变频器基本常识
变频器基础知识

变频器基础知识一、变频器的定义通常所说的变频器,是指将频率固定的电源(如50Hz三相交流电)变成频率可变的电源(如在0〜50HZ之间随意变换)的转换设备。
如果原有电源的频率为0(即为直流电源供电),则变频器可以省去直流变换环节,退化成单一的逆变器(DO AQO二、变频器的分类从不同的角度,可以对变频器进行不同的分类。
1、按电压等级不同,变频器可分为:高压变频器、中压变频器、低压变频器按照国际惯例,电压》10kV时称高压,1-10kV为中压,小于1kV 时称低压,与其电压范围相对应的变频器分别称为高压变频器、中压变频器、低压变频器。
在我国,习惯上把10KV 6kV或3kV的电机称为高压电机,相应的电压为10KV 6kV或3kV的变频器均称高压变频器。
平常所说的“高- 高”“高-低-高”“高-低”只是变频器的不同应用形式。
2、按主回路结构不同,变频器可分为:交-直-交变频器,交-交变频器。
交- 直- 交变频器1)交- 直-交变频器先将电网交流电用整流电路整成直流电,再用逆变电路将直流电转换为频率可变的交流电。
整流电路、直流回路、逆变电路是交-直-交变频器的三个基本组成部分。
整流电路可以是不控的(二极管全波整流)、也可以是可控的,如果是可控整流,则它也能工作在逆变状态,将直流回路的能量逆变回电网。
逆变电路肯定是可控的,主要功能是将直流回路电能变成交流电输出给电机。
如果电机工作在发电工况时(比如制动场合),逆变电路工作在整流状态,将电机的能量送到直流回路。
交- 交变频器2)交-交变频器没有直流回路,每相都由两个相互反并联的整流电路组成,正桥提供正向相电流,反桥提供负向相电流。
3、按储能方式不同,变频器可分为:电流源型、电压源型。
电流源型变频器1)电流源型:电流源变频器输入采用可控整流,控制电流的大小。
中间采用大电感,对电流进行平滑。
逆变桥将直流电流转换为频率可变的交流电流,供给交流电机。
在电流源变频器中,直接受控量是电流。
变频器基本知识

变频器基础知识一、三相异步电动机变频调速原理由电机拖动原理知,三相异步电动机的转速表达式为:n=60f1(1-s)/ p (1-1)式中n——异步电动机的转速;f1——异步电动机定子绕组上交流电源的频率;s——异步电动机转差率;p——异步电动机极对数。
由式(1-1)知,当转差率s变化不大时,转速n基本与电源频率f1成正比。
连续调节f1,就可以调节转速n,这就是变频调速的基本原理。
由电机学原理知,三相异步电动机定子绕组的反电动势E的表达式为:E1=4.44f1N1K w1Φm(1-2)式中E1——气隙磁通在定子每相中感应电动势的有效值;N1——每相定子绕组的匝数;K w1——与绕组结构有关的常数;Φm——电机每极气隙磁通。
根据三相异步电动机的等效电路,由于4.44N1K w1均为常数,不计定子漏阻抗时有:U1≈E1 ∝f1Φm(1-3)式中U1——电机定子电压。
由(1-3)可知,保持U1不变,当f1由基频f N向下调节时,将会引起主磁通Φm的增加。
由于额定工作时电机的磁通已经接近饱和,Φm的继续增大,将会使电动机磁路过分饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,因此,为了使电机保持较好的运行性能,在向下调节f1的时候,Φm必须保持不变,即保持U1/ f1不变。
通过以上分析可知:在基频以下调频时,调频的同时也要调压。
将这种变频调速方式称为恒磁通(恒转矩)变频调速,也即变压变频(VVVF)调速控制。
由于电机受额定电压U N的限制不能持续升高,f1从基频f N向上调节时,主磁通Φm将减少,铁芯利用不充分,同样的转子电流下,电磁转矩T下降,电机负载能力下降。
这种控制方式下,转速越高,转矩越低,但输出功率基本不变。
所以,基频以上调速属于弱磁恒功率调速。
二、变频器基本知识1.变频器基本结构1.1变频器基本原理(主电路)变频器是把电压、频率固定的交流电变成电压、频率可调的交流电的变换器,其基本原理(主电路)图构成如下:图2.1 变频器基本原理(主电路)图变流器大量使用的是二极管/晶闸管桥整流器,它把工频电源变换为直流电源。
变频器基础知识

变频器基础知识变频器基础知识引言随着现代工业的不断发展,变频器作为一种电力传动装置,已经成为许多行业中必不可少的设备。
本文将介绍变频器的基础知识,包括变频器的工作原理、组成部分、常见应用领域以及使用注意事项。
一、工作原理变频器是一种将固定频率(通常为50Hz或60Hz)的电源电压通过电子技术转换为可调节频率和电压的设备。
其工作原理主要基于斯托克斯定理和电磁感应定律。
通过变频器可以将电机的电源电压和频率进行调整,实现电机的调速、调转和定位等功能。
二、组成部分1.整流器和滤波器:整流器用于将交流电转换为直流电,滤波器则用于平滑直流电流,以减小电流的脉动。
2.逆变器:逆变器将直流电转换为交流电,并且可以调节输出频率和电压。
3.控制器:控制器是变频器的核心部分,其中包括微处理器、运算控制器和其他电路。
控制器根据输入的信号和控制指令,通过调节整流器和逆变器的工作方式,控制变频器的输出频率和电压。
三、常见应用领域1.工业自动化:变频器广泛应用于工业生产线中,用于调节电机的转速和负载,实现生产过程的自动化控制。
特别是在需要对转速和运动进行精确控制的行业,如冶金、化工、纺织等领域。
2.电梯及自动扶梯:变频器在电梯和自动扶梯中的应用,可以实现平稳的启停和多速调节功能,提高乘客的乘坐舒适度和安全性。
3.空调和通风系统:变频器在空调和通风系统中的应用,可以根据室内环境的需求,调节供电电压和频率,控制风机的转速和风量,实现节能效果。
4.泵和风机控制:变频器能够根据水流或气流的需求,调节电机的转速和功率输出,实现泵和风机的控制。
这在水处理、给排水系统和工农业用途中有广泛应用。
四、使用注意事项1.选择合适的变频器:根据不同应用领域和工作环境的需求,选用适合的变频器型号和规格。
考虑到功率、电压、频率、保护等要素,确保变频器的稳定和可靠运行。
2.电气安全:变频器工作时产生的高压和高温要注意防护,避免触电和短路等事故。
3.接线和布线:正确连接变频器、电机和电源等设备,采取恰当的线路布置和屏蔽措施,避免电磁干扰和信号干扰。
变频器的基础知识

变频器的基础知识变频调速技术是怎样发展起来的?(变频器)基础1变频可以调速这个概念,可以说是交流电动机“与生俱来”的。
同步电动机无需多言,即使是异步电动机,其转速也是取决于同步转速(即旋转磁场的转速)的。
n=n1(1-S)..................(1-1)式中:n——电动机的转速,m/minn1——电动机的同步转速,r/min S——电动机的转差率而同步转速则主要取决于频率n1=60f/p..................(1-2)式中:f——频率,Hzp——磁极对数所以说,交流电动机从诞生之日起,就已经知道改变频率可以调节转速了。
但当时,还不具备改变频率的手段。
随着闸流管的问世,使变频调速的梦想出现了能够实现的希望。
但那设备的庞大与昂贵,使它无法进入实用的阶段。
直到20世纪的60年代,随着晶闸管的出现及其应用技术的迅速发展,变频调速开始进入实用的阶段。
但由于许多技术问题解决得还不够完善,调速系统的性能指标难以和直流(电机)相匹敌,因而未能达到推广应用的阶段。
70年代末期以来,一方面,矢量控制理论的提出和实施,使变频调速系统的性能指标达到了与直流电机调速系统十分接近的地步;另一方面,(电力电子)器件的飞速发展,也使SPWM调制技术日臻完善,变频调速器的体积越做越小,价格也达到了用户能够接受的程度。
变频调速这才进入了普及应用的阶段。
变频调速为什么常缩写成VVVF?变频器基础知识2VVVF的全称是Variable Voltage Variable Frequency,意思是“变压变频”。
原来,在交流异步电动机内,外加的(电源)电压主要和绕组的反电势相平衡,而绕组的反电势则与(电流)的频率和每极下的磁通量有关:U≈E1=4.44 W1f∮=Kef∮可见,磁通量的大小与电压和频率的比值有关:∮≈U/Kef=Ke'·U/f式中:U——电源相电压E1——每相定子绕组的反电势W1——每相定子绕组的匝数f——每个磁极下的磁通量Ke、Ke'——常数公式表明:当频率下降时,如果电压不变,则磁通量将增加,引起电机铁心的饱和,这当然是不允许的。
变频器基础知识大全

1、什么是变频器?变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置.2、PWM和PAM的不同点是什么?PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式.PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式.3、电压型与电流型有什么不同?变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感.4、为什么变频器的电压与电流成比例的改变?异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机.因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生.这种控制方式多用于风机、泵类节能型变频器.5、电动机使用工频电源驱动时,电压下降则电流增加;对于变频器驱动,如果频率下降时电压也下降,那么电流是否增加?频率下降(低速)时如果输出相同的功率则电流增加但在转矩一定的条件下电流几乎不变.6、采用变频器运转时,电机的起动电流、起动转矩怎样?采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%).用工频电源直接起动时,起动电流为6~7倍,因此,将产生机械电气上的冲击.采用变频器传动可以平滑地起动(起动时间变长).起动电流为额定电流的1.2~1.5倍,起动转矩为70%~120%额定转矩;对于带有转矩自动增强功能的变频器,起动转矩为100%以上,可以带全负载起动.7、V/f模式是什么意思?频率下降时电压V也成比例下降,这个问题已在回答4说明.V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择8、按比例地改V和f时,电机的转矩如何变化?频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向.因此,在低频时给定V/f要使输出电压提高一些以便获得一定地起动转矩这种补偿称增强起动.可以采用各种方法实现有自动进行的方法、选择V/f模式或调整电位器等方法9、在说明书上写着变速范围60~6Hz,即10:1,那么在6Hz以下就没有输出功率吗?在6Hz以下仍可输出功率,但根据电机温升和起动转矩的大小等条件,最低使用频率取6Hz左右,此时电动机可输出额定转矩而不会引起严重的发热问题.变频器实际输出频率(起动频率)根据机种为0.5~3Hz.10、对于一般电机的组合是在60Hz以上也要求转矩一定,是否可以?通常情况下时不可以的.在60Hz以上(也有50Hz以上的模式)电压不变,大体为恒功率特性,在高速下要求相同转矩时,必须注意电机与变频器容量的选择.11、所谓开环是什么意思?给所使用的电机装置设速度检出器(PG),将实际转速反馈给控制装置进行控制的,称为“闭环”,不用PG运转的就叫作“开环”.通用变频器多为开环方式,也有的机种利用选件可进行PG反馈.12、实际转速对于给定速度有偏差时如何办?开环时,变频器即使输出给定频率,电机在带负载运行时,电机的转速在额定转差率的范围内(1%~5%)变动.对于要求调速精度比较高,即使负载变动也要求在近于给定速度下运转的场合,可采用具有PG反馈功能的变频器(选用件).13、如果用带有PG的电机,进行反馈后速度精度能提高吗?具有PG反馈功能的变频器,精度有提高.但速度精度的植取决于PG本身的精度和变频器输出频率的分辨率.14、失速防止功能是什么意思?如果给定的加速时间过短,变频器的输出频率变化远远超过转速(电角频率)的变化,变频器将因流过过电流而跳闸,运转停止,这就叫作失速.为了防止失速使电机继续运转,就要检出电流的大小进行频率控制.当加速电流过大时适当放慢加速速率.减速时也是如此.两者结合起来就是失速功能.15、有加速时间与减速时间可以分别给定的机种,和加减速时间共同给定的机种,这有什么意义?加减速可以分别给定的机种,对于短时间加速、缓慢减速场合,或者对于小型机床需要严格给定生产节拍时间的场合是适宜的,但对于风机传动等场合,加减速时间都较长,加速时间和减速时间可以共同给定.16、什么是再生制动?电动机在运转中如果降低指令频率,则电动机变为异步发电机状态运行,作为制动器而工作,这就叫作再生(电气)制动.17、是否能得到更大的制动力?从电机再生出来的能量贮积在变频器的滤波电容器中,由于电容器的容量和耐压的关系,通用变频器的再生制动力约为额定转矩的10%~20%.如采用选用件制动单元,可以达到50%~100%.18、请说明变频器的保护功能?保护功能可分为以下两类:(1) 检知异常状态后自动地进行修正动作,如过电流失速防止,再生过电压失速防止.(2) 检知异常后封锁电力半导体器件PWM控制信号,使电机自动停车.如过电流切断、再生过电压切断、半导体冷却风扇过热和瞬时停电保护等.19、为什么用离合器连续负载时,变频器的保护功能就动作?用离合器连接负载时,在连接的瞬间,电机从空载状态向转差率大的区域急剧变化,流过的大电流导致变频器过电流跳闸,不能运转.20、在同一工厂内大型电机一起动,运转中变频器就停止,这是为什么?电机起动时将流过和容量相对应的起动电流,电机定子侧的变压器产生电压降,电机容量大时此压降影响也大,连接在同一变压器上的变频器将做出欠压或瞬停的判断,因而有时保护功能(IPE)动作,造成停止运转.21、什么是变频分辨率?有什么意义?对于数字控制的变频器,即使频率指令为模拟信号,输出频率也是有级给定.这个级差的最小单位就称为变频分辨率.变频分辨率通常取值为0.015~0.5Hz.例如,分辨率为0.5Hz,那么23Hz的上面可变为23.5、24.0 Hz,因此电机的动作也是有级的跟随.这样对于像连续卷取控制的用途就造成问题.在这种情况下,如果分辨率为0.015Hz左右,对于4级电机1个级差为1r/min 以下,也可充分适应.另外,有的机种给定分辨率与输出分辨率不相同.22、装设变频器时安装方向是否有限制.变频器内部和背面的结构考虑了冷却效果的,上下的关系对通风也是重要的,因此,对于单元型在盘内、挂在墙上的都取纵向位,尽可能垂直安装.23、不采用软起动,将电机直接投入到某固定频率的变频器时是否可以?在很低的频率下是可以的,但如果给定频率高则同工频电源直接起动的条件相近.将流过大的起动电流(6~7倍额定电流),由于变频器切断过电流,电机不能起动.24、电机超过60Hz运转时应注意什么问题?超过60Hz运转时应注意以下事项(1)机械和装置在该速下运转要充分可能(机械强度、噪声、振动等).(2) 电机进入恒功率输出范围,其输出转矩要能够维持工作(风机、泵等轴输出功率于速度的立方成比例增加,所以转速少许升高时也要注意).(3) 产生轴承的寿命问题,要充分加以考虑.(4) 对于中容量以上的电机特别是2极电机,在60Hz以上运转时要与厂家仔细商讨.25、变频器可以传动齿轮电机吗?根据减速机的结构和润滑方式不同,需要注意若干问题.在齿轮的结构上通常可考虑70~80Hz为最大极限,采用油润滑时,在低速下连续运转关系到齿轮的损坏等.26、变频器能用来驱动单相电机吗?可以使用单相电源吗?机基本上不能用.对于调速器开关起动式的单相电机,在工作点以下的调速范围时将烧毁辅助绕组;对于电容起动或电容运转方式的,将诱发电容器爆炸.变频器的电源通常为3相,但对于小容量的,也有用单相电源运转的机种.27、变频器本身消耗的功率有多少?它与变频器的机种、运行状态、使用频率等有关,但要回答很困难.不过在60Hz以下的变频器效率大约为94%~96%,据此可推算损耗,但内藏再生制动式(FR-K)变频器,如果把制动时的损耗也考虑进去,功率消耗将变大,对于操作盘设计等必须注意.28、为什么不能在6~60Hz全区域连续运转使用?一般电机利用装在轴上的外扇或转子端环上的叶片进行冷却,若速度降低则冷却效果下降,因而不能承受与高速运转相同的发热,必须降低在低速下的负载转矩,或采用容量大的变频器与电机组合,或采用专用电机.29、使用带制动器的电机时应注意什么?制动器励磁回路电源应取自变频器的输入侧.如果变频器正在输出功率时制动器动作,将造成过电流切断.所以要在变频器停止输出后再使制动器动作.30、想用变频器传动带有改善功率因数用电容器的电机,电机却不动,清说明原因变频器的电流流入改善功率因数用的电容器,由于其充电电流造成变频器过电流(OCT)所以不能起动,作为对策,请将电容器拆除后运转,甚至改善功率因数,在变频器的输入侧接入AC电抗器是有效的.31、变频器的寿命有多久?变频器虽为静止装置,但也有像滤波电容器、冷却风扇那样的消耗器件,如果对它们进行定期的维护,可望有10年以上的寿命.32、变频器内藏有冷却风扇,风的方向如何?风扇若是坏了会怎样?对于小容量也有无冷却风扇的机种.有风扇的机种,风的方向是从下向上,所以装设变频器的地方,上、下部不要放置妨碍吸、排气的机械器材.还有,变频器上方不要放置怕热的零件等.风扇发生故障时,由电扇停止检测或冷却风扇上的过热检测进行保护33、滤波电容器为消耗品,那么怎样判断它的寿命?作为滤波电容器使用的电容器,其静电容量随着时间的推移而缓缓减少,定期地测量静电容量,以达到产品额定容量的85%时为基准来判断寿命.34、装设变频器时安装方向是否有限制.应基本收藏在盘内,问题是采用全封闭结构的盘外形尺寸大,占用空间大,成本比较高.其措施有:(1)盘的设计要针对实际装置所需要的散热;(2)利用铝散热片、翼片冷却剂等增加冷却面积;(3) 采用热导管.此外,已开发出变频器背面可以外露的型式.35、想提高原有输送带的速度,以80Hz运转,变频器的容量该怎样选择?设基准速度为50Hz50Hz以上为恒功率输出特性.像输送带这样的恒转矩特性负载增速时,容量需要增大为80/50≈1.6倍.电机容量也像变频器一样增大.变频器工作原理变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的.1. 电机的旋转速度为什么能够自由地改变?*1: r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm.例如:2极电机50Hz 3000 [r/min]4极电机50Hz 1500 [r/min]结论:电机的旋转速度同频率成比例本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机.感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率.由电机的工作原理决定电机的极数是固定不变的.由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度.另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制.因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备.n = 60f/pn: 同步速度f: 电源频率p: 电机极对数结论:改变频率和电压是最优的电机控制方法如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏.因此变频器在改变频率的同时必须要同时改变电压.输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压.例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样?*1: 工频电源由电网提供的动力电源(商用电源)*2: 起动电流当电机开始运转时,变频器的输出电流变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些.工频直接起动会产生一个大的起动起动电流.而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些.通常,电机产生的转矩要随频率的减小(速度降低)而减小.减小的实际数据在有的变频器手册中会给出说明.通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩.3. 当变频器调速到大于50Hz频率时,电机的输出转矩将降低通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的.因此在额定频率之下的调速称为恒转矩调速. (T=Te P=Pe)变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降.当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足.举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2.因此在额定频率之上的调速称为恒功率调速. (P=Ue*Ie)4. 变频器50Hz以上的应用情况大家知道对一个特定的电机来说其额定电压和额定电流是不变的.如变频器和电机额定值都是: 15kW/380V/30A 电机可以工作在50Hz以上.当转速为50Hz时变频器的输出电压为380V 电流为30A. 这时如果增大输出频率到60Hz 变频器的最大输出电压电流还只能为380V/30A. 很显然输出功率不变. 所以我们称之为恒功率调速.这时的转矩情况怎样呢?因为P=wT (w:角速度T:转矩). 因为P不变w增加了所以转矩会相应减小.我们还可以再换一个角度来看:电机的定子电压U = E + I*R (I为电流R为电子电阻E为感应电势)可以看出UI不变时E也不变.而E = k*f*X (k:常数f: 频率X:磁通) 所以当f由50--60Hz时X会相应减小对于电机来说T=K*I*X (K:常数I:电流X:磁通) 因此转矩T会跟着磁通X减小而减小.同时小于50Hz时由于I*R很小所以U/f=E/f不变时磁通(X)为常数. 转矩T和电流成正比. 这也就是为什么通常用变频器的过流能力来描述其过载(转矩)能力. 并称为恒转矩调速(额定电流不变--最大转矩不变)结论: 当变频器输出频率从50Hz以上增加时电机的输出转矩会减小.5. 其他和输出转矩有关的因素发热和散热能力决定变频器的输出电流能力,从而影响变频器的输出转矩能力.载波频率: 一般变频器所标的额定电流都是以最高载波频率最高环境温度下能保证持续输出的数值. 降低载波频率电机的电流不会受到影响.但元器件的发热会减小.环境温度:就象不会因为检测到周围温度比较低时就增大变频器保护电流值.海拔高度: 海拔高度增加对散热和绝缘性能都有影响.一般1000m以下可以不考虑. 以上每1000米降容5%就可以了.。
变频器的基础知识

变频器在长时间运行过程中保持性能 稳定的能力,包括温度稳定性、电气 性能稳定性等。
04 变频器的应用领域
工业自动化
电机控制
01
变频器在工业自动化领域中广泛应用于电机控制,通过调节电
源频率来改变电机转速,实现生产线的自动化和高效化。
过程控制
02
变频器能够精确控制工业生产过程中的各种参数,如流量、压
直接转矩控制
通过控制电机的磁通和转矩来直接控制电机的输 出转矩和速度,具有快速响应和良好的动态性能。
调速性能指标
调速范围
变频器能够调节的电机转速范围,通常 以最高转速与最低转速的比值来表示。
动态响应时间
从设定值变化到实际输出值所需的时 间,要求快速响应以减小对机械系统
的冲击。
调速精度
调速过程中实际转速与设定转速的偏 差,一般要求精度在±5%以内。
其他领域
楼宇自动化
变频器在楼宇自动化领域中用于控制 空调系统、电梯和照明等设备的运行 ,提高楼宇的能源效率和舒适度。
医疗器械
变频器在医疗器械中用于控制设备的 运行速度和精度,如呼吸机、输液泵 等,保障患者的安全和治疗质量。
05 变频器的选型与使用注意 事项
选型原则
根据电机功率选择合适的变频器
在选择变频器时,应确保其能够满足电机的功率需求,同时 留有一定的余量。
保护电路
在变频器出现异常时,及时切断主电 路和控制电路的电源,保护变频器和 电机不受损坏。
保护电路
过流保护
检测主电路的电流,当电流超过设定值时, 保护电路动作,切断电源。
欠压保护
检测直流母线的电压,当电压低于设定值时, 保护电路动作,切断电源。
过压保护
变频器基础知识

变频器基础知识什么是变频器?变频器(Variable Frequency Drive,简称VFD),也称为交流调速器,是一种用于调节电动机转速的装置。
它通过改变电源供电频率和电压来实现对电动机的控制,从而实现对设备的调速和运行控制。
变频器的工作原理变频器主要由整流单元、滤波单元、逆变单元和控制单元组成。
其工作原理如下:1.整流单元:将交流电源转换为直流电源。
2.滤波单元:用于平滑直流电压,并降低谐波干扰。
3.逆变单元:将直流电压转换为可调节的交流电压。
4.控制单元:根据输入信号,通过控制逆变器输出的交流电压和频率,实现对电动机转速的精确控制。
具体来说,当我们改变控制信号时,控制单元会相应地改变逆变器输出的交流电压和频率。
通过改变输出频率,可以调节电动机转速。
同时,还可以利用逆变器提供的额外功能,如过载保护、故障诊断等。
变频器的优势使用变频器可以带来许多优势,包括:1.节能:通过调节电动机的转速,使其在不同负载下运行更高效。
特别是在轻负载情况下,可以显著降低能耗。
2.提高设备寿命:通过减少启停过程中的冲击和应力,延长设备的使用寿命。
3.调速范围广:变频器可以实现电动机的精确调速,并且调速范围广,适用于各种工况要求。
4.减少噪音和振动:由于减少了启停过程中的冲击,可以降低设备产生的噪音和振动。
5.提高生产效率:通过精确控制设备转速和运行状态,可以提高生产效率和产品质量。
变频器的应用领域变频器广泛应用于各个行业和领域,包括:1.工业制造:在机械制造、化工、纺织、食品加工等领域中,变频器被用于控制输送带、泵、风扇等设备。
2.HVAC系统:变频器可用于空调系统中的压缩机和风扇控制,提高能效和舒适性。
3.电梯和升降机:变频器可以实现电梯和升降机的平稳启动和停止,提高乘坐舒适性。
4.农业领域:在农业灌溉、养殖等领域中,变频器被用于控制水泵、风扇等设备。
5.新能源领域:在太阳能发电、风力发电等领域中,变频器被用于控制发电设备。
变频器基础100问

按照不同的应用场合,变频器可以分为通用变频器和专 用变频器。
变频器的特点包括调速范围广、调速精度高、动态响应 速度快、节能效果显著等。
变频器的主要参数与性能指标
变频器的输入参数包括输入电压、输入频率、输入功率等;输出参数包括输出电压、输出频 率、输出转矩等。
变频器的性能指标包领域的应用
变频器在空调领域中主要用于压缩机 的控制和节能。通过调节变频器的输 出频率,可以控制压缩机的转速和制 冷量,实现空调系统的节能和舒适。
变频器在空调领域中还用于新风处理 、除湿、加湿等场合,能够提高空气 处理效果和人体舒适度。
变频器在其他领域的应用
变频器在其他领域中还有许多应用,如电梯控制、数控机床、石油钻井等领域。 通过调节变频器的输出频率,可以实现电机的平稳启动、精确控制和节能运行。
04
对于长时间不用的变频器,应定期通电检查 其工作状态。
04 变频器的故障诊断与排除
变频器常见故障的诊断方法
观察法
听诊法
通过观察变频器的外观、显示屏和指示灯 ,判断是否存在异常情况。
用听诊器或耳朵贴近变频器,听其运行声 音,判断是否存在异常声音。
触摸法
测试法
在安全的前提下,用手触摸变频器的外壳 和散热片,感受其温度和振动情况。
变频器在其他领域中还用于智能家居、照明控制、电动汽车等领域,能够提高生 活品质和环保节能。
03 变频器的安装与调试
变频器的安装注意事项
确保变频器安装在通风良好、无 阳光直射、无尘埃、无腐蚀性气
体的室内,并保持环境温度在10℃~40℃之间。
为避免电磁干扰,变频器应远 离大电流设备、电源变压器、 电动机等设备,并保持一定距
太阳能发电等。
变频器作为一种高效节能的 设备,未来在节能减排领域 的应用将更加广泛,如建筑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、ENT键 在设置菜单或参数时,按ENT键进入某一菜单或参数;设置完毕,对显 示参数或显示值进行储存,此时要按住ENT键直至显示参数或数值闪烁 为止,有些参数或数值可以立即储存,而有些参数或数值需要按住ENT
键2秒以上才能储存。 6、RUN键
如果设置为本机控制(I/O菜单中的tCC参数设置为LOC),按一下RUN 键,电动机正向模式运行;如果设置为2线或3线控制该键不起作用。 7、STOP/RESET键 如果设置为本机控制,在变频器运行状态,用该键停车;如果设置为2 线或3线控制,当CtL菜单中的PSt参数设置为yES时该键具有优先停车 权, PSt参数设置为nO时该键不起作用;
在变频器非运行状态,出现故障且已修复时,用该键复位。
8、液晶显示器 4个7段显示,可显示的内容主要有: (1)在参数设置时,显示菜单或参数。共有8个一级菜单,分别为设置菜单 SEt、电机菜单drC、输入输出菜单I-O、控制菜单CtL、功能菜单FUn、故障 菜单FLt、通信菜单COM和显示菜单SUP。有些菜单下面还有二级菜单,菜 单下面是参数。菜单后面带“-”,参数不带“-”。如“CtL-”是菜单, 而“ACC”是参数。在下面的教材中,“Fun-PSS-SP2”说明“FUn” 是一级菜单,“PSS”是一级菜单“FUn”下的二级菜单,“SP2” 是二级 菜单“PSS”下的参数;“Fun-PSS-SP2=10Hz” 说明参数“SP2”设 置为10Hz。 (2)变频器运行时,显示运行状态,可显示电机频率、电机电流、电机功率 、线电压、变频器热态等,具体显示内容根据需要设置。
逆变电路是交-直-交变频器的核心部分, 其中6个三极管按其导通顺序分别用 VT1~VT6表示 ,与三极管反向并联的二极管起续流作用。
按每个三极管的导通电角度又分为120°导 通型和180°导通型两种类型。
逆变电路的输出电压为阶梯波,虽然不是正弦波,却是彼此相差120° 的交流电压,即实现了从直流电到交流电的逆变。输出电压的频率取 决于逆变器开关器件的切换频率,达到了变频的目的。
通用变频器的接线端子 通用变频器的接线端子 变频器能把电压、频率固定的交流电变换成电压、频率连续可
调的交流电。变频器与外界的联系靠接线端子相连,接线端子又分主 端子和控制端子。 1.5.1 变频器主端子 变频器的输入端分为三相输入和单相输入两种,而输出端均为三相输 出,三相输入的主端子如图1.5.1所示,单相输入的主端子如图1.5.2 所示
+
VT1
VT3
VT5
A
三
相 电
Ud
B
源
C
整流电路 逆变电路
VT4
VT6
VT2
-
滤波电路
图1.1.1 变频器的主电路
ZA
ZB O
ZC
2、中间环节——滤波电路 根据贮能元件不同,可分为电容滤波和电
感滤波两种。由于电容两端的电压不能突变,流过 电感的电流不能突变,所以用电容滤波就构成电压 源型变频器,用电感滤波就构成电流源型变频器。 3、逆变电路——直-交部分
(1)曲线n
对于曲线n,U/f =常数,属于恒压频比控制方 式,适合于恒转矩负载。
(2)曲线L
曲线L也适合于恒转矩负载,但频率为零时,电 压不为零,在电机并联使用或某些特殊电机选用 曲线L。
(3)曲线P
2、基频以上调速 在基频以上调速时,频率可以从基频往上增高,但电压U却始终 保持为额定电压,输出功率基本保持不变。所以,在基频以上变频调速
•变频器在出厂时,已将“PO”和“PA/+”两 个端子用短路片接在一起,通常不能断开,但 在使用外接电抗器时,拆下短路片接电抗器。 “PB”和“PA/+”接内部制动电阻,需要使 用外接制动电阻时,应先拆下内部接线,这两 个端子接制动电阻。一般情况下,“PO”、 “PA/+”、“PB”、 “PC/-”4个端子不需要 接线,且出厂时的接线也不要拆。
属于恒功率调速。 由此可见,通用变频器属于变压变频(VVVF)装置,其中VVVF是 英文Variable Voltage Variable Frequency的缩写。这是通用变频器工 作的最基本方式,也是设计变频器时所满足的最基本要求。
通用变频器的面板结构
尽管生产变频器的厂家不同,型号各异
,但其面板结构大致相同。图1.4.1是施耐德
各控制端子均已引出到实验台的面板上。 此外在变频器的下方还有6个按钮开关,供 6个逻辑输入端使用。这些按钮带自锁功能 ,只接了1个触点,按下接通,弹起断开。
控制端子的接线如图1.5.5所示。图中逻 辑输入端的触点可以是按钮,但用得更多 的是中间继电器、交流接触器的触点或其 它低压电器的触点,也可以是PLC输出触 点。
▲
ESC
或对显示参数或显示值
进行储存
给定电位器,如果CtL 菜单中的Fr1参数设置 为AIP时激活 RUN按键,电动机正向模式接通控制,如果I/O菜 单中的tCC参数设置为LOC时激活
▼
ENT
RUN
STOP RESET
STOP/RESET键用于故障 复位 可用于控制电动机停车,如 果I/O菜单中的参数tCC没 有设置为LOC,为斜坡停 车模式,但如果过程中有注 入制动,就会产生自由停车
图1.4.1 Altivar31变频器操作面板
1、给定电位器 如果CtL菜单中的Fr1参数或Fr2参数设置为AIP时激活,此时通过调节该电 位器升降速,目前多数变频器没有该电位器,而是通过▲、▼键升降速。 2、▲键 在选择菜单或参数时,选择上面的菜单或参数;调整参数时,增大显示值 。 3、▼键 在选择菜单或参数时,选择下一菜单或参数;调整参数时,减小显示值。 4、ESC键 退出菜单或参数,或清除显示值,以恢复以前的显示值。在设置参数时, 如果不希望对新设置的参数进行储存,而保留以前的数值,按此键返回即 可。
变频器的基本工作原理 交-直-交变频器的基本工作原理 通用变频器的面板结构 通用变频器的接线端子
交-直-交变频器的基本工作原理 变频器的功能就是将频率、电压都固定的交流电源变
成频率、电压都连续可调的三相交流电源。按照变换环节有无直流 环节可以分为交-交变频器和交-直-交变频器。
1.1.1 交-直-交变频器的主电路 交-直-交变频器的主电路如图1.1.1所示。可以分为以下 几部分: 1、整流电路——交-直部分整流电路通常由二极管或可控硅构成的 桥式电路组成。根据输入电源的不同,分为单相桥式整流电路和三 相桥式整流电路。我国常用的小功率的变频器多数为单相220V输入 ,较大功率的变频器多数为三相380V(线电压)输入。
R/L1 S/L2 T/L3
PO PA/+ PB PC/- U/T1 V/T2 W/T3 图1.5.1 三相输入变频器主端子
R/L1 S/L2
PO PA/+ PB PC/- U/T1 V/T2 W/T3 图1.5.2 单相输入变频器主端子
端子
功
能
接地端子
R/L1、S/L2
单相电源
R/L1、S/L2、T/L3 三相电源
u
δ 1
δ 2
δ t
Umsinωt
θθ
1
2
θ
ωt
t
图1.1.10 单极式SPWM电压波形
虽然SPWM电压波形与正弦波相差甚远,但由于变 频器的负载是电感性负载电动机,而流过电感的电流 是不能突变的,当把调制频率为几kHz的SPWM电压 波形加到电动机时,其电流波形就是比较好的正弦波 了。 1.1.3 通用变频器电压与频率的关系
PO
PA/+ PB PC/U/T1、 V/T2 、 W/T3
直流母线“+”极 性,接外部电抗器
接制动电阻、电抗 器
接制动电阻
直流母线“-”极 性
接三相异步电动机
备
注
接地线,不能与电源零线 相接
对于单相输入变频器
对于三相输入变频器,不分 相序
出厂时已短接
有相序之分
变频器控制端子 Altivar31变频器控制端子。在实验台中
为了充分利用电机铁心, 发挥电机转矩的最佳性能, 适合各种不同种类的负载, 通用变频器电压与频率之间 的关系如图1.1.11所示。
U
额定电压
L
n P
基频
f
图1.1.11 电压与频率之间的关系
1、基频以下调速
在基频(额定频率)以下调速,电压和频率同时变 化,但变化的曲线不同,需要在使用变频器时, 根据负载的性质设定。
在图1.5.5中,各逻辑输入端子经 触点与+24V相接,这实际上是变频 器内部逻辑输入开关打在SINK位置, 逻辑输入的公共端CLI与公共地线 COM相接,这是变频器出厂的默认接
谢谢!
A红l色tiLvEDar31变频器的面板结构。主2状个态CLAEND总要线接通 部分的作
直流总线接通
用为:
4个7段显示器
Altivar31
退出菜单或参数,或清 除显示值,以恢复以前 的显示值
选择以前的菜单或 参数或增大显示值
RUN
...
CAN
EER
选择下一菜单或参 数,或减小显示值
进入某一菜单或参数,
R1A R1C R1B R2A R2C
CLI LI1 LI2 LI3 LI4 LI5 LI6 24V +10V AI1 COM AI3 AI2 AOV拟电流输出
图1.5.5 控制端子的接线示意图
施耐德Altivar31变频器的模拟输入、 模拟输出的公共端都是COM,逻辑输 入的公共端CLI出厂时已经与COM接 在一起。而许多其它品牌的变频器各 部分的公共端子不相同。使用时特别 注意。
实际逆变电路除了基本元件三极管和续流二极管外,还有保护 半导体元件的缓冲电路,三极管也可以用门极可关断晶闸管代替。 1.1.2 SPWM控制技术原理
我们期望通用变频器的输出电压波形是纯粹的正弦波形,但就 目前技术而言,还不能制造功率大、体积小、输出波形如同正弦波发 生器那样标准的可变频变压的逆变器。目前技术很容易实现的一种方 法是:逆变器的输出波形是一系列等幅不等宽的矩形脉冲波形,这些 波型与正弦波等效,如图1.1.10所示。