垂直关系的判定及其性质

合集下载

垂直线的性质与判定

垂直线的性质与判定

垂直线的性质与判定直线是几何中最基本的图形之一,而垂直线是直线之中的一种特殊情况。

垂直线的性质和判定方法在几何学中有着重要的作用和应用。

本文将从垂直线的定义、性质和判定方法等方面进行论述,旨在加深对垂直线的理解和运用。

一、垂直线的定义垂直线是指两条直线之间的相对方向关系,即两条直线在某个点处相交,且相交角度为90度。

垂直线通常被表示为“⊥”符号,例如A⊥B,表示A与B两条直线垂直。

二、垂直线的性质1. 两条垂直线的斜率乘积为-1:在笛卡尔坐标系中,设直线A的斜率为k1,直线B的斜率为k2,则满足k1 * k2 = -1时,可以判定直线A与直线B垂直。

这是垂直线性质的一个重要推论,可以方便地判断两条直线是否垂直。

2. 垂直线的线段长相等:如果两条垂直线分别与一条水平线相交,并且线段长度相等,那么可以判定这两条直线互相垂直。

这个性质可以通过实际测量线段长来判断垂直线的存在,特别适用于工程测量和建筑设计等领域。

3. 垂直线与水平线相互垂直:根据几何学基本原理,垂直线与水平线之间的夹角为90度,即互相垂直。

这个性质可以方便地判断一条直线是否与水平线垂直,从而进一步判定直线的性质。

三、垂直线的判定方法1. 斜率判定法:如前所述,两条垂直线的斜率乘积为-1。

因此,通过计算两条直线的斜率,并判断它们的乘积是否为-1,可以判定这两条直线是否垂直。

2. 角度判定法:根据垂直线的定义,两条直线相交处的夹角为90度。

因此,通过计算两条直线相交处的夹角,并判断夹角是否为90度,可以直接判定这两条直线是否垂直。

3. 坐标判定法:对于给定的两条直线,可以确定它们的两个相交点的坐标,并计算两个点之间的斜率。

如果这两个斜率相乘得到-1,则可以判定这两条直线垂直。

四、垂直线的应用1. 地理测量和导航:垂直线的性质和判定方法在地理测量和导航中有广泛的应用。

例如,在地图测量中,垂直线可以用来确定建筑物的高度或山脉的高度。

在导航中,垂直线可用于指示航空器或船只的垂直姿态。

直线、曲线垂直的判定及其性质

直线、曲线垂直的判定及其性质

直线、曲线垂直的判定及其性质
垂直是几何学中的重要概念,用于描述两条线段、线或曲线之
间的相对关系。

在判定直线或曲线是否垂直时,需要考虑两个主要
因素:斜率和相交关系。

直线垂直的判定方法
要判定两条直线是否垂直,可以根据它们的斜率来进行推断。

两条直线垂直的条件是它们的斜率之积为-1,即斜率为互为负倒数
的关系。

如果两条直线的斜率满足这个条件,那么它们就是垂直的。

曲线垂直的判定方法
与直线不同,曲线的判定方法更为复杂。

曲线之间的垂直关系
通常是通过它们的切线来确定。

两条曲线在某一交点处的切线斜率
相互乘积为-1时,可以判定它们在该点处垂直。

然而,需要注意的是,曲线之间的垂直性并非在所有点上都成立,而是在特定点的交
点处成立。

直线、曲线垂直的性质
如果两条直线或曲线垂直,那么它们在相交点处的角度为90度。

这是因为垂直的定义就是两个线段或线之间成直角的关系。

在几何学中,垂直具有一些重要的性质,例如:
- 垂直线段的长度相乘等于它们垂直线段的长度的平方。

- 两个垂直切线的斜率乘积为-1。

- 在直角三角形中,两条直角边互相垂直。

总之,垂直是几何学中重要的关系之一,用于描述直线和曲线之间的相对关系。

判定直线或曲线的垂直性可以通过斜率和相交关系来推断,而垂直的性质有助于我们在解决几何问题时的推导和证明。

更多关于直线和曲线垂直的知识可以通过几何学教材和学习资源进一步了解和深入研究。

第11讲 空间中垂直关系的判定与性质

第11讲 空间中垂直关系的判定与性质

空间中垂直关系的判定与性质一.基础知识整合1.直线与平面存垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α互相垂直,记作l ⊥α.直线l 叫作平面α的垂线,平面α叫作直线l 的垂面.直线与平面垂直时,它们唯一的公共点P 叫作垂足.(2)画法:通常把直线画成与表示平面的平行四边形的一边垂直,如图(3)判定定理文字语言 符号语言 图形语言如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直 ⎭⎪⎬⎪⎫l ⊥a l ⊥b a αb αa ∩b =P ⇒l ⊥α2.二面角(1)二面角:从一条直线出发的两个半平面所组成的图形,叫作二面角,这条直线叫作二面角的棱,这两个半平面叫作二面角的面.(2)二面角的记法:如图,记作:二面角α-AB -β,也可记作2∠α—AB —β.(3)二面角的平面角:以二面角的棱上任意一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角,其中平面角是直角的二面角叫作直二面角.3.平面与平面垂直(1)定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理文字语言符号语言 图形语言 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直⎭⎪⎬⎪⎫a αa ⊥β⇒α⊥β 4.直线与平面垂直的性质定理文字语言图形语言 符号语言 如果两条直线同时垂直于一个平面,那么这两条直线平行⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b文字语言图形语言 符号语言 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎪⎬⎪⎫α⊥βα∩β=l a αa ⊥l ⇒a ⊥β 题型一:线面垂直的判定 例1:如图所示,在Rt △ABC 中,∠B =90°,且S 为所在平面外一点,满足SA =SB =SC .D为AC 的中点.求证:SD ⊥平面ABC . 证明:∵在Rt △ABC 中,∠B =90°,且D 为AC 的中点,∴BD =AD =DC .又∵SA =SB =SC ,SD 为公共边,∴△SBD ≌△SAD ≌△SCD ,∴∠SDB =∠SDA =∠SCD =90°,∴SD ⊥AD ,SD ⊥BD ,∵AD ∩BD =D ,∴SD ⊥平面ABC .变式训练1:如图,已知AB 是⊙O 的直径,C 是圆周上不同于A ,B 的点,P A ⊥⊙O 所在的平面,AF ⊥PC 于F ,求证:BC ⊥平面PAC . 证明:因为AB 为⊙O 的直径,所以BC ⊥AC .因为P A ⊥平面ABC ,BC平面ABC ,所以P A ⊥BC .因为P A ∩AC =A ,所以BC ⊥平面P AC .题型二:面面垂直的判定例2:已知四面体ABCD 的棱长都相等,E ,F ,G ,H 分别为AB ,AC ,AD ,BC 的中点.求证:平面EHG ⊥平面FHG .证明:如图,取CD 的中点M ,连接HM ,MG ,FM ,则四边形MHEG为平行四边形.连接EM 交HG 于O ,连接FO .在△FHG 中,O 为HG的中点,且FH =FG ,所以 FO ⊥HG .同理可证FO ⊥EM .又HG ∩EM =O ,所以FO ⊥平面EHMG .又FO 平面FHG ,所以平面EHG ⊥平面FHG .变式训练2:如图,在空间四边形ABDC 中,AB =BC ,CD =DA ,E 、F 、G 分别为CD 、DA 和对角线AC 的中点.:求证:平面BEF ⊥平面BDG .证明:∵AB =BC ,CD =AD ,G 是AC 的中点,∴BG ⊥AC ,DG ⊥AC ,又EF ∥AC ,∴EF ⊥BG ,EF ⊥DG .∴EF ⊥平面BGD .∵EF 平面BEF ,∴平面BDG ⊥平面BEF .题型三:垂直关系的综合应用例3:如图,在三棱锥P—ABC中,P A⊥底面ABC,P A=AB,∠BCA=90°.点D,E分别在棱PB,PC上,且DE∥BC.(1)求证:BC⊥平面P AC;(2)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.证明:(1)∵P A⊥底面ABC,∴P A⊥BC.又∠BCA=90°,∴AC⊥BC.又P A∩AC=A,∴BC⊥平面P AC.(2)存在点E使得二面角A—DE—P为直二面角.由(1)知BC⊥平面P AC,又∵DE∥BC,∴DE⊥平面P AC.又∵AE平面P AC,PE平面P AC,∴DE⊥AE,DE⊥PE.∴∠AEP为二面角A—DE—P的平面角.又∵P A⊥底面ABC,∴P A⊥AC.∴∠P AC=90°.∴在棱PC上存在一点E,使得AE⊥PC.这时,∠AEP=90°.故存在点E使得二面角A—DE—P是直二面角.变式训练3:如图所示,P A⊥平面ABC,AC⊥BC,AB=2,BC=2,PB=6,求二面角P—BC—A的大小.解:∵P A⊥平面ABC,BC平面ABC,∴P A⊥BC.又AC⊥BC,P A∩AC=A,∴BC⊥平面P AC.又PC平面P AC,∴BC⊥PC.又BC⊥AC,∴∠PCA为二面角P—BC—A的平面角.在Rt△PBC中,∵PB=6,BC=2,∴PC=2.在Rt△ABC中,∵AB=2,BC=2,∴AC= 2.∴在Rt△P AC中,cos∠PCA=2,∴2∠PCA=45°,即二面角P—BC—A的大小为45°.题型四:线面垂直性质定理的应用例4:如图,在正方体ABCD-A1B1C1D1中,点E、F分别在A1D、AC上,且EF⊥A1D,EF⊥AC.求证:EF∥BD1.证明:如图所示,连接AB1、B1C、BD.∵DD1⊥平面ABCD,AC平面ABCD.∴DD1⊥AC.又∵AC⊥BD,且BD∩DD1=D,∴AC⊥平面BDD1.∵BD1平面BDD1,∴BD1⊥AC.同理可证BD1⊥B1C.∴BD1⊥平面AB1C.∵EF⊥A1D,A1D∥B1C,∴EF⊥B1C.又EF⊥AC,且AC∩B1C=C,∴EF⊥平面AB1C,∴EF∥BD1.变式训练3:如图,在正方体ABCD-A1B1C1D1中,点E、F分别在A1D、AC上,且EF⊥A1D,EF⊥AC.若G是AB的中点,则E在A1D上什么位置时,能使EG⊥平面AB1C?解:若EG⊥平面AB1C,因为BD1⊥平面AB1C,所以EG∥BD1.因为G为AB的中点,所以E为AD1的中点,即E为A1D的中点时,EG⊥平面AB1C.题型五:面面垂直性质定理的应用例5:已知平面P AB⊥平面ABC,平面P AC⊥平面ABC,求证:P A⊥平面ABC.证明:如图所示,在BC上任取一点D,作DF⊥AC于F,DG⊥AB于G,∵平面P AC⊥平面ABC,且平面P AC∩平面ABC=AC,∴DF⊥平面P AC,又∵P A平面P AC,∴DF⊥P A,同理DG⊥P A,又∵DF∩DG=D且DF平面ABC,DG平面ABC,∴P A⊥平面ABC.变式训练5:如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.求证:AM⊥PM.证明:如图连接AP.矩形ABCD中,AD⊥DC,BC⊥DC,又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=DC,∴AD⊥平面PDC,BC⊥平面PDC,又∵PD平面PDC,PC平面PDC,∴AD⊥PD,BC⊥PC,在Rt△P AD和Rt△PMC中,易知AP2=AD2+PD2=(22)2+22=12,PM2=PC2+MC2=22+(2)2=6,又∵Rt△ABM中,AM2=AB2+BM2=22+(22)2=6,∴AP2=PM2+AM2,∴AM⊥PM.题型六:垂直关系的综合应用例6:如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,F A=FE,∠AEF=45°.(1)求证:EF⊥平面BCE;(2)设线段CD、AE的中点分别为P,M,求证:PM∥平面BCE.证明:(1)因为平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD =AB,所以BC⊥平面ABEF.所以BC⊥EF.因为△ABE为等腰直角三角形,AB=AE,所以∠AEB=45°.又因为∠AEF=45°,所以∠FEB=90°,即EF⊥BE.因为BC平面BCE,BE平面BCE,BC∩BE=B,所以EF⊥平面BCE.(2)取BE的中点N,连接CN,MN,则MN綊12AB綊PC,所以PMNC为平行四边形.所以PM∥CN.因为CN在平面BCE内,PM不在平面BCE内,所以PM∥平面BCE.变式训练6:如图,四棱锥S-ABCD中,SD⊥平面ABCD,AB∥DC,AD⊥DC,AB=AD =1,SD=2,BC⊥BD,E为棱SB上的一点,平面EDC⊥平面SBC.(1)证明:DE⊥平面SBC;(2)证明:SE=2EB.证明:(1)连接BD,∵SD⊥平面ABCD,故BC⊥SD,又∵BC⊥BD,BD∩SD=D,∴BC⊥平面BDS,∴BC⊥DE. 作BK⊥EC,K为垂足,因平面EDC⊥平面SBC,故BK⊥平面EDC,BK⊥DE. 又∵BK平面SBC,BC平面SBC,BK∩BC=B,∴DE⊥平面SBC. (2)由(1)知DE⊥SB,DB=2AD= 2.∴SB=SD2+DB2=6,DE=SD·DBSB=233,EB=DB2-DE2=63,SE=SB-EB=263,∴SE=2EB.三.方法规律总结1.线面垂直的判定定理是证明线面垂直的主要方法,证明的关键是在平面内找到两条相交直线与已知直线垂直.2.在证明面面垂直时,一般方法是从一个平面内寻找另一个平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决(所作辅助线要有利于题目的证明),即由线面垂直证面面垂直.3.空间中线线、线面、面面之间的垂直关系可以相互转化,其转化关系如下:4.会用线面垂直的性质定理证明平行问题,用面面垂直的性质定理证明垂直问题.四:课后练习作业一、选择题1.设l、m为不同的直线,α为平面,且l⊥α,下列为假命题的是(B)A.若m⊥α,则m∥l B.若m⊥l,则m∥αC.若m∥α,则m⊥l D.若m∥l,则m⊥α【解析】A中,若l⊥α,m⊥α,则m∥l,所以A正确;B中,若l⊥α,m⊥l,则m∥α或mα,所以B错误;C中,若l⊥α,m∥α,则m⊥l,所以C正确;若l⊥α,m∥l,则m⊥α,所以D正确.2.在正方体ABCD—A1B1C1D1中,与AD1垂直的平面是(A)A.平面A1DCB1 B.平面DD1C1C C.平面A1B1C1D1D.平面A1DB【解析】连接A1D、B1C,由ABCD—A1B1C1D1为正方体可知,AD1⊥A1B1,AD1⊥A1D.故AD1⊥平面A1DCB1.3.如图,在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是(C)A.BC∥平面PDF B.DF⊥平面P AEC.平面PDF⊥平面ABC D.平面P AE⊥平面ABC【解析】由题意知BC∥DF,且BC⊥PE,BC⊥AE.∵PE∩AE=E,∴BC⊥平面P AE,∴BC∥平面PDF成立,DF⊥平面P AE成立,平面P AE⊥平面ABC也成立.4.设α、β是两个不同的平面,l是一条直线,以下命题正确的是(C) A.若l⊥α,α⊥β,则lβB.若l∥α,α∥β,则lβC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β【解析】A错,可能l∥β;B错,可能l∥β;C正确;D错,不一定l⊥β.5.设平面α⊥平面β,且α∩β=l,直线aα,直线bβ,且a不与l垂直,b不与l垂直,那么a与b (B)A.可能垂直,不可能平行B.可能平行,不可能垂直C.可能垂直,也可能平行D.不可能垂直,也不可能平行【解析】当a,b都平行于l时,a与b平行,假设a与b垂直,如图所示,由于b与l不垂直,在b上任取一点A,过点A作b′⊥l,∵平面α⊥平面β,∴b′⊥平面α,从而b′⊥a,又由假设a⊥b易知a⊥平面β,从而a⊥l,这与已知a不与l垂直矛盾,∴假设不正确,a与b不可能垂直.6.空间四边形ABCD,若AB、AC、AD与平面BCD所成角相等,则A点在平面BCD的射影是△BCD的(A)A.外心B.内心C.重心D.垂心【解析】设A点在平面BCD内的射影为O.可知,△OAB≌△OAC≌△OAD.∴OB=OC=OD,∴点O为外心.7.下列说法中正确命题的个数为(B)①如果直线l与平面α内的无数条直线垂直,则l⊥α;②如果直线l不垂直于α,则α内没有与l垂直的直线;③如果一条直线与平面内的一条直线垂直,则该直线与此平面必相交;④如果一条直线和平面的一条垂线垂直,该直线必在这个平面内;⑤如果一条直线和一个平面垂直,该直线垂直于平面内的任一直线.A.0B.1C.2D.3【解析】如图(1)所示,l与α相交(不垂直),此时也有无数条直线与l垂直.故①②错误;如图(2)所示,l与α平行,此时平面内也存在无数条直线与l垂直,故③④错误;如图(3)所示,直线l与平面α的垂线m垂直,但l不在平面α内;由线面垂直的定义可知,⑤正确.8.如图,在正方形ABCD中,E、F分别为边BC,CD的中点,H是EF的中点,现沿AE、AF,EF把这个正方形折成一个几何体,使B、C、D三点重合于点G,则下列结论中成立的是(A)A.AG⊥平面EFG B.AH⊥平面EFGC.GF⊥平面AEF D.GH⊥平面AEF【解析】∵AG⊥GF,AG⊥GE,GF∩GE=G,∴AG⊥平面EFG.9.如图,在四边形ABCD中,AD∥BC,AB=AD,∠BCD=45°,∠BAD=90°,将△ABD 沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列命题正确的是(B)A.平面ADC⊥平面BDCB.平面ABD⊥平面ABCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC【解析】在图①中,∵∠BAD=90°,AD=AB,∴∠ADB=∠ABD=45°.∵AD∥BC,∴∠DBC=45°.又∵∠BCD=45°.∴∠BDC=90°,即BD⊥CD.在图②中,此关系仍成立.∵平面ABD⊥平面BCD,∴CD⊥平面ABD.∵BA平面ADB,∴CD⊥AB.∵BA⊥AD,∴BA⊥平面ACD.∵BA平面ABC,∴平面ABC⊥平面ACD.10.如图,在正方体ABCD—A1B1C1D1中,点P在侧面BCC1B1上运动,并且总保持AP⊥BD1,则动点P在(A)A.线段B1C上B.线段BC1上C.BB1中点与CC1中点的连线上D.B1C1中点与BC中点的连线上【解析】连接AC,B1C,AB1,由线面垂直的判定可知BD1⊥平面AB1C.若AP平面AB1C,则AP⊥BD1.这样只要P在B1C上移动即可.二、填空题11.如图,在正方体ABCD—A1B1C1D1中,平面ACD1与平面BB1D1D的位置关系是________.垂直【解析】∵ABCD是正方形,∴AC⊥BD.又∵D1D⊥平面ABCD,AC平面ABCD,∴D1D⊥AC.∵D1D∩DB=D,∴AC⊥平面BB1D1D.∵AC平面ACD 1,∴平面ACD1⊥平面BB1D1D.12.如图所示,已知P A⊥平面α,PB⊥平面β,垂足分别为A、B,α∩β=l,∠APB=50°,则二面角α-l-β的大小为________.130°【解析】如图,设平面P AB∩l=O,连接AO,BO,AB,∵P A⊥α,lα,∴P A⊥l.同理PB⊥l,而PB∩P A=P,∴l⊥平面P AB,∴l⊥AO,l⊥BO,∴∠AOB即为二面角α-l-β的平面角.结合图形知∠AOB+∠APB=180°,∴∠AOB=130°.13.如图,已知平面α⊥平面β,在α与β的交线l上,取线段AB=4,AC、BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3 cm,BD=12 cm,则CD=______.13 cm【解析】连接BC.因为平面α⊥平面β,且α∩β=l,又因为BD平面β,且BD⊥l,所以BD⊥平面α.又∵BC平面α,∴BC⊥BD.所以△CBD也是直角三角形.在Rt△BAC中,BC=32+42=5.在Rt△CBD中,CD=52+122=13.所以CD长为13 cm.14.α,β是两个不同的平面,m ,n 是平面α与β之外的两条不同直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________.若①③④,则②(或若②③④,则①)【解析】利用面面垂直的判定,可知①③④⇒②为真;利用面面垂直的性质,可知②③④⇒①为真.15.如图平面ABC ⊥平面BDC ,∠BAC =∠BDC =90°,且AB =AC =a ,则AD =_______a【解析】如图所示,取BC 的中点E ,连接ED ,AE ,∵AB =AC ,∴AE ⊥BC ,∵平面ABC ⊥平面BDC .∴AE ⊥平面BDC ,∴AE ⊥ED .在Rt △ABC 和Rt △BCD 中,AE =ED =12BC =22a ,∴在Rt △AED 中,AD =AE 2+ED 2=a .三、解答题16.如图所示,AB 是圆O 的直径,P A 垂直于圆O 所在的平面,M 是圆周上任意一点,AN⊥PM ,垂足为N .求证:AN ⊥平面PBM .证明:设圆O 所在的平面为α,∵P A ⊥α,且BM α,∴P A ⊥BM .又∵AB 为⊙O 的直径,点M 为圆周上一点,∴AM ⊥BM ,∵直线P A ∩AM =A ,∴BM ⊥平面P AM .又AN 平面P AM ,∴BM ⊥AN .这样,AN 与PM ,BM 两条相交直线垂直.故AN ⊥平面PBM .17.如图所示,过S 引三条长度相等但不共面的线段SA ,SB ,SC 且∠ASB =∠ASC =60°,∠BSC =90°.求证:平面ABC ⊥平面BSC .【证明】(法一)取BC 的中点D ,连接AD ,SD .∵∠ASB =∠ASC ,且SA =SB=AC ,∴AS =AB =AC .∴AD ⊥BC .又△ABS 是正三角形,△BSC 为等腰直角三角形,∴BD =SD .∴AD 2+SD 2=AD 2+BD 2=AB 2=AS 2.由勾股定理的逆定理,知AD ⊥SD .又∵SD ∩BC =D ,∴AD ⊥平面BSC .又AD 平面ABC ,∴平面ABC ⊥平面BSC .(法二)同法一证得AD ⊥BC ,SD ⊥BC ,则∠ADS即为二面角A —BC —S 的平面角.∵∠BSC =90°,令SA=1,则SD =22,AD =22,∴SD 2+AD 2=SA 2.∴∠ADS =90°.∴平面ABC ⊥平面BSC .18.如图,在三棱锥S -ABC 中,SA ⊥平面ABC ,AB ⊥BC ,DE 垂直平分SC ,分别交AC 、SC 于D 、E ,且SA =AB =a ,BC =2a . (1)求证:SC ⊥平面BDE ;(2)求平面BDE 与平面BDC 所成二面角的大小.(1)证明:∵SA ⊥平面ABC ,又AB 、AC 、BD 平面ABC ,∴SA ⊥AB ,SA ⊥AC ,SA ⊥BD ,∴SB =SA 2+AB 2=2a .∵BC =2a ,∴SB=BC .∵E 为SC 的中点,∴BE ⊥SC .又DE ⊥SC ,BE ∩DE =E ,∴SC ⊥平面BDE .(2)由(1)及BD 平面BDE ,得BD ⊥SC .又知BD ⊥SA ,∴BD ⊥平面SAC .∴BD ⊥AC 且BD ⊥DE .∴∠CDE 为平面BDE 与平面BDC 所成二面角的平面角.∵AB ⊥BC ,AC =AB 2+BC 2=3a .∴Rt △SAC 中,tan ∠SCA =SA AC =33,∴∠SCA =30°.∴∠CDE =60°,即平面BDE 与平面BDC 所成二面角为60°.19.如图,已知三棱锥A BPC -中,AP PC ⊥,AC BC ⊥,M为AB 中点,D 为PB 中点,且PMB ∆为正三角形.(1)求证:DM APC ∥平面;(2)求证:ABC APC ⊥平面平面.证明:(1)∵M 为AB 中点,D 为PB 中点,∴MD //AP ,又MD不在平面APC 上,∴MD //平面APC .(2)∵△PMB 为正三角形,又D 为PB 中点. ∴MD ⊥PB .又由(1)知MD //A P , ∴AP ⊥PB . 又AP ⊥PC , 且PB ∩PC =P ,∴AP ⊥平面PBC , ∴AP ⊥BC , 又∵AC ⊥BC , 且AP ∩AC =A ∴BC ⊥平面APC , 又BC 在平面ABC 内,∴平面ABC ⊥平面APC .20.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中 点,MN ⊥平面A 1DC .求证:(1)MN ∥AD 1;(2)M 是AB 的中点.证明:(1)∵ADD 1A 1为正方形,∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1,AD 1平面ADD 1A 1,∴CD ⊥AD 1.∵A 1D ∩CD =D ,∴AD 1⊥平面A 1DC .又∵MN ⊥平面A 1DC ,∴MN ∥AD 1. MD B P C A(2)连接ON ,在△A 1DC 中,A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM .又∵MN ∥OA ,∴四边形AMNO 为平行四边形,∴ON =AM .∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点.21.如图所示,P 是四边形ABCD 所在平面外一点,ABCD 是∠DAB =60°且边长为a 的菱形,侧面P AD 为正三角形,其所在平面垂直于底面ABCD . (1)若G 为AD 边的中点,求证:BG ⊥平面P AD ;(2)求证:AD ⊥PB .证明:(1)连接PG ,BD .由题知△P AD 为正三角形,G 是AD 的中点,∴PG ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PG 平面P AD ,∴PG ⊥平面ABCD ,∴PG ⊥BG .又∵四边形ABCD 是菱形且∠DAB =60°,∴△ABD 是正三角形,∴BG⊥AD .又AD 平面P AD ,PG 平面P AD ,且AD ∩PG =G ,∴BG ⊥平面P AD .(2)由(1)可知BG ⊥AD ,PG ⊥AD .又BG 平面PBG ,PG 平面PBG ,且BG ∩PG =G ,AD ⊥平面PBG ,∴AD ⊥PB .。

线线垂直、线面垂直、面面垂直的判定和性质

线线垂直、线面垂直、面面垂直的判定和性质

空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。

推理模式:直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。

2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。

两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。

推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。

一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC.(1)求证:平面PAC ⊥平面PBC;(2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您的结论6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC 、7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 、求证:AB DE ⊥VDC B A SAB9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD,AB=AD,∠BAD=60°,E 、F 分别就是AP 、AD 的中点求证:(1)直线EF ‖平面PCD;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,、过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱SC SA ,的中点。

垂线的判定定理

垂线的判定定理

垂线的判定定理是几何学中的一个重要概念,它涉及到直线与平面之间的垂直关系。

在三维空间中,垂线是指直线与平面相交,并且与平面内的任意一条直线都垂直的直线。

以下是一些关于垂线的判定定理:
1. 定义判定定理:如果一条直线与平面内的任意两条相交直线都垂直,那么这条直线与该平面垂直。

2. 性质定理:
- 性质定理1:如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。

- 性质定理2:经过空间内一点,有且只有一条直线垂直于已知平面。

- 性质定理3:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。

- 性质定理4:垂直于同一平面的两条直线平行。

3. 三垂线定理:在平面几何中,如果一条直线与平面内的一条斜线的影子垂直,那么这条直线与斜线垂直。

4. 平行线公理:在欧几里得几何中,如果两条直线在同一平面内,且任意一条直线与平面内的另一条直线都垂直,则这两条直线平行。

5. 垂线段定理:连接直线外一点与直线上各点的所有线段中,垂线段是最短的。

这些定理是解决与垂线相关的问题的基础,并且在几何学的学习和应用中非常重要。

在实际应用中,这些定理可以帮助我们判断直线的垂直关系,解决诸如建筑设计、工程测量和立体几何分析等问题。

第11讲 空间中垂直关系的判定与性质

第11讲 空间中垂直关系的判定与性质

空间中垂直关系的判定与性质一.基础知识整合1.直线与平面存垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直,记作l ⊥α.直线l 叫作平面α的垂线,平面α叫作直线l 的垂面.直线与平面垂直时,它们唯一的公共点P 叫作垂足.(2)画法:通常把直线画成与表示平面的平行四边形的一边垂直,如图(3)判定定理 ⎭⎪⎬⎪⎫l ⊥a l ⊥b a αb αa ∩b =P ⇒l ⊥α从一条直线出发的两个半平面所组成的图形,叫作二面角,这条直线叫作二面角的棱,这两个半平面叫作二面角的面.(2)二面角的记法:如图,记作:二面角α-AB -β,也可记作2∠α—AB —β.(3)二面角的平面角:以二面角的棱上任意一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角,其中平面角是直角的二面角叫作直二面角.3.平面与平面垂直(1)定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理⎭⎪⎬⎪⎫a αa ⊥β⇒α⊥β符号语言⎭⎪⎬⎪⎫α⊥βα∩β=l a αa ⊥l ⇒a ⊥β 题型一:线面垂直的判定 例1:如图所示,在Rt △ABC 中,∠B =90°,且S 为所在平面外一点,满足SA =SB =SC .D为AC 的中点.求证:SD ⊥平面ABC .证明:∵在Rt △ABC 中,∠B =90°,且D 为AC 的中点,∴BD =AD =DC .又∵SA =SB =SC ,SD为公共边,∴△SBD ≌△SAD ≌△SCD , ∴∠SDB =∠SDA =∠SCD =90°,∴SD ⊥AD ,SD ⊥BD ,∵AD ∩BD =D ,∴SD ⊥平面ABC .变式训练1:如图,已知AB 是⊙O 的直径,C 是圆周上不同于A ,B 的点,P A ⊥⊙O 所在的平面,AF ⊥PC 于F ,求证:BC ⊥平面PAC .证明:因为AB 为⊙O 的直径,所以BC ⊥AC .因为P A ⊥平面ABC ,BC平面ABC ,所以P A ⊥BC .因为P A ∩AC =A ,所以BC ⊥平面P AC .题型二:面面垂直的判定例2:已知四面体ABCD 的棱长都相等,E ,F ,G ,H 分别为AB ,AC ,AD ,BC 的中点.求证:平面EHG ⊥平面FHG .证明:如图,取CD 的中点M ,连接HM ,MG ,FM ,则四边形MHEG为平行四边形.连接EM 交HG 于O ,连接FO .在△FHG 中,O 为HG的中点,且FH =FG ,所以 FO ⊥HG .同理可证FO ⊥EM .又HG ∩EM =O ,所以FO ⊥平面EHMG .又FO 平面FHG ,所以平面EHG ⊥平面FHG .变式训练2:如图,在空间四边形ABDC中,AB =BC ,CD =DA ,E 、F 、G 分别为CD 、DA 和对角线AC 的中点.:求证:平面BEF ⊥平面BDG .证明:∵AB =BC ,CD =AD ,G 是AC 的中点,∴BG ⊥AC ,DG ⊥AC ,又EF ∥AC ,∴EF ⊥BG ,EF ⊥DG .∴EF ⊥平面BGD .∵EF 平面BEF ,∴平面BDG ⊥平面BEF .题型三:垂直关系的综合应用例3:如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,P A =AB ,∠BCA=90°.点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC ;(2)是否存在点E 使得二面角A —DE —P 为直二面角?并说明理由.证明:(1)∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC .又P A ∩AC =A ,∴BC ⊥平面P AC .(2)存在点E 使得二面角A —DE —P 为直二面角.由(1)知BC ⊥平面P AC ,又∵DE ∥BC ,∴DE ⊥平面P AC .又∵AE 平面P AC ,PE 平面P AC ,∴DE ⊥AE ,DE ⊥PE .∴∠AEP 为二面角A —DE —P 的平面角.又∵P A ⊥底面ABC ,∴P A ⊥AC .∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时,∠AEP =90°.故存在点E 使得二面角A —DE —P 是直二面角.变式训练3:如图所示,P A ⊥平面ABC ,AC ⊥BC ,AB =2,BC =2,PB =6,求二面角P —BC —A 的大小.解:∵P A ⊥平面ABC ,BC 平面ABC ,∴P A ⊥BC .又AC ⊥BC ,P A ∩AC =A ,∴BC ⊥平面P AC .又PC 平面P AC ,∴BC ⊥PC .又BC ⊥AC ,∴∠PCA 为二面角P —BC —A 的平面角.在Rt △PBC 中,∵PB =6,BC =2,∴PC =2.在Rt △ABC 中,∵AB =2,BC =2,∴AC = 2.∴在Rt △P AC 中,cos ∠PCA =22,∴∠PCA=45°,即二面角P —BC —A 的大小为45°.题型四:线面垂直性质定理的应用例4:如图,在正方体ABCD -A 1B 1C 1D 1中,点E 、F 分别在A 1D 、AC 上,且EF ⊥A 1D ,EF ⊥AC .求证:EF ∥BD 1.证明:如图所示,连接AB 1、B 1C 、BD .∵DD 1⊥平面ABCD ,AC 平面ABCD .∴DD 1⊥AC .又∵AC ⊥BD ,且BD ∩DD 1=D ,∴AC ⊥平面BDD 1. ∵BD 1平面BDD 1,∴BD 1⊥AC .同理可证BD 1⊥B 1C .∴BD 1⊥平面AB 1C .∵EF ⊥A 1D ,A 1D ∥B 1C ,∴EF ⊥B 1C .又EF ⊥AC ,且AC ∩B 1C =C ,∴EF ⊥平面AB 1C ,∴EF ∥BD 1.变式训练3:如图,在正方体ABCD -A 1B 1C 1D 1中,点E 、F 分别在A 1D 、AC上,且EF ⊥A 1D ,EF ⊥AC .若G 是AB 的中点,则E 在A 1D 上什么位置时,能使EG ⊥平面AB1C?解:若EG⊥平面AB1C,因为BD1⊥平面AB1C,所以EG∥BD1.因为G为AB的中点,所以E为AD1的中点,即E为A1D的中点时,EG⊥平面AB1C.题型五:面面垂直性质定理的应用例5:已知平面P AB⊥平面ABC,平面P AC⊥平面ABC,求证:P A⊥平面ABC.证明:如图所示,在BC上任取一点D,作DF⊥AC于F,DG⊥AB于G,∵平面P AC⊥平面ABC,且平面P AC∩平面ABC=AC,∴DF⊥平面P AC,又∵P A平面P AC,∴DF⊥P A,同理DG⊥P A,又∵DF∩DG=D且DF平面ABC,DG平面ABC,∴P A⊥平面ABC.变式训练5:如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.求证:AM⊥PM.证明:如图连接AP.矩形ABCD中,AD⊥DC,BC⊥DC,又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=DC,∴AD⊥平面PDC,BC⊥平面PDC,又∵PD平面PDC,PC平面PDC,∴AD⊥PD,BC⊥PC,在Rt△P AD和Rt△PMC中,易知AP2=AD2+PD2=(22)2+22=12,PM2=PC2+MC2=22+(2)2=6,又∵Rt△ABM中,AM2=AB2+BM2=22+(22)2=6,∴AP2=PM2+AM2,∴AM⊥PM.题型六:垂直关系的综合应用例6:如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,F A=FE,∠AEF=45°.(1)求证:EF⊥平面BCE;(2)设线段CD、AE的中点分别为P,M,求证:PM∥平面BCE.证明:(1)因为平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD =AB,所以BC⊥平面ABEF.所以BC⊥EF.因为△ABE为等腰直角三角形,AB=AE,所以∠AEB=45°.又因为∠AEF =45°,所以∠FEB =90°,即EF ⊥BE .因为BC 平面BCE ,BE 平面BCE ,BC ∩BE =B ,所以EF ⊥平面BCE .(2)取BE 的中点N ,连接CN ,MN ,则MN 綊12AB 綊PC ,所以PMNC 为平行四边形.所以PM ∥CN . 因为CN 在平面BCE 内,PM 不在平面BCE 内,所以PM ∥平面BCE .变式训练6:如图,四棱锥S -ABCD 中,SD ⊥平面ABCD ,AB ∥DC ,AD ⊥DC ,AB =AD=1,SD =2,BC ⊥BD ,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(1)证明:DE ⊥平面SBC ;(2)证明:SE =2EB .证明:(1)连接BD ,∵SD ⊥平面ABCD ,故BC ⊥SD ,又∵BC ⊥BD ,BD ∩SD =D ,∴BC ⊥平面BDS ,∴BC ⊥DE . 作BK ⊥EC ,K 为垂足,因平面EDC⊥平面SBC ,故BK ⊥平面EDC ,BK ⊥DE . 又∵BK 平面SBC ,BC 平面SBC ,BK ∩BC =B ,∴DE ⊥平面SBC .(2)由(1)知DE ⊥SB ,DB =2AD = 2.∴SB =SD 2+DB 2=6,DE =SD ·DB SB =233,EB =DB 2-DE 2=63,SE =SB -EB =263,∴SE =2EB . 三.方法规律总结1.线面垂直的判定定理是证明线面垂直的主要方法,证明的关键是在平面内找到两条相交直线与已知直线垂直.2.在证明面面垂直时,一般方法是从一个平面内寻找另一个平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决(所作辅助线要有利于题目的证明),即由线面垂直证面面垂直.3.空间中线线、线面、面面之间的垂直关系可以相互转化,其转化关系如下:4.会用线面垂直的性质定理证明平行问题,用面面垂直的性质定理证明垂直问题.四:课后练习作业一、选择题1.设l、m为不同的直线,α为平面,且l⊥α,下列为假命题的是(B) A.若m⊥α,则m∥l B.若m⊥l,则m∥αC.若m∥α,则m⊥l D.若m∥l,则m⊥α【解析】A中,若l⊥α,m⊥α,则m∥l,所以A正确;B中,若l⊥α,m⊥l,则m∥α或mα,所以B错误;C中,若l⊥α,m∥α,则m⊥l,所以C正确;若l⊥α,m∥l,则m⊥α,所以D正确.2.在正方体ABCD—A1B1C1D1中,与AD1垂直的平面是(A)A.平面A1DCB1 B.平面DD1C1C C.平面A1B1C1D1D.平面A1DB【解析】连接A1D、B1C,由ABCD—A1B1C1D1为正方体可知,AD1⊥A1B1,AD1⊥A1D.故AD1⊥平面A1DCB1.3.如图,在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是(C)A.BC∥平面PDF B.DF⊥平面P AEC.平面PDF⊥平面ABC D.平面P AE⊥平面ABC【解析】由题意知BC∥DF,且BC⊥PE,BC⊥AE.∵PE∩AE=E,∴BC⊥平面P AE,∴BC∥平面PDF成立,DF⊥平面P AE成立,平面P AE⊥平面ABC也成立.4.设α、β是两个不同的平面,l是一条直线,以下命题正确的是(C) A.若l⊥α,α⊥β,则lβB.若l∥α,α∥β,则lβC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β【解析】A错,可能l∥β;B错,可能l∥β;C正确;D错,不一定l⊥β.5.设平面α⊥平面β,且α∩β=l,直线aα,直线bβ,且a不与l垂直,b不与l垂直,那么a与b (B)A.可能垂直,不可能平行B.可能平行,不可能垂直C.可能垂直,也可能平行D.不可能垂直,也不可能平行【解析】当a,b都平行于l时,a与b平行,假设a与b垂直,如图所示,由于b与l不垂直,在b上任取一点A,过点A作b′⊥l,∵平面α⊥平面β,∴b′⊥平面α,从而b′⊥a,又由假设a⊥b易知a⊥平面β,从而a⊥l,这与已知a不与l垂直矛盾,∴假设不正确,a与b不可能垂直.6.空间四边形ABCD,若AB、AC、AD与平面BCD所成角相等,则A点在平面BCD的射影是△BCD的(A)A.外心B.内心C.重心D.垂心【解析】设A点在平面BCD内的射影为O.可知,△OAB≌△OAC≌△OAD.∴OB=OC=OD,∴点O为外心.7.下列说法中正确命题的个数为(B)①如果直线l与平面α内的无数条直线垂直,则l⊥α;②如果直线l不垂直于α,则α内没有与l垂直的直线;③如果一条直线与平面内的一条直线垂直,则该直线与此平面必相交;④如果一条直线和平面的一条垂线垂直,该直线必在这个平面内;⑤如果一条直线和一个平面垂直,该直线垂直于平面内的任一直线.A.0B.1C.2D.3【解析】如图(1)所示,l与α相交(不垂直),此时也有无数条直线与l垂直.故①②错误;如图(2)所示,l与α平行,此时平面内也存在无数条直线与l垂直,故③④错误;如图(3)所示,直线l与平面α的垂线m垂直,但l不在平面α内;由线面垂直的定义可知,⑤正确.8.如图,在正方形ABCD中,E、F分别为边BC,CD的中点,H是EF的中点,现沿AE、AF,EF把这个正方形折成一个几何体,使B、C、D三点重合于点G,则下列结论中成立的是(A)A.AG⊥平面EFG B.AH⊥平面EFGC.GF⊥平面AEF D.GH⊥平面AEF【解析】∵AG⊥GF,AG⊥GE,GF∩GE=G,∴AG⊥平面EFG.9.如图,在四边形ABCD中,AD∥BC,AB=AD,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列命题正确的是(B)A.平面ADC⊥平面BDCB.平面ABD⊥平面ABCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC【解析】在图①中,∵∠BAD=90°,AD=AB,∴∠ADB=∠ABD=45°.∵AD∥BC,∴∠DBC=45°.又∵∠BCD=45°.∴∠BDC=90°,即BD⊥CD.在图②中,此关系仍成立.∵平面ABD⊥平面BCD,∴CD⊥平面ABD.∵BA平面ADB,∴CD⊥AB.∵BA⊥AD,∴BA⊥平面ACD.∵BA平面ABC,∴平面ABC⊥平面ACD.10.如图,在正方体ABCD—A1B1C1D1中,点P在侧面BCC1B1上运动,并且总保持AP⊥BD1,则动点P在(A)A.线段B1C上B.线段BC1上C.BB1中点与CC1中点的连线上D.B1C1中点与BC中点的连线上【解析】连接AC,B1C,AB1,由线面垂直的判定可知BD1⊥平面AB1C.若AP平面AB1C,则AP⊥BD1.这样只要P在B1C上移动即可.二、填空题11.如图,在正方体ABCD—A1B1C1D1中,平面ACD1与平面BB1D1D的位置关系是________.垂直D⊥平面ABCD,AC平面【解析】∵ABCD是正方形,∴AC⊥BD.又∵DABCD,∴D1D⊥AC.∵D1D∩DB=D,∴AC⊥平面BB1D1D.∵AC平面ACD1,∴平面ACD1⊥平面BB1D1D.12.如图所示,已知P A⊥平面α,PB⊥平面β,垂足分别为A、B,α∩β=l,∠APB=50°,则二面角α-l-β的大小为________.130°【解析】如图,设平面P AB∩l=O,连接AO,BO,AB,∵P A⊥α,lα,∴P A⊥l.同理PB⊥l,而PB∩P A=P,∴l⊥平面P AB,∴l⊥AO,l⊥BO,∴∠AOB即为二面角α-l-β的平面角.结合图形知∠AOB+∠APB=180°,∴∠AOB=130°.13.如图,已知平面α⊥平面β,在α与β的交线l上,取线段AB=4,AC、BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3 cm,BD=12 cm,则CD=______.13 cm【解析】连接BC.因为平面α⊥平面β,且α∩β=l,又因为BD平面β,且BD⊥l,所以BD⊥平面α.又∵BC平面α,∴BC⊥BD.所以△CBD也是直角三角形.在Rt △BAC 中,BC =32+42=5.在Rt △CBD 中,CD =52+122=13.所以CD 长为13 cm.14.α,β是两个不同的平面,m ,n 是平面α与β之外的两条不同直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________.若①③④,则②(或若②③④,则①)【解析】利用面面垂直的判定,可知①③④⇒②为真;利用面面垂直的性质,可知②③④⇒①为真.15.如图平面ABC ⊥平面BDC ,∠BAC =∠BDC =90°,且AB =AC =a ,则AD =_______a【解析】如图所示,取BC 的中点E ,连接ED ,AE ,∵AB =AC ,∴AE ⊥BC ,∵平面ABC ⊥平面BDC .∴AE ⊥平面BDC ,∴AE ⊥ED .在Rt △ABC 和Rt △BCD 中,AE =ED =12BC =22a ,∴在Rt △AED 中,AD =AE 2+ED 2=a .三、解答题16.如图所示,AB 是圆O 的直径,P A 垂直于圆O 所在的平面,M 是圆周上任意一点,AN ⊥PM ,垂足为N .求证:AN ⊥平面PBM .证明:设圆O 所在的平面为α,∵P A ⊥α,且BM α,∴P A ⊥BM .又∵AB 为⊙O 的直径,点M 为圆周上一点,∴AM ⊥BM ,∵直线P A ∩AM =A ,∴BM ⊥平面P AM .又AN 平面P AM ,∴BM ⊥AN .这样,AN 与PM ,BM 两条相交直线垂直.故AN ⊥平面PBM .17.如图所示,过S 引三条长度相等但不共面的线段SA ,SB ,SC 且∠ASB =∠ASC =60°,∠BSC =90°.求证:平面ABC ⊥平面BSC .【证明】(法一)取BC 的中点D ,连接AD ,SD .∵∠ASB =∠ASC ,且SA =SB=AC ,∴AS =AB =AC .∴AD ⊥BC .又△ABS 是正三角形,△BSC 为等腰直角三角形,∴BD =SD .∴AD 2+SD 2=AD 2+BD 2=AB 2=AS 2.由勾股定理的逆定理,知AD ⊥SD .又∵SD ∩BC =D ,∴AD⊥平面BSC .又AD 平面ABC ,∴平面ABC ⊥平面BSC .(法二)同法一证得AD ⊥BC ,SD ⊥BC ,则∠ADS 即为二面角A —BC —S 的平面角.∵∠BSC =90°,令SA =1,则SD =22,AD =22,∴SD 2+AD 2=SA 2.∴∠ADS =90°.∴平面ABC ⊥平面BSC .18.如图,在三棱锥S -ABC 中,SA ⊥平面ABC ,AB ⊥BC ,DE 垂直平分SC ,分别交AC 、SC 于D 、E ,且SA =AB =a ,BC =2a .(1)求证:SC ⊥平面BDE ;(2)求平面BDE 与平面BDC 所成二面角的大小.(1)证明:∵SA ⊥平面ABC ,又AB 、AC 、BD 平面ABC ,∴SA ⊥AB ,SA ⊥AC ,SA ⊥BD ,∴SB =SA 2+AB 2=2a .∵BC =2a ,∴SB =BC .∵E 为SC 的中点,∴BE ⊥SC .又DE ⊥SC ,BE ∩DE =E ,∴SC ⊥平面BDE .(2)由(1)及BD 平面BDE ,得BD ⊥SC .又知BD ⊥SA ,∴BD ⊥平面SAC .∴BD ⊥AC 且BD ⊥DE .∴∠CDE 为平面BDE 与平面BDC 所成二面角的平面角.∵AB ⊥BC ,AC =AB 2+BC 2=3a .∴Rt △SAC中,tan ∠SCA =SA AC =33,∴∠SCA =30°.∴∠CDE =60°,即平面BDE 与平面BDC 所成二面角为60°.19.如图,已知三棱锥A BPC -中,AP PC ⊥,AC BC ⊥,M为AB 中点,D 为PB 中点,且PMB ∆为正三角形.(1)求证:DM APC ∥平面;(2)求证:ABC APC ⊥平面平面.证明:(1)∵M 为AB 中点,D 为PB 中点,∴MD //AP ,又MD不在平面APC 上,∴MD //平面APC.(2)∵△PMB 为正三角形,又D 为PB 中点. ∴MD ⊥PB .又由(1)知MD //A P , ∴AP ⊥PB . 又AP ⊥PC , 且PB ∩PC =P ,∴AP ⊥平面PBC , ∴AP ⊥BC , 又∵AC ⊥BC , 且AP ∩AC =A ∴BC ⊥平面APC , 又BC 在平面ABC 内,∴平面ABC ⊥平面APC .20.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中 点,MN ⊥平面A 1DC .求证:(1)MN ∥AD 1;(2)M 是AB 的中点.证明:(1)∵ADD 1A 1为正方形,∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1,AD 1平面ADD 1A 1,∴CD ⊥AD 1.∵A 1D ∩CD =D ,∴AD 1⊥平面A 1DC .又∵MN ⊥平面A 1DC ,∴MN ∥AD 1. MD B P C A(2)连接ON ,在△A 1DC 中,A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM .又∵MN ∥OA ,∴四边形AMNO 为平行四边形,∴ON =AM .∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点. 21.如图所示,P 是四边形ABCD 所在平面外一点,ABCD 是∠DAB =60°且边长为a 的菱形,侧面P AD 为正三角形,其所在平面垂直于底面ABCD .(1)若G 为AD 边的中点,求证:BG ⊥平面P AD ;(2)求证:AD ⊥PB .证明:(1)连接PG ,BD .由题知△P AD 为正三角形,G 是AD 的中点,∴PG ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PG 平面P AD ,∴PG ⊥平面ABCD ,∴PG ⊥BG .又∵四边形ABCD 是菱形且∠DAB =60°,∴△ABD 是正三角形,∴BG ⊥AD .又AD 平面P AD ,PG 平面P AD ,且AD ∩PG =G ,∴BG ⊥平面P AD .(2)由(1)可知BG ⊥AD ,PG ⊥AD .又BG 平面PBG ,PG 平面PBG ,且BG ∩PG =G ,AD ⊥平面PBG ,∴AD ⊥PB .。

垂直线的性质与判定

垂直线的性质与判定

垂直线的性质与判定垂直线是几何学中的一个重要概念,在解题过程中经常会涉及到垂直线的性质和判定。

本文将探讨垂直线的定义、性质以及如何准确判定两条直线是否垂直的方法。

一、垂直线的定义在平面几何中,垂直线又称为垂直于某一直线或垂直于某一平面的线段。

当两条直线的交角为90度时,我们可以称这两条直线垂直。

垂直线以其与其他线段之间的垂直关系而得名,具有以下几个重要性质。

二、垂直线的性质1. 互相垂直线的斜率的乘积为-1若两条直线的斜率分别为k1和k2,且k1*k2=-1,则这两条直线互相垂直。

2. 垂直线段的端点连线长度相等若两个线段的端点分别为A、B和C、D,并且AC与BD垂直,则AC的长度等于BD的长度。

3. 垂直线的特殊性质垂直线与直线组成直角。

在平面几何中,如果有一直线与另一直线垂直相交,则两直线之间形成的角为直角。

三、判定垂直线的方法1. 斜率判定法如果两条直线的斜率乘积为-1,即k1*k2=-1,则两条直线垂直。

2. 互相垂直线段端点连线长度相等法如果有两个线段,它们的端点分别为A、B和C、D,并且AC与BD互相垂直,那么这两个线段长度相等。

3. 垂直线的特殊性质判定法如果一条直线与另一直线形成的角为90度,则两条直线垂直。

四、示例以下是一些关于判定垂直线的示例问题。

1. 已知直线L1的斜率为2,判断直线L2是否与L1垂直。

解答:如果直线L2的斜率为-1/2,则L2与L1垂直。

2. 在平面直角坐标系中,已知线段AB与线段BC相交于点B,且AB与BC的长度相等,判断线段AB与BC是否垂直。

解答:线段AB与BC垂直的判据是线段AB与BC的端点连线长度相等。

3. 以AB为直径的圆与MN相交于点C,若MC的长度为8cm,判断AC与BC是否垂直。

解答:判定AC与BC垂直的方法是通过角度判断,即判断∠ACB 是否为90度。

五、总结垂直线作为几何学中的重要概念,其性质和判定方法在解题过程中起到重要的作用。

本文讨论了垂直线的定义、性质和判定方法,并通过示例问题对判定垂直线的方法进行了说明。

垂直线的性质与判定方法

垂直线的性质与判定方法

垂直线的性质与判定方法在几何学中,垂直线是一种重要的概念,常用于描述线段、直线或平面之间的关系。

本文将详细探讨垂直线的性质以及判定方法,旨在帮助读者更好地理解和运用这一概念。

一、垂直线的性质1. 垂直线的定义垂直线是指两条直线或线段之间相互垂直的关系。

两条垂直线之间的角度为90度,也即是直角。

2. 垂直线的特点垂直线有以下几个主要特点:- 两条垂直线之间的夹角为90度,即两者之间是直角。

- 垂直线与水平线相交,形成交角为90度的交点。

- 垂直线可以用于确定两个平面之间的关系,若两个平面相互垂直,则它们的交线为垂直线。

3. 垂直线与平行线的关系垂直线和平行线是几何学中的两个重要概念。

两条垂直线之间不存在平行关系,但垂直线与同一直线上的一条平行线呈直角关系。

二、判定垂直线的方法1. 角度判定法通过测量两条线或线段之间的夹角来判定垂直线的存在。

若两条线之间的夹角为90度,则可以断定它们是垂直的。

这种方法适用于平面上的直线、线段、射线等形态。

2. 斜率判定法斜率判定法适用于已知两条直线的斜率的情况。

若两条直线的斜率之积为-1,则可以确定它们是垂直的。

即设直线L1的斜率为k1,直线L2的斜率为k2,则当k1 * k2 = -1时,L1与L2垂直。

3. 三角形判定法此判定法适用于已知三角形的情况。

如果一个三角形的两条边互相垂直,那么可以判定它们所在的线段或直线是垂直线。

4. 垂直平分线判定法垂直平分线是指将一条线段垂直平分的线,该线段的两个中点通过这条线都与线段呈90度的角。

若已知一条垂直平分线,则可以判定被它垂直平分的线段是垂直线。

总结:本文介绍了垂直线的性质以及判定方法。

垂直线是指两条直线或线段之间垂直的关系,具有直角特点。

判定垂直线的方法包括角度判定法、斜率判定法、三角形判定法和垂直平分线判定法。

通过运用这些方法,我们可以准确地判断垂直线的存在与否,进一步应用于解决几何问题中。

在实际应用中,我们要善于使用这些判定方法,以提高几何问题的解决效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 平面与平面垂直 (1)定义:一般地,两个平面相交,如果它们所成的二面角是 ________,就称这两个平面互相垂直. (2)判定定理:如果一个平面过另一个平面的________,则这两 个平面互相垂直. (3)性质定理:如果两个平面互相垂直,那么在一个平面内 __________的直线垂直于另一个平面.
答案: 1. (1)任意一条直线 平面的垂线 直线的垂面 垂足 垂 线段 点到平面的距离 (2)任意一条 (3)两条相交直线 (4)有一条垂直于一个平面 (5)垂直于同一个平面 2. (1)直二面角 (2)一条垂线 (3)垂直于它们交线
基础达标
1. (教材改编题)下列条件中,能判定直线l⊥平面a的是( A. l与平面a内的两条直线垂直 B. l与平面a内无数条直线垂直 C. l与平面a内的某一条直线垂直 D. l与平面a内任意一条直线垂直 2. 直线a⊥直线b,a⊥平面b,则b与b的位置关系是( A. b⊥b B. b∥b C. b⊂b D. b⊂b或b∥b 3. 已知直线a和两个平面a,b,给出下列四个命题: ①若a∥a,则a内的任何直线都与a平行; ②若a⊥a,则a内的任何直线都与a垂直; ③若a∥b,则b内的任何直线都与a平行; ④若a⊥b,则b内的任何直线都与a垂直. 则其中( ) A. ②、③为真 B. ①、②为真 C. ①、④为真 D. ③、④为真 )
)
4. (2010· 浙江)设l,m是两条不同的直线,a是一个平面,则下列 命题正确的是 ( ) A. 若l⊥m,m⊂a,则l⊥a B. 若l⊥a,l∥m,则m⊥a C. 若l∥a,m⊂a,则l∥m D. 若l∥a,m∥a,则l∥m 5. 如图1所示,在正方形ABCD中,E、F分别是BC、CD的中点, G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体 ,使B、C、D三点重合,重合后的点记为H,如图2所示,那么, 在四面体AEFH中必有( )
图1 图2 A. AH⊥△EFH所在平面 C. HF⊥△AEF所在平面
B. AG⊥△EFH所在平面 D. HG⊥△EFH所在平面
答案:
1. D 解析:由直线与平面垂直的定义,可知D正确.
2. D 3. A
5. A
4. B
解析:在图2中,AH⊥EH,AH⊥FH,且
EH∩FH=H,所以AH⊥平面EFH.
变式3-1 (2011· 江苏海安如皋联考)如图,在正方体ABCD-A1B1C1D1 中,求证:平面BC1D⊥平面A1ACC1.
证明:因为ABCD-A1B1C1D1是正方体,所 以AC⊥BD,A1A⊥平面ABCD, 而BD⊂平面ABCD,于是BD⊥A1A. 因为AC、A1A⊂平面A1ACC1且AC交A1A于 点A,所以BD⊥平面A1ACC1. 因为BD⊂平面BC1D,所以平面BC1D⊥平面 A1ACC1.
第五节 垂直关系的判定及其性质
基础梳理
1. 直线与平面垂直 (1)定义:如果直线l与平面a内的__________都垂直,我们就说 直线l与平面a互相垂直.这条直线叫做__________,这个平面叫 做________,交点叫做______.垂线上任意一点到垂足间的线段, 叫做这个点到这个平面的________,垂线段的长度叫做 ____________. (2)性质:如果一条直线垂直于一个平面,那么它就和平面内 的________直线垂直. (3)判定定理:如果一条直线与平面内的__________垂直,则这 条直线与这个平面垂直. (4)推论:如果在两条平行直线中,______________,那么另一 条也垂直于这个平面. (5)性质定理:如果两条直线____________,那么这011· 聊城模拟)如图,菱形ABCD所在平面与矩形 ACEF所在平面互相垂直,已知BD=2AF,且点M是线段EF的中 点. (1)求证:AM∥平面BDE; (2)求证:平面DEF⊥平面BEF.
(1)如图,设AC∩BD=O,连接OE,由题意得EM1= EF= 1 AC= AO. 2 2 ∵EM∥AO, ∴四边形EOAM为平行四边形,EO∥AM. ∵EO⊂平面BDE,AM⊄平面BDE. ∴AM∥平面BDE. (2)如图,连接DM,BM,MO.∵AF⊥AC,EC⊥AC,平面 ACEF⊥平面ABCD,∴AF⊥平面ABCD,EC⊥平面ABCD, ∴AF⊥AD,EC⊥DC,又四边形ABCD为菱形, ∴AD=DC,∴DF=DE. 1 DM⊥EF. 又点M是EF的中点,∴ 2 BD=AF=MO, ∵BD=2AF,∴DO= ∴∠DMO=45°,同理,∠BMO=45°, ∴DM⊥BM. 又EF∩BM=M,∴DM⊥平面BEF.
题型二 线面垂直 【例2】 如图,已知四棱柱PABCD中,底面ABCD是直角梯 形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD, PA=1. (1)求证:BC⊥平面PAC; (2)若M是PC的中点,求三棱锥MACD的体积.
变式2-1 (2011· 潍坊模拟)在四棱锥PABCD中,∠ABC=∠ACD=90°, ∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点, PA=2AB=2. (1)求四棱锥PABCD的体积V; (2)若F为PC的中点,求证:PC⊥平面AEF.
变式1-1 (2011· 徐州模拟)如图所示,四边形ABCD为矩形,BC⊥平 面ABE,F为CE上的点,且BF⊥平面ACE.求证:AE⊥BE.
证明:∵BC⊥平面ABE, AE⊂平面ABE, ∴BC⊥AE,同理AE⊥BF, ∵BF∩BC=B,∴AE⊥平面 BCE, 又∵BE⊂平面BCE, ∴AE⊥BE.
经典例题
题型一 线线垂直 【例1】如图,a∩b=CD,EA⊥a,垂足为A,EB⊥b, 垂足为B,求证:CD⊥AB. 证明:∵a∩b=CD,∴CD⊂a,CD⊂b. 又∵EA⊥a,CD⊂a,∴EA⊥CD, 同理EB⊥CD. ∵EA⊥CD,EB⊥CD,EA∩EB=E, ∴CD⊥平面EAB. ∵AB⊂平面EAB,∴AB⊥CD.
相关文档
最新文档