dijkstra算法
dijkstra算法

Dijkstra算法(Dijkstra算法)由荷兰计算机科学家Dikstra于1959年提出,因此也称为Dikstra算法。
从一个顶点到其余顶点的最短路径算法解决了权利图中的最短路径问题。
Dijestela算法的主要特征是从起点开始,采用贪婪算法的策略。
每次,它都会遍历最接近且未访问过的顶点的相邻节点,直到起点为止。
Dijkstra的算法通常以两种方式表示,一种使用永久和临时标签,另一种使用OPEN和CLOSE表,两者都使用永久和临时标签。
请注意,该算法不需要图形中的负边缘权重。
1.首先,引入一个辅助数组(向量)D,其中每个元素D代表当前找到的Dijkstra运行动画过程Dijkstra运行动画过程从起点(即源点)到其他每个顶点的长度。
例如,D = 2表示从起点到顶点3的路径的相对最小长度为2。
这里的重点是相对的,这意味着D在算法执行期间近似于最终结果,但不一定相等执行期间的长度。
2. D的初始状态为:如果存在一个从to的弧(即,存在一个从to的连接边),则D是弧上的权重(即,从to的边的权重);否则,将D设置为无穷大。
显然,长度为D = Min {D | ∈V}是从起点到顶点的最短路径,即()。
3.那么,下一个最短的长度是?即找到与从源点到下一顶点的最短路径长度相对应的顶点,并且该最短路径长度仅次于从源点到顶点的最短路径长度。
假设子短路径的终点是,则可以想象路径是()或()。
它的长度是从PI到PI的弧上的权重,或者是D加上从PI到PI的弧上的权重。
4.通常,假定S是从源点获得的最短路径长度的一组顶点,则可以证明下一条最短路径(令其终点为)是arc()或仅从源点穿过中间的S顶点,最后到达顶点。
因此,具有较短长度的下一个最短路径长度必须为D = Min {D | ∈v-s},其中D是arc()上的权重,或者D(∈S)和arc(,)上的权重之和。
该算法描述如下:1)让圆弧代表圆弧上的重量。
如果弧不存在,则将弧设置为无穷大(在这种情况下为MAXCOST)。
Dijkstra算法

最短路径—Dijkstra算法Dijkstra算法1.定义概览Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
注意该算法要求图中不存在负权边。
问题描述:在无向图G=(V,E) 中,假设每条边E[i] 的长度为w[i],找到由顶点V0 到其余各点的最短路径。
(单源最短路径)2.算法描述1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S 中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。
在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。
此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:a.初始时,S只包含源点,即S={v},v的距离为0。
U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
dijkstra算法

Dijkstra算法是荷兰计算机科学家Dijkstra在1959年提出的,因此也称为Dijkstra算法。
它是从一个顶点到其他顶点的最短路径算法,解决了加权图中最短路径的问题。
Dijkstra算法的主要特征是它从起点开始使用贪婪算法策略。
每次,它遍历最近的顶点的相邻节点,直到起点延伸到终点,该节点才被访问。
算法思路
该算法是根据路径长度的递增顺序生成的
顶点集V分为两组
(1)S:一组计算的顶点(最初仅包含源点V0)
(2)V-s = t:一组不确定的顶点
T中的顶点以递增顺序添加到,以确保:
(1)从源点v0到S中其他顶点的长度不大于从v0到t的任何顶点的最短路径长度
(2)每个顶点对应一个距离值
S中的顶点:从v0到顶点的长度
t中的顶点:从v0到顶点的最短路径长度,仅包括s中的顶点作为中间顶点
基础:可以证明,t中从v0到VK的直接路径的权重是从v0到VK的直接路径的权重,或者是从v0到VK的路径权重之和,即通过S中的顶点。
(可以通过相反的证明方法证明)
寻找最短路径的步骤
算法步骤如下:
G = {V,E}
1.初始条件为s = {V0},t = V-s = {其他顶点},相应的顶点距离值以t为单位
如果存在<V0,VI>,则D(V0,VI)是<V0,VI> arc的权重如果没有<V0,VI>,则D(V0,VI)为∞
2.从t中选择一个具有与S中的顶点关联的边且权重最小的顶点W,并将其添加到s
3.修改t中其余顶点的距离值:如果将W添加为中间顶点,则缩短了从v0到VI的距离,然后修改了距离值
重复上述步骤2和3.直到s包含所有顶点,即w = VI。
Dijkstra算法

Dijkstra算法这⾥介绍 Dijkstra 算法,它是⼀个应⽤最为⼴泛的、名⽓也是最⼤的单源最短路径算法Dijkstra 算法有⼀定的局限性:它所处理的图中不能有负权边「前提:图中不能有负权边」换句话说,如果⼀张图中,但凡有⼀条边的权值是负值,那么使⽤ Dijkstra 算法就可能得到错误的结果不过,在实际⽣活中所解决的问题,⼤部分的图是不存在负权边的如:有⼀个路线图,那么从⼀点到另外⼀点的距离肯定是⼀个正数,所以,虽然 Dijkstra 算法有局限性,但是并不影响在实际问题的解决中⾮常普遍的来使⽤它看如下实例:(1)初始左边是⼀张连通带权有向图,右边是起始顶点 0 到各个顶点的当前最短距离的列表,起始顶点 0 到⾃⾝的距离是 0(2)将顶点 0 进⾏标识,并作为当前顶点对当前顶点 0 的所有相邻顶点依次进⾏松弛操作,同时更新列表从列表的未标识顶点中找到当前最短距离最⼩的顶点,即顶点 2,就可以说,起始顶点 0 到顶点 2 的最短路径即 0 -> 2因为:图中没有负权边,即便存在从顶点 1 到顶点 2 的边,也不可能通过松弛操作使得从起始顶点 0 到顶点 2 的距离更⼩图中没有负权边保证了:对当前顶点的所有相邻顶点依次进⾏松弛操作后,只要能从列表的未标识顶点中找到当前最短距离最⼩的顶点,就能确定起始顶点到该顶点的最短路径(3)将顶点 2 进⾏标识,并作为当前顶点(4)对当前顶点 2 的相邻顶点 1 进⾏松弛操作,同时更新列表(5)对当前顶点 2 的相邻顶点 4 进⾏松弛操作,同时更新列表(6)对当前顶点 2 的相邻顶点 3 进⾏松弛操作,同时更新列表从列表的未标识顶点中找到当前最短距离最⼩的顶点,即顶点 1,就可以说,起始顶点 0 到顶点 1 的最短路径即 0 -> 2 -> 1(7)将顶点 1 进⾏标识,并作为当前顶点(8)对当前顶点 1 的相邻顶点 4 进⾏松弛操作,同时更新列表从列表的未标识顶点中找到当前最短距离最⼩的顶点,即顶点 4,就可以说,起始顶点 0 到顶点 4 的最短路径即 0 -> 2 -> 1 -> 4(9)将顶点 4 进⾏标识,并作为当前顶点当前顶点 4 没有相邻顶点,不必进⾏松弛操作从列表的未标识顶点中找到当前最短距离最⼩的顶点,即顶点 3,就可以说,起始顶点 0 到顶点 3 的最短路径即 0 -> 2 -> 3(10)将顶点 3 进⾏标识,并作为当前顶点对当前顶点 3 的相邻顶点 4 进⾏松弛操作,发现不能通过松弛操作使得从起始顶点 0 到顶点 4 的路径更短,所以保持原有最短路径不变⾄此,列表中不存在未标识顶点,Dijkstra 算法结束,找到了⼀棵以顶点 0 为根的最短路径树Dijkstra 算法的过程总结:第⼀步:从起始顶点开始第⼆步:对当前顶点进⾏标识第三步:对当前顶点的所有相邻顶点依次进⾏松弛操作第四步:更新列表第五步:从列表的未标识顶点中找到当前最短距离最⼩的顶点,作为新的当前顶点第六步:重复第⼆步⾄第五步,直到列表中不存在未标识顶点Dijkstra 算法主要做两件事情:(1)从列表中找最值(2)更新列表显然,借助最⼩索引堆作为辅助数据结构,就可以⾮常容易地实现这两件事情最后,Dijkstra 算法的时间复杂度:O(E*logV)。
最短路dijkstra算法详解

最短路dijkstra算法详解最短路问题是图论中的一个经典问题,其目标是在给定图中找到从一个起点到其他所有节点的最短路径。
Dijkstra算法是解决最短路问题的一种常用算法,本文将详细介绍Dijkstra算法的原理、实现以及时间复杂度等相关内容。
一、Dijkstra算法的原理Dijkstra算法是一种贪心算法,其基本思想是从起点开始,逐步扩展到其他节点。
具体而言,Dijkstra算法通过维护一个集合S来记录已经找到了最短路径的节点,以及一个数组dist来记录每个节点到起点的距离。
初始时,S集合为空,dist数组中除了起点外所有节点都被初始化为无穷大。
接下来,重复以下步骤直到所有节点都被加入S集合:1. 从dist数组中选择距离起点最近的未加入S集合的节点u;2. 将u加入S集合;3. 更新与u相邻的未加入S集合的节点v的距离:如果从起点出发经过u可以得到更短的路径,则更新v对应位置上dist数组中存储的值。
重复以上步骤直至所有节点都被加入S集合,并且dist数组中存储了每个节点到起点的最短距离。
最后,根据dist数组中存储的信息可以得到起点到任意节点的最短路径。
二、Dijkstra算法的实现在实现Dijkstra算法时,需要使用一个优先队列来维护未加入S集合的节点,并且每次从队列中选择距离起点最近的节点。
由于C++标准库中没有提供优先队列,因此需要手动实现或者使用第三方库。
以下是一个基于STL堆实现的Dijkstra算法代码示例:```c++#include <iostream>#include <vector>#include <queue>using namespace std;const int INF = 0x3f3f3f3f;vector<pair<int, int>> adj[10001];int dist[10001];void dijkstra(int start) {priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;pq.push(make_pair(0, start));dist[start] = 0;while (!pq.empty()) {int u = pq.top().second;pq.pop();for (auto v : adj[u]) {if (dist[u] + v.second < dist[v.first]) {dist[v.first] = dist[u] + v.second;pq.push(make_pair(dist[v.first], v.first));}}}}int main() {int n, m, start;cin >> n >> m >> start;for (int i = 1; i <= n; i++) {dist[i] = INF;}for (int i = 1; i <= m; i++) {int u, v, w;cin >> u >> v >> w;adj[u].push_back(make_pair(v, w));}dijkstra(start);for (int i = 1; i <= n; i++) {if (dist[i] == INF) {cout << "INF" << endl;} else {cout << dist[i] << endl;}}return 0;}```以上代码中,adj数组用于存储图的邻接表,dist数组用于存储每个节点到起点的最短距离。
迪杰斯特拉(dijkstra)算法

初 始 时
dist path
1 0 C1
2 4 C1,C2
3 8 C1,C3
4 maxint
5 maxint
6 maxint
第一次:选择m=2,则s=[c1,c2],计算比较dist[2]+GA[2,j]与dist[j]的大小(3<=j<=6)dist path源自1 02 43 7
4 8
5 10
6 maxint
求从C1到各顶点的最短路径
9 4 2
C3
C6
4 2 6
C5
C4
4 3
8
C2
4
C1
Procedure dijkstra(GA,dist,path,i); {表示求Vi到图G中其余顶点的最短路
径,GA为图G的邻接矩阵,dist和path为变量型参数,其中path的基类型为集合} begin for j:=1 to n do begin {初始化} if j<>i then s[j]:=0 else s[j]:=1; dist[j]:=GA[i,j]; if dist[j]<maxint then path[j]:=[i]+[j] else path[j]:=[ ]; end; for k:=1 to n-2 do begin w:=maxint; m:=i; for j:=1 to n do {求出第k个终点Vm} if (s[j]=0) and (dist[j]<w) then begin m:=j;w:=dist[j];end; if m<>i then s[m]:=1 else exit; {若条件成立,则把Vm加入到s中,否则 退出循环,因为剩余的终点,其最短路径长度均为maxint,无需再计算下去}
Dijkstra算法(狄克斯特拉算法)

Dijkstra 算法Dijkstra 算法(狄克斯特拉算法) 算法(狄克斯特拉算法)目录[隐藏]• • • • • o •1 2 3 4 5Dijkstra 算法概述 算法描述 虚拟码 时间复杂度 Dijkstra 算法案例分析 5.1 案例一:基于 Dijkstra 算法在物流配送中的应用[1] 6 参考文献[编辑]Dijkstra 算法概述Dijkstra 算法 算法是由荷兰计算机科学家狄克斯特拉(Dijkstra)于 1959 年提出的,因此 又叫狄克斯特拉算法。
是从一个顶点到其余各顶点的最短路径算法, 解决的是有向图中最短 路径问题。
其基本原理是:每次新扩展一个距离最短的点,更新与其相邻的点的距离。
其基本原理是:每次新扩展一个距离最短的点,更新与其相邻的点的距离。
当所有边 权都为正时,由于不会存在一个距离更短的没扩展过的点, 权都为正时,由于不会存在一个距离更短的没扩展过的点,所以这个点的距离永远不会再 被改变,因而保证了算法的正确性。
不过根据这个原理, 被改变,因而保证了算法的正确性。
不过根据这个原理,用 Dijkstra 求最短路的图不能有 负权边,因为扩展到负权边的时候会产生更短的距离,有可能就破坏了已经更新的点距离 负权边,因为扩展到负权边的时候会产生更短的距离,有可能就破坏了已经更新的点距离 不会改变的性质。
不会改变的性质。
举例来说,如果图中的顶点表示城市,而边上的权重表示著城市间开车行经的距离。
Dijkstra 算法可以用来找到两个城市之间的最短路径。
Dijkstra 算法的输入包含了一个有权重的有向图 G,以及 G 中的一个来源顶点 S。
我 们以 V 表示 G 中所有顶点的集合。
每一个图中的边,都是两个顶点所形成的有序元素对。
(u,v)表示从顶点 u 到 v 有路径相连。
我们以 E 所有边的集合,而边的权重则由权重函数 w: E → [0, ∞]定义。
Dijkstra算法详解

Dijkstra算法详解Dijkstra算法是一种用于求解最短路径问题的经典算法,广泛应用在图论和网络路由等领域。
本文将详细介绍Dijkstra算法的原理、步骤以及应用。
一、介绍Dijkstra算法,由荷兰计算机科学家Edsger W. Dijkstra于1956年提出,是一种用于求解带权有向图中单源最短路径问题的贪心算法。
该算法可以找到从给定源节点到图中所有其他节点的最短路径。
二、原理Dijkstra算法采用了贪心策略,通过逐步选择未访问节点中距离最短的节点,逐步确定最短路径的节点集合。
具体步骤如下:1. 创建一个数组dist[],将所有节点的初始距离设置为无穷大,起始节点的距离设置为0。
2. 创建一个集合visited[],用于记录已经确定最短路径的节点。
3. 选择距离最小的节点u,并将其标记为visited。
4. 遍历u的所有邻居节点v,更新节点v的最短距离dist[v],如果dist[v]更新,则更新v的前驱节点为u。
5. 重复步骤3和4,直到所有节点都被访问过或没有可访问节点为止。
6. 最终得到的dist[]数组记录了起始节点到图中所有其他节点的最短距离,通过回溯前驱节点可以得到最短路径。
三、步骤解析我们通过一个简单的例子来解析Dijkstra算法的步骤。
假设我们有以下带权有向图:1. 初始化dist[]数组,所有节点的距离设置为无穷大,起始节点A 的距离设置为0。
dist[A] = 0, dist[B] = ∞, dist[C] = ∞, dist[D] = ∞, dist[E] = ∞, dist[F] = ∞。
2. 选择距离最小的节点,即起始节点A,将其标记为visited。
visited[] = [A]3. 更新节点A的邻居节点的最短距离。
节点B和节点C是节点A 的邻居节点,更新它们的最短距离。
dist[B] = 1, dist[C] = 44. 选择距离最小的节点,即节点B,将其加入visited集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
迪克斯特拉算法:
迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。
是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。
迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。
定义:
Dijkstra算法一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN,CLOSE表的方式,这里均采用永久和临时标号的方式。
注意该算法要求图中不存在负权边。
算法思想:
按路径长度递增次序产生算法:
把顶点集合V分成两组:
(1)S:已求出的顶点的集合(初始时只含有源点V0)
(2)V-S=T:尚未确定的顶点集合
将T中顶点按递增的次序加入到S中,保证:
(1)从源点V0到S中其他各顶点的长度都不大于从V0到T 中任何顶点的最短路径长度
(2)每个顶点对应一个距离值
S中顶点:从V0到此顶点的长度
T中顶点:从V0到此顶点的只包括S中顶点作中间顶点的最短路径长度
依据:可以证明V0到T中顶点Vk的,或是从V0到Vk的直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和。
(反证法可证)
求最短路径步骤
算法步骤如下:
G={V,E}
1.初始时令S={V0},T=V-S={其余顶点},T中顶点对应的距离值
若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值
若不存在<V0,Vi>,d(V0,Vi)为∞
2.从T中选取一个与S中顶点有关联边且权值最小的顶点W,加入到S中
3.对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值
重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止。