新一代智能变电站研究与建设
智能变电站的发展及现状

智能变电站的发展及现状智能变电站的发展及现状一、引言智能变电站是指利用先进的信息通信技术和自动化控制技术,对传统的变电站进行升级改造,实现设备互联互通、自动化运维和智能化管理的一种新型变电站。
随着电力系统的发展和技术的进步,智能变电站已经成为电力行业的重要发展任务。
本文将对智能变电站的发展历程及现状进行详细阐述。
二、智能变电站的发展历程⒈传统变电站的局限性传统变电站存在着设备信息孤立、运维成本高、响应速度慢等问题。
随着电力行业的快速发展,传统变电站已经无法满足现代电力系统的需求。
⒉智能变电站的概念提出为了解决传统变电站存在的问题,智能变电站的概念应运而生。
智能变电站利用先进的信息通信技术和自动化控制技术,实现设备之间的互联互通,并通过高效的智能化管理系统,提高运维效率,降低运维成本,实现变电站的可靠运行。
⒊智能变电站的发展进程智能变电站的发展经历了几个阶段:网络互联阶段、数据采集与分析阶段、自主决策与控制阶段。
目前,智能变电站已经进入智能运营与维护阶段,实现了从传统变电站到智能变电站的转型。
三、智能变电站的主要特点⒈互联互通智能变电站通过网络连接,实现了设备之间的信息互通和数据共享。
这使得变电站的运行更加高效可靠,并且便于对变电站进行远程监控和运维。
⒉自动化运维智能变电站采用自动化控制技术,实现对设备的自动巡检、故障诊断和维护。
这大大降低了人工巡检的工作量,提高了运维效率。
⒊智能化管理智能变电站依靠智能化管理系统,对变电站进行综合管理和优化调度。
通过数据分析和决策支持,可以及时发现问题并采取相应的措施,提高变电站的运行效率。
四、智能变电站的应用现状⒈国内智能变电站的应用情况我国电力行业在智能变电站的建设方面取得了一定的成果,各地区相继建设了多个智能变电站。
目前,智能变电站在我国的应用逐渐普及,但与发达国家相比,仍有一定差距。
⒉国际智能变电站的发展情况国际上,智能变电站已经得到广泛应用,并取得了显著的成果。
智能变电站的发展及现状

智能变电站的发展及现状智能变电站的发展及现状一、引言智能变电站是基于先进的信息技术、通讯技术和自动化技术,以实时监测、控制和保护为核心,实现对电力系统的远程监控、调度和控制的一种电力设施。
随着能源产业的发展,智能变电站作为电力系统的关键设备和重要组成部分,正日益受到广泛关注和重视。
本文将从智能变电站的发展历程、基本结构、关键技术以及目前的现状进行详细介绍。
二、发展历程2.1 传统变电站的局限性2.2 智能变电站的兴起2.3 智能变电站的发展趋势三、基本结构3.1 主体设备3.1.1 变压器3.1.2 开关设备3.1.3 保护设备3.1.4 测量设备3.2 辅助设备3.2.1 远动设备3.2.2 通信设备3.2.3 控制中心四、关键技术4.1 电力传输与通信技术4.1.1 光纤通信技术4.1.2 无线通信技术4.1.3 互联网技术4.2 自动化控制技术4.2.1 逻辑控制技术4.2.2 自动监测技术4.2.3 智能保护技术4.3 数据处理与分析技术4.3.1 大数据技术4.3.2 技术4.3.3 数据安全技术五、现状分析5.1 国内智能变电站发展概况5.1.1 建设规模与速度5.1.2 主要应用领域5.2 国际智能变电站发展现状5.2.1 先进技术应用5.2.2 智能化水平比较六、附件本文档涉及的附件包括智能变电站的技术标准、规范以及相关数据统计。
七、法律名词及注释7.1 电力法电力法是中华人民共和国关于电力工业发展和管理的基本法律,旨在规范电力生产、流通、使用和管理行为。
7.2 电力行业标准电力行业标准是由国家能源局制定和发布的与电力行业相关的技术标准,用于引导和规范电力行业的发展和运行。
7.3 智能变电站规范智能变电站规范是由相关电力机构制定的关于智能变电站设计、建设和运行的技术规范,包括设备选型、布置、调试等方面的要求。
智能变电站发展现状

智能变电站发展现状智能变电站在能源领域的发展备受关注。
随着能源技术的不断进步和智能化的推动,智能变电站作为能源系统的关键环节,面临着一系列的变革和发展。
目前,智能变电站的发展现状如下:首先,智能变电站的技术和设备不断升级。
传统的变电站主要依靠人工操作和控制,存在运行不够灵活和效率低下的问题。
而智能化的变电站引入了先进的自动化设备和智能化技术,可以实现对电力系统的实时监测和远程控制。
通过数字化、网络化和智能化的手段,智能变电站具备了更高效、更安全、更可靠的运行能力。
其次,智能变电站的运行管理得到了改善。
智能化的变电站可以实现对电网负荷的智能调控,通过预测和分析电力需求情况,提前做好电力调配工作,从而避免电网的过载和供电不足的问题。
同时,智能变电站还可以实现对电力故障的自动检测和智能切换,提高了电力系统的可靠性和安全性。
第三,智能变电站的可持续发展受到重视。
随着可再生能源的不断发展和推广应用,智能变电站需要适应并融合更多的可再生能源接入。
通过智能化的技术手段,智能变电站可以实现对可再生能源的优化调度和管理,提高可再生能源的利用效率和电力系统的稳定性。
最后,智能变电站的建设和改造正在加速推进。
政府和能源公司纷纷加大对智能变电站的投入和支持力度,推动智能变电站的建设和改造工作。
在新建变电站方面,智能化的设备和技术得到了广泛应用;在旧有变电站改造方面,智能化改造工作也取得了一定进展。
这些举措有助于提升智能变电站的整体水平和能源系统的发展。
综上所述,智能变电站在技术、运行管理、可持续发展和建设改造等方面都取得了积极的发展。
随着技术的进一步成熟和应用的推广,智能变电站的发展前景仍然十分广阔,将为能源领域的可持续发展提供强力支撑。
智能变电站的发展及现状[1]
![智能变电站的发展及现状[1]](https://img.taocdn.com/s3/m/1f9276fb6037ee06eff9aef8941ea76e58fa4a8b.png)
智能变电站的发展及现状智能变电站的发展及现状一、引言智能变电站是指利用先进的信息技术和通信技术,实现对变电站设备和电力系统的智能控制、监测、维护和管理的一种新型电力设施。
智能变电站的出现对电力系统的运行和管理带来了革命性的变化。
本文将从以下几个方面来详细介绍智能变电站的发展和现状。
二、智能变电站的概念与特征2.1 智能变电站的概念智能变电站是指在传统的变电站基础上,引入先进的信息技术和通信技术,集成各类传感器、监测装置和智能终端设备,通过智能化的控制系统实现对设备和系统的智能化监测、控制和管理。
2.2 智能变电站的特征(1)信息化集成:智能变电站采用现代化信息技术,实现对设备和系统的信息化管理和电力系统的智能化。
(2)数据智能化:智能变电站通过各类传感器采集设备状态和运行数据,并通过智能处理和分析,实现对变电站设备的智能诊断和预测维护。
(3)自动化控制:智能变电站通过自动化控制系统,实现对变电站各个设备和系统的智能化控制和操作。
三、智能变电站的技术应用3.1 智能监测与诊断智能变电站通过传感器和监测装置,实时采集设备的运行状态和数据,并通过智能分析和诊断,实现对设备运行的监测和故障诊断。
3.2 智能维护与管理智能变电站通过综合管理系统,对设备的维护和保养进行智能化管理,包括维修计划的制定、故障处理和设备巡检等。
3.3 智能控制与操作智能变电站通过自动化控制系统,实现对变电站设备和电力系统的智能化控制和操作,包括设备的远程控制、操作的自动化和过程的智能化控制。
四、智能变电站的发展状况4.1 国内智能变电站的发展状况我国智能变电站的发展起步较晚,目前智能变电站的建设和应用仍处于起步阶段,但随着电力系统的发展和智能技术的逐渐成熟,智能变电站在我国的发展前景广阔。
4.2 国际智能变电站的发展状况国际上,智能变电站的发展比较成熟,德国、美国、法国等发达国家在智能变电站的研究和应用方面取得了较大的进展,尤其在智能监测、诊断和维护管理等方面有很多成果和经验可供借鉴。
智能变电站方案配置

许昌华邦电气有限公司 智能变电站建设方案什么是智能变电站采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、 通信平台网络化、 信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功 能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能 的变电站。
主要特点:采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信 平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和 监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互 动等高级功能的变电站。
★信息采集就地化; ★信息共享网络化; ★信息应用智能化; ★设备检修状态化。
GPS 对时系统结构图网络通信设备一种有源的网络元件。
交换机连接两个或多个子网,子网本身可由数个网段通过转发器连接而成。
智能变电站的应用★顺序控制智能告警及分析决策 支撑经济运行与优化控制城波发輕耶护DCS 做设备状态可视化故障信息综合分析决策源端维护★顺序控制-操作安全、高效避免误操作,提高安全水平简化操作步骤,缩短操作时间降低人员工作强度支持变电站实现无人值守2 许昌华邦电气有限公司3 许昌华邦电气有限公司监控/■调度中右猱矩监控主站儿网E网★智能告警-异常/故障快速、准确定位对变电站发生的随机告警信号进行信息分层、分类。
对大量故障信息进行综合,并结合相关保护动作信息、设备状态变位信息及保护动作报告信息进行综合,生成事故简报。
对变电站异常信号完整时,采用精确推理法给出异常原因和建议。
当变电站设备异常信号上送不完整时,能够利用专家系统知识进行模糊推理,并给出原因和异常处理建议。
4 许昌华邦电气有限公司智能变电站建设方案1动模实验室模拟一次主接线图iftflfli ffiia n Bis H,卫它沟为三相1实验室二次设备清单5 许昌华邦电气有限公司6 许昌华邦电气有限公司报价:240万7 许昌华邦电气有限公司8 许昌华邦电气有限公司报价:250万9 许昌华邦电气有限公司。
智能变电站二次系统优化设计及研究

智能变电站二次系统优化设计及研究1. 引言1.1 研究背景智能变电站是指应用先进的信息技术、通信技术和自动化技术,实现对电力系统的监测、控制、保护和管理的高级电力系统设施。
随着智能电网和新能源技术的快速发展,智能变电站在电力系统中的作用日益重要。
在传统电力系统中,二次系统是智能变电站的核心部分,负责电力系统的监测、控制和保护。
对智能变电站二次系统进行优化设计具有重要的意义。
当前,随着电力系统规模的不断扩大和电力负荷的增加,电网安全稳定运行面临着更大的挑战。
而智能变电站二次系统的优化设计可以提高电力系统的安全性、稳定性和经济性,有效解决电网运行中的问题。
在这样的背景下,对智能变电站二次系统的优化设计进行深入研究具有重要的实践意义。
本文将从智能变电站二次系统优化设计方法、流程、关键技术、案例分析和未来发展趋势等方面展开探讨,旨在为智能电力系统的发展提供参考,并对未来的研究和实践提出建议。
【研究背景】部分即在于此。
1.2 研究意义智能变电站是电力系统的重要组成部分,二次系统是智能变电站中的关键部分。
二次系统的设计优化直接关系到智能变电站的性能、稳定性和可靠性。
对智能变电站二次系统进行优化设计和研究具有重要的意义。
智能变电站二次系统的优化设计可以提高电力系统的运行效率和质量,减少能源浪费,降低系统运行成本。
通过合理设计二次系统,可以更好地监测和控制电网的运行状态,及时发现和解决问题,提高电网的安全稳定性。
智能变电站二次系统的优化设计可以提高电网的响应速度和自适应能力,增强电力系统的抗干扰能力和抗灾能力。
在面对复杂多变的外部环境和电网负荷波动时,优化设计的二次系统可以更快地作出调整和响应,保障电力系统的正常运行。
2. 正文2.1 智能变电站二次系统优化设计方法智能变电站二次系统优化设计是为了提高电力系统的运行效率和可靠性,以满足日益增长的电力需求和提高供电质量的要求。
在设计过程中,需考虑系统的稳定性、安全性、经济性和环保性,通过科学的方法和技术手段实现系统的最佳化配置。
智能变电站二次系统优化设计及研究

智能变电站二次系统优化设计及研究随着电力系统的发展和智能化技术的不断提升,智能变电站二次系统优化设计及研究成为了电力行业关注的热点问题。
智能变电站作为电力系统中重要的组成部分,其二次系统的优化设计对于保障电网安全稳定运行和提高能源利用效率具有重要意义。
本文将从智能变电站二次系统的现状、优化设计方法及未来发展趋势等方面展开讨论。
一、智能变电站二次系统的现状目前,大多数变电站的二次系统还处于传统的人工控制模式,存在着人工操作复杂、反应速度慢、易受外部干扰等问题。
随着智能化技术的迅猛发展,智能变电站二次系统的现状也在不断发生变化。
智能变电站二次系统通过采用先进的数字化、通信和控制技术,实现了对变电站设备状态的实时监测、智能化控制和远程管理,具有了较强的自愈能力和智能化运行特性。
在智能变电站二次系统的现状中,智能化装备广泛应用的智能化管理系统也逐渐成为了变电站的核心部分。
智能管理系统通过对装备状态和环境条件进行监测、分析和预测,实现了对整个变电站的智能化调度和运行管理,为提高电网的可靠性、经济性和安全性提供了有力的保障。
1. 数据驱动的优化设计数据驱动的优化设计方法是目前智能变电站二次系统优化设计的主要方向之一。
通过采集和分析大量的装备运行数据和环境参数数据,利用先进的数据挖掘、机器学习和人工智能技术,实现了对装备状态和性能的精准预测和评估。
在此基础上,通过智能化调度和控制算法优化,实现了变电站的设备运行、维护和修复的智能化管理,提高了设备的利用率和运行可靠性。
2. 智能控制策略的优化设计智能控制策略的优化设计是智能变电站二次系统优化设计的另一主要方向。
通过引入先进的控制算法和策略,如模糊控制、神经网络控制和模型预测控制等,实现了对变电站设备的精细化控制和优化调度。
智能控制策略能够在实时监测到设备状态变化的情况下,迅速调整设备运行参数,保障变电站设备的安全稳定运行。
未来,智能变电站二次系统将朝着更加智能、便捷和高效的方向发展。
智能变电站的发展及现状

智能变电站的发展及现状在当今这个科技飞速发展的时代,电力系统作为支撑现代社会运转的重要基石,也在不断地经历着变革与创新。
智能变电站作为电力系统中的关键组成部分,其发展和现状备受关注。
智能变电站的概念最早可以追溯到上个世纪末。
当时,随着信息技术的快速发展,人们开始思考如何将先进的通信、控制和监测技术应用于传统的变电站,以提高其运行效率、可靠性和安全性。
经过多年的研究和实践,智能变电站逐渐从概念走向了实际应用。
早期的变电站主要依靠人工操作和监控,设备之间的通信相对简单,信息的采集和处理也较为有限。
这种模式不仅效率低下,而且容易出现人为错误,难以满足日益增长的电力需求和对供电质量的高要求。
随着计算机技术、传感器技术和通信技术的不断进步,智能变电站迎来了快速发展的阶段。
在硬件方面,新型的智能化设备如智能变压器、智能断路器等不断涌现,这些设备具有更高的性能和更强的自动化功能。
智能变压器能够实时监测自身的运行状态,对油温、油位等参数进行精确测量,并通过智能控制系统进行自动调节。
智能断路器则可以实现快速准确的故障判断和开断,大大提高了电力系统的故障处理能力。
在软件方面,智能化的监控和管理系统也日益完善。
这些系统能够对变电站内的各种设备进行实时监测和控制,采集大量的运行数据,并通过数据分析和处理,为运行人员提供决策支持。
例如,通过对设备运行数据的分析,可以提前发现潜在的故障隐患,及时进行维护和检修,避免故障的发生。
同时,智能变电站还实现了与上级调度系统的高效通信,能够快速响应调度指令,优化电力资源的配置。
如今,智能变电站已经在全球范围内得到了广泛的应用。
在我国,智能变电站的建设取得了显著的成就。
一大批先进的智能变电站相继建成投运,为保障电力供应的安全可靠发挥了重要作用。
智能变电站的优势是显而易见的。
首先,它提高了电力系统的运行效率。
通过智能化的设备和系统,能够实现自动化的操作和控制,减少了人工干预,降低了运行成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年智能化设备缺陷共计9个
• 合并单元(含合并单元智能终端集成 装置)缺陷6个,占比为67%。
7
集成化智能设备
• 集成多参量状态传感器和智能组件等实现智能一次设备; • 采用一体化嵌入式软硬件平台、硬件强电磁抗干扰措施等
,实现二次设备多功能集成和就地布置; • 远期,一次设备全面集成传感器、控制器、智能组件和电
子互感器,支持通信交互,具备设备自描述、自诊断和自 感知能力。
充气式开关柜
隔离断路器
2014年 7月
2014年,国网公司印发新一代智能变电站扩大示范技术要求,在 26个省(市、)公司遴选50座变电站开展扩大示范工程建设。至 2015年底,建成投运18座。
2015年 12月
2015年12月,在总结首批6座新一代智能变电站示范工程两年期运 行情况基础上,规划进一步扩大新一代智能变电站建设规模,促进 “三大技术”成熟应用。
4
主要工作内容
巩固现有成果,推动 智能变电站设计、技 术、设备的创新与突 破,落实智能电网及 智能变电站发展规划。
扩大 建设
顶层 设计
从创新模式、技术路 线入手,科学规划新 一代智能变电站近期、 远期技术方案,组织 开展科技攻关。
统一采用“集成化设 计、智能化设备、模 块化建设”技术方案, 开展新一代智能变电 站示范工程建设。
预制式光电缆
原
新
技
技
术
术
方 案
建设工期 节约近25%
方 案
10
目录
1 新一代智能变电站概述 2 示范工程运行情况 3 建设进展与展望
11
示范工程-总体运行情况
6座示范站投运2年以来,保持平稳运行态势。单站最大负载率上升为39%, 共经历电网故障5次,其中2014年4次、2015年1次,保护均正确动作,未发生 误动、拒动。设备状态良好,操作、运维正常。
自2014年下半年进入 稳定运行期后,2015年6座 示范站设备缺陷大幅度减少, 由2014年的9.5个/站•年减 少为3个/站•年,下降70%。 新技术、新设备在度过“浴 盆曲线”早期故障率偏高的 时段后,进入稳定运行期。
2014~2015年6座示范站每月缺陷总数变化趋势
12
示范工程-缺陷统计
(一)缺陷总数大幅下降
• 2014年六座示范站共发生缺陷58个。其中 智能化设备缺陷22个,常规设备缺陷36个。
• 2015年六座示范站共发生缺陷18个,其中 智能化设备缺陷9个,常规设备缺陷9个。 2015年缺陷总量较2014年减少70%。
2014~2015年智能化设备缺陷变化趋势
(二)智能设备严重以上缺陷占比下降
• 2014年智能化设备一般、严重、危急缺陷 分别为6个、10个和6个,占比分别为27%、 46%和27%。
新一代智能变电站研究与建设
目录
1 新一代智能变电站概述 2 示范工程运行情况 3 建设进展与展望09年7月,按照统筹规划、统一标准、试点先行、整体推进的 建设方针,启动第一批智能变电站试点工程开始建设,电压等级 涵盖110kV~ 750kV。2010年12月首批7座试点站建成投产。
3
目标与要求
新一代智能变电站以“系 统高度集成、结构布局合理、 装备先进适用、经济节能环保、 支撑调控一体”为目标,采用 高可靠、高集成、长寿命的智 能设备,具备支持调控合一、 运维一体、即插即用、全景信 息等功能,实现能量智能调节, 设备可控在控,信息共享互动。
新一代智能变电站研究和建设是推动电网技术水平提升,增强国内 在电网技术领域核心竞争力的重要实践,注重变电站建设和运维理念的 创新,全面实现技术、装备的重大突破。
示范 工程
设备 研制
结合新技术、新工艺、 新材料发展成果,研 制智能化一次、二次 集成设备,提高设备 的可靠性与成熟度。
5
建设成果
截至2015年底: 已新建并投运智能变电站
2000余座; 结合业务发展需求,对技术方
案进行了升级,建设新一代智 能变电站示范工程,已投运24 座。
220kV重庆大石变电站
220kV smart substation in Da’shi
110kV武汉未来城变电站
220kV北京未来城变电站
110kV smart substation in Wu’han 220kV smart substation in Beijing
6
整体优化设计
整体集成设计,引领设备制造实现功能集成和技术创新。 优化电气主接线和总平面布局,结构紧凑,减少占地面积。 优化电气设备选型和配置,形成 “小型化、智能化、集成化”选型原
• 2015年一般、严重、危急缺陷分别为4个、 4个和1个,占比分别为44%、44%和12%。
2014~2015年智能化设备缺陷严重程度分布
13
示范工程-缺陷统计
2014年智能化设备缺陷共计22个
• 合并单元(含合并单元智能终端集成装置)缺陷11个,占比为50%。 • 电子式互感器本体缺陷2个,占比为9%。 • 智能终端缺陷2个,占比为9%。 • 保护设备缺陷4个,占比为18% • 监控系统缺陷3个,占比为14%。
2012年 7月
2013年 12月
2012年2月,国网公司正式提出建设“占地少、投资省、效率高 ”的新一代智能变电站。9月审议通过新一代技术方案经,12月新 一代站示范工程启动建设。
2013年12月,6座新一代智能变电站示范工程建成投运,在节约 占地和建筑面积,减少设备数量,提高设备可靠性和变电站建设 效率等方面取得了突破。
集成式电容器
8
一体化业务平台
• 数据整合和应用集成,实现全站数据充分共享和集中监控; • 智能化功能:一键式顺序控制、智能告警和综合故障分析、设备故
障诊断 • 数据服务:告警直传、远程浏览
智能化功能
智能告警及分析决策 9
模块化建设
新一代智能变电站模块化设计
二次设备预制舱
集成化一次设备
多功能二次装置
则和“安全可靠、成熟适用、经济合理”的配置原则。
86m
103 m
45m
65 m
220kVAIS站占地减少42%、建筑面积减少64%;110kVAIS站占地减少46%、建筑面积减少45% 220kV户内GIS站建筑面积减少15%;110kV户内GIS站建筑面积减少20%~25% 户外AIS站二次屏位数减少29%~35%;户内GIS站二次屏位数减少27%~59%