公开课:直线的参数方程
2.3直线的参数方程课件人教新课标1

的距离,则|PM|= 20=2 5. 解法二:由点 P 向直线作垂线,垂足记为 P0,如图所示,
它对应参数 t=-2.代入直线的参数方程,可得点 P0 的坐标: x=2,y=1,即垂足 P0(2,1),显然有|PP0|= 2+22+1+12 =2 5.
2,6)的距离.
分析:由直线的方程可知,直线的斜率为34,即直线的倾 斜角(设为 α)的正切值 tan α=34,则 sin α=35,cos α=45.因为 点 P 在直线 l 上,为了方便运算,选择点 P 作为直线上的定 点,到点 M 和点 N 的距离可以根据参数方程的特点及几何意 义或者两点之间的距离公式来求.
k= .
解析:(1)由题意可知直线的点斜式方程为 y-3=-24(x-1).
设 y-3=-24(x-1)=t,则xy==13-+2tt.,
∴该直线的参数方程为x=1-2t , y=3+t.
(2)解法一:如图所示,在直线上任取一点 M(x,y),则 |PM|2=(x+2)2+(y+1)2
=1-2t +22+(3+t+1)2 =54t2+5t+25
线l的参数方程是 x= 22t, (t为参数),
y=-4+
2 2t
点P是曲线C上的动点,点Q是直线l上的动点,求|PQ|的最
小值.
解析:曲线C的极坐标方程ρ=4sin θ可化为ρ2=4ρsin θ,其 直角坐标方程为x2+y2-4y=0,即x2+(y-2)2=4.
直线l的方程为x-y-4=0. 所以,圆心到直线l的距离d=|-2-2 4|=3 2. 所以,|PQ|的最小值为3 2-2.
5.直线 y=-1-t (t为参数)与曲线 的交点个数为________.
2.3直线的参数方程课件新人教A版选修4_4(优秀经典公开课比赛课件)

学习目标
思维脉络
1.掌握直线参数方程的标准式,理解参数 t 的几何 直线的参数方程
意义.
直线的参数方程
2.能利用直线的参数方程 直线的参数方程的应用
解决简单的实际问题.
探究
直线参数方程的标准形式主要用来解决过定点的直线与圆锥
曲线相交时的弦长或距离问题.它可以避免求交点时解方程组的烦
4 5 3 5
������,
(t ������
为参数).
因为 3×5-4×4+1=0,
所以点 M 在直线 l 上. 由 1+45t=5,得 t=5,即点 P 到点 M 的距离为 5.
直线参数方程的应用
【例2】
已知直线l经过点P(1,1),倾斜角α=
������ ������
= =
1 3
+ +
1223������,������(t
为参数)和方程
������ ������
= =
1+ 3+
������, 3������(t
为参数)是否为直线
l
的参数方程.如果是直线 l 的参数方程,那么请指出方程中的参数 t
是否具有标准形式中参数的几何意义. ������ = ������0 + ������������,
所以两个参数方程都是直线 l 的参数方程.
因为
������ ������
= =
1 3
+ +
1223������,������(t
为参数)可化为
������ ������
= =
1 3
+ +
������cos ������sin
直线的参数方程及应用

直线的参数方程及应用x = x0 + aty = y0 + bt其中(x0,y0)是直线上的一个固定点,a和b是表示直线方向的参数。
参数t的取值范围根据实际问题的情况来确定,可以是实数、整数或者其他范围。
1.直线与平面的交点在三维空间中,直线与平面的交点可以通过参数方程求解。
假设平面的方程为Ax+By+Cz+D=0,直线的参数方程为:x = x0 + aty = y0 + btz = z0 + ct将直线的参数方程代入平面的方程,可以得到一个关于参数t的二次方程:A(x0+at) + B(y0+bt) + C(z0+ct) + D = 0通过求解这个二次方程,可以得到直线与平面的交点坐标。
2.直线的斜率直线的斜率是表示直线的倾斜程度的一个重要指标,可以通过直线的参数方程求得。
考虑直线上两个点P(x1,y1)和Q(x2,y2),它们对应的参数分别为t1和t2、直线的斜率可以表示为:m=(y2-y1)/(x2-x1)=(y0+b*t2-y0-b*t1)/(x0+a*t2-x0-a*t1)=b/a因此,直线的斜率可以通过参数a和b的比值得到。
当a=0时,直线是垂直于x轴的;当b=0时,直线是垂直于y轴的。
3.直线的长度直线的长度可以通过参数方程和积分来求解。
考虑直线上两个点P(x1,y1)和Q(x2,y2),它们对应的参数分别为t1和t2、直线的长度可以表示为:L = ∫√((dx/dt)²+(dy/dt)²) dt (t=t1到t2)其中 dx/dt 和 dy/dt 分别是直线参数方程关于 t 的导数。
将直线的参数方程代入到上式中,化简可得:L = ∫√(a²+b²) dt (t=t1到t2)=√(a²+b²)*(t2-t1)因此,直线的长度可以通过直线参数方程中的参数a和b计算得到。
4.直线的切线和法线y = y0 + (dy/dt) * (t-t0)其中 dy/dt 是直线参数方程关于 t 的导数。
直线的参数方程ppt课件

返回首页
下一页
5.化直线l的参数方程
x=-3+t, y=1+ 3t
(t为参数)为普通方程,并求倾斜角,
说明|t|的几何意义.
上一页
返回首页
下一页
【解】 由xy= =- 1+3+3tt, 消去参数t,得
直线l的普通方程为 3x-y+3 3+1=0.
故k= 3=tan α,即α=π3,
几何意义为|
→ M0M
|=4,且
→ M0M
与e方向相反(即点M在直线l上点M0的左下
方).
上一页
返回首页
下一页
1.一条直线可以由定点M0(x0,y0),倾斜角α(0≤α<π)惟一确定,直线上
的动点M(x,y)的参数方程为
x=x0+tcos y=y0+tsin
α, α
(t为参数),这是直线参数方程的
上一页
返回首页
下一页
【解析】 将xy= =12- +23tt 化为y=-32x+72, ∴斜率k1=-32, 显然k=0时,直线4x+ky=1与上述直线不垂直, ∴k≠0,从而直线4x+ky=1的斜率k2=-4k. 依题意k1k2=-1,即-4k×-32=-1, ∴k=-6. 【答案】 -6
上一页
θ, θ
(θ为参数)交于A,B两点,求|PA|·|PB|.
上一页
返回首页
下一页
【解】 (1)直线l的参数方程为
x=-3+tcos56π=-3- 23t, y=3+tsin56π=3+2t
(t为参数).
上一页
返回首页
下一页
(2)把曲线C的参数方程中参数θ消去,得4x2+y2-16=0. 把直线l的参数方程代入曲线C的普通方程中,得 4-3- 23t2+3+12t2-16=0, 即13t2+4(3+12 3)t+116=0. 由t的几何意义,知 |PA|·|PB|=|t1·t2|, 故|PA|·|PB|=|t1·t2|=11136.
直线的参数方程 课件

(2)∵t1t2=-cos2θ+12sin2θ<0,设 A(x1,y1),B(x2,y2),
∴y1=t1sin θ,y2=t2sin θ,S△AOB=12|OF|·(|y1|+|y2|)=12×1·|t1-t2|·sin θ=1+2ssiinn2θθ=
【例题 1】 (1)化直线 l1:x+ 3y-1=0 的方程为标准形式的参数方程(参数为 t),
并说明 t 和t的几何意义;
(2)化直线 l2的参数方程xy==-1+3+3tt, (t 为参数)为普通方程,并说明t的几何意义.
• 思维导引:求直线的参数方程首先确定定点, 再确定倾斜角.化参数方程为普通方程关键 在于消参.
解析:(1)令
y=0,得
x=1,所以直线
l1
过定点(1,0),斜率
k=-
1 =- 3
33,设倾
斜角为 α,tan α=- 33,α=56π,∴cos α=- 23,sin α=12.所以 l1 的参数方程为
x=1- 23t, y=12t
(t 为参数).t 是直线 l1 上定点 M0(1,0)到直线上任意一点 M(x,y)的有
(2)∵P 在 C1 上,将xy==-3+1+tsintcαo.s α, 代入方程 x2+y2-2x-2y=0 得 t2-4(cos α
-sin α)t+6=0, 设点 B,D 对应的参数分别为 t1,t2. 则|PB|=|t1|,|PD|=|t2|,又 t1t2=6,∴|PB|·|PD|=|t1||t2|=|t1t2|=6.
α,
(t 为参数,0≤α≤π),
以坐标原点 O 为极点,x 轴正半轴为极轴建立极坐标系,曲线 C2 的极坐标方程为ρ=
高中数学《参数方程-直线的参数方程》课件

-1-
2.1
直线的参数方程
-2-
首 页
课程目标
1.掌握直线参数方程的标准形
式,理解参数 t 的几何意义.
2.能依据直线的几何性质,写出
它的两种形式的参数方程,体会
参数的几何意义.
3.能利用直线的参数方程解决
简单的实际问题.
学习脉络
J 基础知识 Z 重点难点
ICHU ZHISHI
3π
4
3π
= -1 + cos ,
4
3π (t
= 2 + sin
4
解:因为 l 过定点 M,且 l 的倾斜角为 ,
所以它的参数方程是
即
2
t,
2
(t
2
+ t
2
= -1=2
为参数).
为参数).①
把①代入抛物线方程,得 t2+ 2t-2=0.
解得 t1=
- 2+ 10
- 2- 10
,t2=
5
= 1 + t,
=
为参数).
因为 3×5-4×4+1=0,所以点 M 在直线 l 上.
4
5
由 1+ t=5,得 t=5,即点 P 到点 M 的距离为 5.
因为 3×(-2)-4×6+1≠0,所以点 N 不在直线 l 上.
由两点间距离公式得|PN|= (1 + 2)2 + (1-6)2 = 34.
π
6
即 α= 或
5π
3
时,|PA||PB|最小,其最小值为
1
6
2 1+4
6
直线的参数方程 课件

参数方程和普通方程可以进行互化.特别是要求直线上某一定点到直线与曲线的
交点的距离和直线与曲线相交的弦长时,通常要使用参数的几何意义,宜用参数方
程形式.
典例提升2
已知直线的参数方程为ቊ
= 1 + 2,
(t为参数),求该直线被圆x2+y2=9截得的弦
5 1 2
64
12 5
+
16
=
.
5
5
2
1
+ 2 + ′ =9,
5
探究三错辨析
易错点:错用参数的几何意义而致误
典例提升3
= 2− 2 ,
2+y2=4交于A,B两点,求
已知过点M(2,-1)的直线l:൞
(t为参数),l与圆x
= −1 + 2
|AB|及|AM|·|BM|.
错解:把直线方程代入圆的方程,化简得t2-6t+2=0.设A,B两点对应的参数分别为
其中t'是点M(2,-1)到直线l上的一点P(x,y)的有向线段的数量,将其代入圆的方程
x2+y2=4,化简得t'2-3 2t'+1=0.因为Δ>0,可设t1',t2'是方程的两个根,由根与系数的
关系,得t1'+t2'=3 2,t1't2'=1.由参数t'的几何意义得|MA|=|t1'|,|MB|=|t2'|,
数).
1
= 3− 2 ,
(2)把൞
代入x-y+1=0,
直线的参数方程

在工程中,直线参数方程被广泛应用于机械设计、土木工程等领域。例如,在机 械设计中,直线参数方程可以用来描述机器的运动轨迹;在土木工程中,直线参 数方程可以用来描述建筑物的轮廓线。
物理应用
在物理学中,直线参数方程也被广泛应用于描述运动轨迹和实验数据。例如,在 研究物体的运动时,直线参数方程可以用来描述物体的位置和速度随时间的变化 。
通过两点确定直线
对于通过两点的直线,参数方程可以表示为 `x = tcosθ + ρcosθ`, `y = tsinθ + ρsinθ`,其中t为参数,θ为角度,ρ为距离。
斜截式
对于斜截式直线,参数方程可以表示为 `x = ty + b`, `y = t`,其中t为参数,b 为截距。
应用直线参数方程解决实际问题
向量推导的应用
利用向量推导直线参数方程,可以直观地理解直线的方向和位置 ,为解决几何问题提供方便。
使用点斜式推导直线参数方程
点斜式的定义
点斜式是直线方程的一种形式,它表示直线通过 某一点且与该直线的斜率有关。
点斜式的推导
通过点斜式的定义,推导出直线参数方程的系数 ,并得到点斜式对应的参数方程。
点斜式的应用
直线参数方程在几何中的应用
直线的平行和垂直判定
利用参数方程求解直线的斜率和 截距
直线的参数方程可以用来表示直 线上的点,其应用包括
直线与圆、椭圆的交点求解
通过引入参数,直线的参数方程 可以将直线上的点坐标表示为参 数的函数,从而简化了直线相关 的几何问题的求解
直线参数方程在物理中的应用
直线的参数方程可以 用于描述物理学中的 波的传播和运动轨迹 ,其应用包括
机械工程中的机构运动学分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(t为参数)
| t || M 0 M |
参数t的几何意义是什么? y
l
M ( x, y )
若t 0, 则M 0 M 方向向上 若t 0, 则M 0 M 方向向下 若t 0, 则点M与M 0重合
e
0
M 0 ( x0 , y0 )
x
l
例1.设直线l过点A(2,-4),倾斜角为 6 (1)求l的参数方程; (2)设直线l与直线x-y+1=0交于点B,求 线段AB的长. y x y 1 0 y l | t | M ( x, y )
(t为参数)
与曲线y=f(x)交于M1,M2两点,对应的参数 分别为t1,t2, (1)曲线的弦M1M2的长是 |t t |
1 2
(2)线段M1M2的中点M对应的参数t的值 是
t1 t2 2
方程
x 5 3t (t为参数) y 2 t
是直线参数方程吗?它和我们今天所学 的// a(a 0) b a
2.直线l的方向向量是指: 与直线l平行的非零向量
经过点M(x0,y0),倾斜角为 的直线l的
y y0 tan ( x x0 ) 普通方程是________________________;
如何建立直线l的参数方程呢?
|t1 t2 | t1 t 2 中点P的参数 t 2
弦长|AB|=
1 练习: x 2 2 t (t为参数) 被双曲线 求直线 y 3 t 2
x2-y2=1截得的弦长|AB|.
例3.经过点M(2,1)作直线l ,交椭圆
x
2
16
y
2
4
1
于A,B两点,如果点M恰好为线段AB的 中点,求直线l的方程. 弦的中点对应的参数为
M 0 M ( x, y ) ( x0 , y0 ) y ( x x0 , y y0 )
l
M ( x, y )
e (cos , sin )
e
M 0 ( x0 , y0 )
0
x
经过点M(x0,y0),倾斜角为 的直线l的
x x0 t cos 参数方程: y y0 t sin
t1 t2 2
4
练习:已知经过点P(2,0),斜率为 3 的直线 和抛物线y2=2x相交于A,B两点,设线段AB 的中点为M,求点M的坐标 .
1.经过点M(x0,y0),倾斜角为 的直线l的 x x0 t cos (t为参数) 参数方程: y y0 t sin
2.参数t的几何意义:
| t || M 0 M |
3. 直线上的点M与参数t的值是一一对应的.
若t 0, 则M 0 M 方向向上 若t 0, 则M 0 M 方向向下 若t 0, 则点M与M 0重合
4.直线参数方程可解决弦长,中点等问题.
x x0 t cos 若直线l: y y0 t sin
O
5
B
|t |
x
A
0
M 0 ( x0 , y0 )
x
直线上的点M与参数t的值是一一对应的
例2:已知直线 l : x y 1 0 与抛物线 2 y x 交于A,B两点, 点M(-1,2)在直线AB上, (1)求线段AB的长; (2)求点M(-1,2)到A , B两点的距离之积; (3)求AB的中点P的坐标。