F 的距离减去它到2 0)F 的距离等于4,则动点M 的轨迹方程为()A.221 (2)49x y x -=-≤ B.221 (2)49x y x -=≥ C.221 (2)49y x y -=≥ D.221 (x 3)94x y -=≥20.已知函数()3sin f x x x =+,则(12f p=()B. C. D.二.填空题(共10小题,每小题3分;共计30分)1.已知55)4sin(=+απ,则=α2sin _________.2.顶点在原点,对称轴为坐标轴的抛物线经过点)3,2(-,则抛物线的标准方程为_________.3.已知函数()f x =223,1lg(1),1x x x x x ⎧+-≥⎪⎨⎪+<⎩,则((3))f f -=______.4.不等式2340x x --+>的解集为______.(用区间表示)5.不等式422<-xx的解集为______..(用区间表示)6.函数()35lg -=x y 的定义域是______.(用区间表示)7.函数y =)9(log 2-x 的定义域是______.(用集合表示)8.不等式062<--x x 的解集是______.(用集合表示)9.不等式0125>--x 的解集为______.(用集合表示)10.已知函数)1(log )(2-=x x f ,若f(α)=1,则α=______.三.大题:(满分30分)1.如下图,四棱锥P ABCD -中侧面PAB 为等边三角形且垂直于底面ABCD ,AB BC ⊥,//BC AD ,12AB BC AD ==,E 是PD 的中点.(1)证明:直线//CE 平面PAB ;(2)求二面角B PC D --的余弦值.2.已知一次函数()f x 满足(1)3,(1)2f f =-=,求(2)f .参考答案:一.选择题:1-5:BABCD 二.填空题:参考答案1.53-;2.292-=y 或y x 342=3.0;4.(-4,1);5.(-1,2);6.⎪⎭⎫⎢⎣⎡∞+,54;7.}9{>x x ;8.{}32<<-x x ;9.}32{><x x x 或;10.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年江苏省对口单招数学模拟试卷
(满分:150 时间:120分钟)
一、选择题(本大题共10小题,每小题4分,共40分)
1.已知集合{{},1,1,2,3,4,U R A x x B ==≤=则U C A
B =( )
{}.4A {}.3,4B {}.2,3,4C {}.1,2,3,4D
2.6
π
α=
“”
是“cos21
2
α=”的( ) A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 3.已知函数lg(sin )lgcos ,y θθ=-+则θ角为( )
A.第一象限角
B.第二象限角
C.第三象限角
D.第四象限角 4.已知复数z 满足(1)2,z i i -=则复数z =( )
A.1i +
B.2i +
C. 1i -
D. 2i - 5.已知向量(3,4),(sin ,cos ),a b αα==且,a b ⊥则tan 2α的值为( ) A.
43 B. 43- C.247 D. 247
- 6.()6
12x -展开式的中间项为( )
A.340x -
B. 3120x -
C. 3160x -
D. 3240x 7.在等差数列{}n a 中,若18153120,a a a ++=则9102a a -的值为( ) A.24 B.22 C.20 D.-8
8.在正方体1111ABCD A B C D -中,侧面对角线1BC 与上底面对角线11A C 所成的角等于( )
A.45
B. 60
C. 90
D. 120 9.若直线0x ay a +-=与直线(23)10ax a y ---=垂直,则a =( ) A.2 B.-3或1 C.2或0 D.0或1
10.抛物线C :2
2y px =的焦点为F ,弦AB 过焦点F ,则以AB 为直径的圆与抛物线C 的准线的位置关系是( )
A.相离
B.相切
C.相交
D.无法确定 一、选择题答题卡:
二、填空题(本大题共5小题,每小题4分,共20分)
11.将二进制()2110011转换成十进制为 . 12.
函数y =
的单调增区间是 .
13.已知lg lg 1,x y +=则
52
x y
+的最小值是 . 14.执行如图所示的程序框图,输出的T= .
(第15题)
15.某项工程的明细表如图所示,此工程的关键路径是 .
三、解答题(本大题共8小题,共90分)
16.(本题满分8分)已知函数()
22()log 45.f x x x =-++ (1)求函数的定义域;(2)解不等式()30f x -≤.
17.(本题满分10分)在ABC ∆中,AB=2,BC=3,CA=4. (1)判断ABC ∆的形状;(2)求sinA 的值;(3)求ABC ∆的面积.
18.(本题满分12分)已知()2
14,f x x +=-在等差数列{}n a 中,1(1)a f x =-,23
2
a =-
,()3a f x =.求:(1)x 的值;(2)数列{}n a 的通项公式;(3)25826a a a a ++++的值.
19.(本题满分12分)已知函数()f x 是定义在()0,+∞上的增函数,并且对于x>0,y>0有
()().x f f x f y y ⎛⎫
=- ⎪⎝⎭
(1)求()1f 的值;(2)若()61f =,解不等式()132f x f x ⎛⎫
+-<
⎪⎝⎭
.
20. (本题满分12分)为了了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x 、y 的含量(单位:毫克)。

(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;
(2)当产品中微量元素x 、y 满足x ≥175且y ≥75时,该产品为优等品,用上述样本数据估计乙厂生产的优等品数量;
(3)从乙厂抽出的上述5件产品中,随机抽取2件,若A={至少有1件优等品},B={至多有1件优等品},求两个随机事件A 、B 的概率.
21.(本题满分12分)已知()2
2cos sin cos 1,f x a x b x x =+- ()014f f π⎛⎫
==
⎪⎝⎭
, (1)求,a b 的值;(2)求()f x 的最大值及()f x 取最大值时x 的集合.
22.(本题满分12分)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨,生产每吨乙产品要用A 原料1吨、B 原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,消耗B 原料不超过18吨,那么该企业可获得的最大利润是多少?
23.(本题满分12分)设F(c,0)(c>0)是双曲线
2
21
2
y
x-=的右焦点,过点F(c,0)的直
线l交双曲线于,P Q两点,O是坐标原点. (1)证明:1
OP OQ=-;
(2)若原点O到直线l的距离是3
2
,求OPQ
∆的面积.。

相关文档
最新文档