高考数学二轮复习 专题5 平面向量

合集下载

2009年高考第二轮热点专题复习:平面向量

2009年高考第二轮热点专题复习:平面向量

2009年高考第二轮热点专题复习:平面向量考纲指要:重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。

考点扫描:1.向量的概念:①向量;②零向量;③单位向量;④平行向量(共线向量);⑤相等向量。

2.向量的运算:(1)向量加法;(2)向量的减法;(3)实数与向量的积。

3.基本定理:(1)两个向量共线定理;(2)平面向量的基本定理。

4.平面向量的坐标表示。

5.向量的数量积:(1)两个非零向量的夹角;(2)数量积的概念;(3)数量积的几何意义;(4)向量数量积的性质;(5)两个向量的数量积的坐标运算;(6)垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 。

6.向量的应用:(1)向量在几何中的应用;(2)向量在物理中的应用。

考题先知:例1. 已知二次函数f (x )=x 2-2x +6,设向量a =(sin x ,2),b =(2sin x ,21), c =(cos2x ,1),d =(1,2).当x ∈[0,π]时,不等式f (a·b )>f (c ·d )的解集为___________.解:a ·b =2sin 2x +1≥1, c ·d =cos 2x +1≥1 ,f (x )图象关于x =1对称,∴f (x )在(1,+∞)内单调递增. 由f (a ·b )>f (c ·d )⇒a ·b >c ·d ,即2sin 2x +1>2cos 2x +1,又∵x ∈[0,π] ,∴x ∈(434ππ,).故不等式的解集为(434ππ,).例2.求函数y =.分析:由于向量沟通了代数与几何的内在联系,因此本题利用向量的有关知识求函数的值域。

解:因为y =所以构造向量21(2p x =+,21(2q x =-,则y p q =-,而(1,0)p q -=, 所以1y p q p q =-<-=,得11y -<<,另一方面:≥得0y ≥,所以原函数的值域是[0,1).点评:在向量这部分内容的学习过程中,我们接触了不少含不等式结构的式子,如||||||||||||||||||a b a b a b a b a b a b a b +≥-+≤+⋅≤⋅≤⋅,;等。

浙江省萧山区第二中学2019届高考数学二轮复习 平面向量奔驰定理与三角形四心

浙江省萧山区第二中学2019届高考数学二轮复习 平面向量奔驰定理与三角形四心

平面向量奔驰定理与三角形四心已知O 是ABC ∆内的一点,AOB AOC BOC ∆∆∆,,的面积分别为A S ,B S ,C S ,求证:0=++∙∙∙OC S OB S OA S C B A如图2延长OA 与BC 边相交于点D 则BCCOD ACD BOD ABD COD BOD ACD BD S S DC BD S S S S S S S S A =--===∆∆∆∆∆∆∆图1=OD BC DC OB +BCBDOC =CB BS SS +OB +C B C S S S +OCCB ACOA BOA COD BOD COA COD BOABOD S S S S S S S S S SSOA OD +=++=== 图2∴CB A S S S OD +-=OA∴CB A S S S +-OA =C B BS S S +OB +CB C S S S +OC∴0=++∙∙∙OC S OB S OA S C B A推论O 是ABC ∆内的一点,且0=++∙∙∙OC OB OA z y x ,则z y x S S S AOB COA BOC ::::=∆∆∆OA BCDOA BC有此定理可得三角形四心向量式O 是ABC ∆的重心⇔1:1:1::=∆∆∆AOB COA BOC S S S ⇔0=++OC OB OAO 是ABC ∆的内心⇔c b a S S S AOB COA BOC ::::=∆∆∆⇔0=++∙∙∙OC OB OA c b aO 是ABC ∆的外心⇔C B A S S S AOB COA BOC 2sin :2sin :2sin ::=∆∆∆ ⇔02sin 2sin 2sin =++∙∙∙OCC OB B OA AO 是ABC ∆的垂心⇔C B A S S S AOB COA BOC tan :tan :tan ::=∆∆∆ ⇔0tan tan tan =++∙∙∙OC C OB B OA A证明:如图O 为三角形的垂心,DBCDB AD CD A ==tan ,tan ⇒AD DB B A :tan :tan = =∆∆COA BOC S S :AD DB :∴B A S S COA BOC tan :tan :=∆∆同理得C B S S AOB COA tan :tan :=∆∆,C A S S AOB BOC tan :tan:=∆∆∴C B A S S S AOB COA BOC tan :tan :tan ::=∆∆∆奔驰定理是三角形四心向量式的完美统一4.2三角形“四心”的相关向量问题一.知识梳理:四心的概念介绍:(1) 重心:中线的交点,重心将中线长度分成2:1; (2) 垂心:高线的交点,高线与对应边垂直;(3) 内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等; (4) 外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等。

高三数学第二轮专题复习系列:(5)平面向量

高三数学第二轮专题复习系列:(5)平面向量

高考数学第二轮专题复习系列(5)平面向量一、本章知识结构:二、高考要求1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2、掌握向量的加法和减法的运算法则及运算律。

3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。

4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。

7、掌握正、余弦定理,并能初步运用它们解斜三角形。

8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。

三、热点分析对本章内容的考查主要分以下三类:1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。

对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。

本章的另一部分是解斜三角形,它是考查的重点。

总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。

考查的重点是基础知识和基本技能。

四、复习建议由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。

2014年(理科)二轮复习课件:平面向量

2014年(理科)二轮复习课件:平面向量
B.-3
3 C. 5 1 D. 7
b= 【跟踪练习】 【江苏省扬州中学月考) 】已知向量 a =(3,4), (2, -1) ,
2 如果向量 a +x b 与- b 垂直,则实数 x= ____. 5
考点 3
【例 3】 【无锡市市北高中 2014 届高三期初考试】已知 a, b, c
1 x 2
.
考点 5 平面向量和三角函数的综合应用问题
【例 5】
tan A 则 tan B =
【江苏盐城高三中期】在△BAC
7 3
中,若 (CA CB) AB
2 | AB |2 , 5
【跟踪练习】 【 江 苏 扬 州 中 学 2013 — 2014 期 中 考 试 模 拟 】 设 向 量 b (cos , sin ) , a (cos , sin ) , 其中 0 ,
若 | 2a b || a 2b | ,则 Nhomakorabea.
2
考点 6
平面向量和平面几何的综合问题
【例 6】 【河北衡水中学 2013-2014 学年度上学期二调高三】 在△ABC 所在平面上 有三点 P 、 Q 、 R ,满足 PA PB PC AB , QA QB QC BC ,
RA RB RC CA , 则△PQR 的面积与△ABC 的面积之比为 (
B

A.1:2
B.1:3
C.1:4
D.1:5
P
A
Q
C R B
【跟踪练习】 如图, 矩形 ORTM 内放置 5 个大小相同的正方形, 其中
BD x AE y AF ,则 x 2 y 2

高考数学二轮复习专题五 平面向量

高考数学二轮复习专题五 平面向量

高考数学二轮复习专题五 平面向量【重点知识回顾】向量是既有大小又有方向的量,从其定义可以看出向量既具有代数特征,又具有几何特征,因此我们要借助于向量可以将某些代数问题转化为几何问题,又可将某些几何问题转化为代数问题,在复习中要体会向量的数形结合桥梁作用。

能否理解和掌握平面向量的有关概念,如:共线向量、相等向量等,它关系到我们今后在解决一些相关问题时能否灵活应用的问题。

这就要求我们在复习中应首先立足课本,打好基础,形成清晰地知识结构,重点掌握相关概念、性质、运算公式 法则等,正确掌握这些是学好本专题的关键在解决关于向量问题时,一是要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对“向量”这一二维性的量的本质的认识,并体会用向量处理问题的优越性。

二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用。

在解决解斜三角形问题时,一方面要体会向量方法在解三角形方面的应用,另一方面要体会解斜三角形是重要的测量手段,通过学习提高解决实际问题的能力因此,在复习中,要注意分层复习,既要复习基础知识,又要把向量知识与其它知识,如:曲线,数列,函数,三角等进行横向联系,以体现向量的工具性 平面向量基本定理(向量的分解定理)的一组基底。

向量的坐标表示e e a →→→12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→=+表示。

. 平面向量的数量积数量积的几何意义:(2)数量积的运算法则i j x y →→,是一对互相垂直的单位向量,则有且只有一对实数,,使得()a x i y j x y a a x y →→→→→=+=,称,为向量的坐标,记作:,,即为向量的坐标()()()设,,,a x y b x y →→==1122()()()则,,,a b x y y y x y x y →→±=±=±±11121122()()λλλλa x y x y →==1111,,()()若,,,A x y B x y 1122()则,AB x x y y →=--2121()()||AB x x y y A B →=-+-212212,、两点间距离公式()··叫做向量与的数量积(或内积)。

高考数学二轮复习7大专题汇总

高考数学二轮复习7大专题汇总

高考数学二轮复习7 大专题汇总专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:侧重掌握函数的单一性,奇偶性,周期性,对称性。

这些性质往常会综合起来一同观察,而且有时会观察详细函数的这些性质,有时会观察抽象函数的这些性质。

一元二次函数:一元二次函数是贯串中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了认识,高中阶段更多的是将它与导数进行连接,依据抛物线的张口方向,与x 轴的交点地点,进而议论与定义域在x 轴上的摆放次序,这样能够判断导数的正负,最后达到求出单一区间的目的,求出极值及最值。

不等式:这一类问题经常出此刻恒成立,或存在性问题中,其本质是求函数的最值。

自然对于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的联合问题,掌握几种不等式的放缩技巧是特别必需的。

专题二:数列。

以等差等比数列为载体,观察等差等比数列的通项公式,乞降公式,通项公式和乞降公式的关系,求通项公式的几种常用方法,求前 n 项和的几种常用方法,这些知识点需要掌握。

专题三:三角函数,平面向量,解三角形。

三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有波及,有时观察三角函数的公式之间的相互转变,从而求单一区间或值域 ; 有时观察三角函数与解三角形,向量的综合性问题,自然正弦,余弦定理是很好的工具。

向量能够很好得实现数与形的转变,是一个很重要的知识连接点,它还能够和数学的一大难点分析几何整合。

专题四:立体几何。

立体几何中,三视图是每年必考点,主要出此刻选择,填空题中。

大题中的立体几何主要观察成立空间直角坐标系,经过向量这一手段求空间距离,线面角,二面角等。

此外,需要掌握棱锥,棱柱的性质,在棱锥中,侧重掌握三棱锥,四棱锥,棱柱中,应当掌握三棱柱,长方体。

空间直线与平面的地点关系应以证明垂直为要点,自然常观察的方法为间接证明。

专题五:分析几何。

2023届高考二轮总复习试题(适用于老高考旧教材) 数学(理)复数、平面向量(含解析)

2023届高考二轮总复习试题(适用于老高考旧教材) 数学(理)复数、平面向量(含解析)

2.复数、平面向量考向1 复数的概念、运算及几何意义1.(2022·河南开封一模)设(1+i 4n+3)z=i,n ∈Z ,则在复平面内,复数z 对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.(2022·全国甲·理1)若z=-1+√3i,则zz -1=( )A.-1+√3iB.-1-√3iC.-13+√33iD.-13−√33i3.(2022·全国乙·理2)已知z=1-2i,且z+a z +b=0,其中a ,b 为实数,则( ) A.a=1,b=-2 B.a=-1,b=2 C.a=1,b=2 D.a=-1,b=-24.(2022·山东潍坊一模)已知复数z 满足z+3=4z +5i,则在复平面内复数z 对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限 5.(2022·新高考Ⅰ·2)若i(1-z )=1,则z+z =( ) A.-2B.-1C.1D.2考向2 平面向量的概念及线性运算6. (2022·河南名校联盟一模)如图,在△ABC 中,点M 是AB 上的点且满足AM ⃗⃗⃗⃗⃗⃗ =3MB ⃗⃗⃗⃗⃗⃗ ,P 是CM 上的点,且MP ⃗⃗⃗⃗⃗⃗ =15MC ⃗⃗⃗⃗⃗⃗ ,设AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,则AP ⃗⃗⃗⃗⃗ =( )A.12a +14b B.35a +15b C.14a +12bD.310a +35b7.(2022·河南名校联盟一模)下列关于平面向量的说法正确的是( ) A.若AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 共线,则点A ,B ,C ,D 必在同一直线上 B.若a ∥b 且b ∥c ,则a ∥cC.若G 为△ABC 的外心,则GA ⃗⃗⃗⃗⃗ +GB⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0 D.若O 为△ABC 的垂心,则OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ·OC⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ 8.(2022·新高考Ⅰ·3)在△ABC 中,点D 在边AB 上,BD=2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ =( ) A.3m -2nB.-2m +3nC.3m +2nD.2m +3n9.(2022·河南许昌质检)正方形ABCD 中,P ,Q 分别是边BC ,CD 的中点,AP ⃗⃗⃗⃗⃗ =x AC ⃗⃗⃗⃗⃗ +y BQ ⃗⃗⃗⃗⃗ ,则x=( ) A.1113B.65C.56D.3210.(2022·河南名校联盟一模)如图,在同一个平面内,向量OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α,且tan α=7,向量OB ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为45°,且|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=1,|OC ⃗⃗⃗⃗⃗ |=√2.若OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ∈R ,n ∈R ),则n-m= . 考向3 平面向量的数量积11.(2022·新高考Ⅱ·4)已知向量a =(3,4),b =(1,0),c =a +t b ,若<a ,c >=<b ,c >,则实数t=( ) A.-6 B.-5C.5D.612. (2022·新高考八省第二次T8联考)如图,在同一平面内沿平行四边形ABCD 两边AB ,AD 向外分别作正方形ABEF ,正方形ADMN ,其中AB=2,AD=1,∠BAD=π4,则AC ⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗=( )A.-2√2B.2√2C.0D.-1 13.(2022·山东威海期末)已知向量a ,b 满足|a |=|b |=2,且a -b 在a 上的投影为2+√3,则<a ,b >=( )A.π6 B.π3C.2π3D.5π614.(2022·山东潍坊期末)已知正方形ABCD 的边长为2,MN 是它的内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM ⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ 的取值范围是( ) A.[0,1]B.[0,√2]C.[1,2]D.[-1,1]15.(2022·山东济宁一模)等边三角形ABC 的外接圆的半径为2,点P 是该圆上的动点,则PA⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ 的最大值为( ) A.4 B.7C.8D.111 3,且|a|=1,|b|=3,则(2a+b)·b=.16.(2022·全国甲·理13)设向量a,b的夹角的余弦值为2.复数、平面向量1.B 解析: ∵i 4n+3=i 4n ·i 3=-i, ∴(1+i 4n+3)z=(1-i)z=i, ∴z=i1-i =i (1+i )(1-i )(1+i )=-12+12i,∴复数z 在复平面内对应的点为-12,12位于第二象限. 故选B . 2.C 解析: zz -1=√3i(-1+√3i )(-1-√3i )-1=√3i(-1)2+(√3)2-1=-13+√33i,故选C .3.A 解析: ∵z=1-2i, ∴z =1+2i,∴z+a z +b=1-2i +a (1+2i)+b=a+b+1+(2a-2)i =0, ∴{a +b +1=0,2a -2=0, 解得{a =1,b =-2.故选A .4.A 解析: 设z=x+y i,x ,y ∈R ,则z =x-y i,由z+3=4z +5i 得(x+y i)+3=4(x-y i)+5i,即(x+3)+y i =4x+(5-4y )i,于是得{x +3=4x ,y =5-4y ,解得x=y=1,则有z=1+i 对应的点为(1,1),所以在复平面内复数z 对应的点在第一象限. 故选A .5.D 解析: ∵i(1-z )=1, ∴z=i -1i=1+i, ∴z =1-i . ∴z+z =2. 故选D .6.B 解析: AP ⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +MP ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +15MC ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +15(AC ⃗⃗⃗⃗⃗ −AM ⃗⃗⃗⃗⃗⃗ )=45AM ⃗⃗⃗⃗⃗⃗ +15AC ⃗⃗⃗⃗⃗ =45×34AB ⃗⃗⃗⃗⃗ +15AC ⃗⃗⃗⃗⃗ =35a +15b .7.D 解析: 若AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 共线,则直线AB 与CD 平行或重合,∴点A ,B ,C ,D 不一定在同一直线上,A 错;当b =0时,满足a ∥b 且b ∥c ,不能得出a ∥c ,B 错; 当G 为△ABC 的重心,则GA⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0,C 错; 若O 为△ABC 的垂心,则OB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,∴OB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =0, 即OB ⃗⃗⃗⃗⃗ ·(OC ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=0,∴OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ ,同理OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ ,∴D 正确,故选D . 8.B解析: 如图.∵BD=2DA ,∴AB ⃗⃗⃗⃗⃗ =3AD ⃗⃗⃗⃗⃗ ,∴CB ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +3AD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +3(CD ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ )=-2CA ⃗⃗⃗⃗⃗ +3CD ⃗⃗⃗⃗⃗ . 又CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,所以CB ⃗⃗⃗⃗⃗ =-2m +3n . 故选B .9.C 解析: ∵P ,Q 分别是正方形边BC ,CD 的中点,∴AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +A D ⃗⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ ,BQ ⃗⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,∴AP ⃗⃗⃗⃗⃗ =x AC ⃗⃗⃗⃗⃗ +y BQ ⃗⃗⃗⃗⃗ =x (AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )+y -12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =x-12y AB ⃗⃗⃗⃗⃗ +(x+y )AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ ,∴{x -12y =1,x +y =12,∴{x =56,y =-13,故选C . 10.12解析: 由题意在题图中以O 为原点,OA ⃗⃗⃗⃗⃗ 方向为x 轴非负半轴,过O 与OA 垂直向上为y 轴正方向建立平面直角坐标系(图略),则A (1,0),∵向量OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α, tan α=7,∴cos α=√210,sin α=7√210, 又|OC ⃗⃗⃗⃗⃗ |=√2,∴C15,75,cos(α+45°)=-35,sin(α+45°)=45,∴B -35,45, ∵OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ ,∴15,75=m (1,0)+n -35,45,∴{m -35n =15,45n =75,解得{m =54,n =74,∴n-m=12. 11.C 解析: 由题意得c =(3+t ,4),cos <a ,c >=cos <b ,c >,故9+3t+16|c |×5=3+t|c |×1,解得t=5.故选C .12.C 解析: AC ⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(FA ⃗⃗⃗⃗⃗ +AN ⃗⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ ·FA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·FA ⃗⃗⃗⃗⃗ +A A ⃗⃗⃗⃗⃗⃗ ·AN ⃗⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·AN ⃗⃗⃗⃗⃗⃗ =0+|AD ⃗⃗⃗⃗⃗ ||FA ⃗⃗⃗⃗⃗ |cos π4+|AB ⃗⃗⃗⃗⃗ ||AN⃗⃗⃗⃗⃗⃗ |cos 3π4+0=√2−√2=0.选C . 13.D 解析: (a -b )·a =|a -b ||a |cos <a -b ,a >=(2+√3)·2, 即a 2-a ·b =4+2√3,a ·b =-2√3.所以|a ||b |cos <a ,b >=-2√3,cos <a ,b >=-√32,<a ,b >=5π6.14.A 解析: 由题当弦MN 长度最大时,即MN 为直径,设弦MN 的中点为O ,由题意,PM ⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ =(PO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )·(PO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗⃗ )=PO ⃗⃗⃗⃗⃗ 2−14MN ⃗⃗⃗⃗⃗⃗⃗ 2=PO ⃗⃗⃗⃗⃗ 2-1=|PO ⃗⃗⃗⃗⃗ 2|-1,由1≤|PO ⃗⃗⃗⃗⃗ |≤√2,得PM ⃗⃗⃗⃗⃗⃗ ·PN⃗⃗⃗⃗⃗⃗ 的取值范围是[0,1]. 15.C解析: 如图所示,建立平面直角坐标系,设△ABC 的边长为a ,则asinA =2R=4(R 为△ABC 外接圆半径),所以a=2√3,A (0,3),B (-√3,0),C (√3,0),△ABC 的外接圆的方程为x 2+(y-1)2=4,设P 点坐标为(2cos θ,1+2sin θ),θ∈R ,PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ (PA ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=4+2√3cos θ+2sin θ=4+4cos θ-π6≤8,当cos θ-π6=1时,等号成立.故选C .。

二轮复习专题目录

二轮复习专题目录

二轮复习专题目录
专题00 高效二轮复习从提高数学阅读理解能力开始
专题01 集合背景下的数学问题
专题02 一元二次不等式问题
专题03 基本不等式问题
专题04 三角化简与求值
专题05 三角函数图像与性质
专题06 平面向量的线性运算
专题07 平面向量的数量积
专题08 二次函数问题
专题09 函数的简单性质及其应用
专题10 导数及其应用
专题11 函数与方程问题
专题12 函数综合问题
专题13 等差数列与等比数列
专题14 数列的性质及其应用
专题15 数列中的探究性问题
专题16 立体几何中的证明问题
专题17 直线、圆及圆锥曲线方程
专题18 点、线、圆的位置关系
专题19 解析几何中的定点、定直线、定圆问题
专题20 解析几何中的定值和最值问题
专题21 变换视角处理代数与几何问题
专题22 数学模型及其应用
专题23 分类讨论思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学二轮复习 专题5 平面向量专题五 平面向量【重点知识回顾】向量是既有大小又有方向的量,从其定义可以看出向量既具有代数特征,又具有几何特征,因此我们要借助于向量可以将某些代数问题转化为几何问题,又可将某些几何问题转化为代数问题,在复习中要体会向量的数形结合桥梁作用。

能否理解和掌握平面向量的有关概念,如:共线向量、相等向量等,它关系到我们今后在解决一些相关问题时能否灵活应用的问题。

这就要求我们在复习中应首先立足课本,打好基础,形成清晰地知识结构,重点掌握相关概念、性质、运算公式 法则等,正确掌握这些是学好本专题的关键在解决关于向量问题时,一是要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对“向量”这一二维性的量的本质的认识,并体会用向量处理问题的优越性。

二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用。

在解决解斜三角形问题时,一方面要体会向量方法在解三角形方面的应用,另一方面要体会解斜三角形是重要的测量手段,通过学习提高解决实际问题的能力因此,在复习中,要注意分层复习,既要复习基础知识,又要把向量知识与其它知识,如:曲线,数列,函数,三角等进行横向联系,以体现向量的工具性 平面向量基本定理(向量的分解定理)e e a →→→12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→=+的一组基底。

向量的坐标表示i j x y →→,是一对互相垂直的单位向量,则有且只有一对实数,,使得()a x i y j x y a a x y →→→→→=+=,称,为向量的坐标,记作:,,即为向量的坐标()表示。

()()设,,,a x y b x y →→==1122()()()则,,,a b x y y y x y x y →→±=±=±±11121122()()λλλλa x y x y →==1111,,()()若,,,A x y B x y 1122()则,AB x x y y →=--2121()()||AB x x y y A B →=-+-212212,、两点间距离公式. 平面向量的数量积()··叫做向量与的数量积(或内积)。

1a b a b a b →→→→→→=||||cos θ[]θθπ为向量与的夹角,,a b →→∈0数量积的几何意义:a b a b a b →→→→→·等于与在的方向上的射影的乘积。

||||cos θ (2)数量积的运算法则 ①··a b b a →→→→=②··()a b c a c b c →→→→→→→+=+()()③·,·,a b x y x y x x y y →→==+11221212注意:数量积不满足结合律····()()a b c a b c →→→→→→≠()()()重要性质:设,,,31122a x y b x y →→==①⊥···a b a b x x y y →→→→⇔=⇔+=001212②∥··或··a b a b a b a b a b →→→→→→→→→→⇔==-|||||||| ⇔=≠→→→a b b λλ(,惟一确定)0 ⇔-=x y x y 12210③,··a a x y a b a b →→→→→→==+≤221212||||||||④···cos ||||θ==+++→→→→a ba b x x y y x y x y 121212122222【典型例题】1.向量的概念、向量的运算、向量的基本定理例1. (2008湖北文、理)设a=(1,-2),b=(-3,4),c=(3,2),则(a+2b)·c=( ) A.(-15,12) B.0 C.-3 D.-11解:(a+2b)(1,2)2(3,4)(5,6)-+-=-,(a+2b)·c (5,6)(3,2)3=-⋅=-,选C点评:本题考查向量与实数的积,注意积的结果还是一个向量,向量的加法运算,结果也是一个向量,还考查了向量的数量积,结果是一个数字例2、(2008广东文)已知平面向量),2(),2,1(m -==,且∥,则32+=( ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10) 解:由∥,得m =-4,所以,32+=(2,4)+(-6,-12)=(-4,-8),故选(C )。

点评:两个向量平行,其实是一个向量是另一个向量的λ倍,也是共线向量,注意运算的公式,容易与向量垂直的坐标运算混淆例3.(1)如图所示,已知正六边形ABCDEF ,O 是它的中心,若BA =a ,BC =b ,试用a ,b 将向量OE ,BF ,BD , FD 表示出来。

(1)解析:根据向量加法的平行四边形法则和减法的三角形法则,用向量a ,b 来表示其他向量,只要考虑它们是哪些平行四边形或三角形的边即可因为六边形ABCDEF 是正六边形,所以它的中心O 及顶E点A ,B ,C 四点构成平行四边形ABCO ,所以BA BC BA AO BO +=+=,BO =a +b ,OE = BO =a +b ,由于A ,B ,O ,F 四点也构成平行四边形ABOF ,所以BF =BO +OF =BO +BA =a +b +a =2a +b ,同样在平行四边形 BCDO 中,BD =BC CD +=BC BO +=b +(a +b )=a +2b ,FD =BC BA -=b -a点评:其实在以A ,B ,C ,D ,E ,F 及O 七点中,任两点为起点和终点,均可用 a ,b 表示,且可用规定其中任两个向量为a ,b ,另外任取两点为起点和终点,也可用a ,b 表示。

例4.已知ABC ∆中,A(2,-1),B(3,2),C(-3,1),BC 边上的高为AD ,求AD 。

解析:设D(x,y),则()()()2,1,3,2,,3AD x y BD x y BC b =-+=--=-- ∵,AD BC BD BC ⊥⊥()()()()⎩⎨⎧=-+--=+---∴0263301326y x y x 得⎩⎨⎧==11y x 所以()1,2AD =-。

2. 向量与三角函数的综合问题例5、(2008深圳福田等)已知向量(3sin ,cos ),(cos ,cos )a x x b x x == ,函数()21f x a b =⋅-(1)求()f x 的最小正周期; (2)当[, ]62x ππ∈时,若()1,f x =求x 的值. 解:(1)2()cos 2cos 1f x x x x =+-2cos 2x x =+2sin(2)6x π=+. 所以,T =π.(2) 由()1,f x =得1sin 262x π⎛⎫+=⎪⎝⎭,∵[,]62x ππ∈,∴72[,]626x πππ+∈ ∴5266x ππ+= ∴ 3x π=点评:向量与三角函数的综合问题是当前的一个热点,但通常难度不大,一般就是以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算,而考查的主体部分则是三角函数的恒等变换,以及解三角形等知识点.例6、(2007山东文)在ABC △中,角AB C ,,的对边分别为tan a b c C =,,, (1)求cos C ;(2)若52CB CA •=,且9a b +=,求c .解:(1)sin tan cos CC C =∴= 又22sin cos 1C C += 解得1cos 8C =±.tan 0C >,C ∴是锐角.1cos 8C ∴=.(2)由52CB CA •=, 5cos 2ab C ∴=, 20ab ∴=. 又9a b +=22281a ab b ∴++=.2241a b ∴+=.2222cos 36c a b ab C ∴=+-=. 6c ∴=.点评:本题向量与解三角形的内容相结合,考查向量的数量积,余弦定理等内容。

3. 平面向量与函数问题的交汇例7.已知平面向量a =(3,-1),b =(21, 23).(1) 若存在实数k 和t ,便得x =a +(t 2-3)b , y =-k a +t b ,且x ⊥y ,试求函数的关系式k =f(t);(2) 根据(1)的结论,确定k =f(t)的单调区间解:(1)法一:由题意知x =(23322--t ,223232--t ),y =(21t -3k ,23t +k),又x ⊥y故x · y =23322--t ×(21t -3k )+223232--t ×(23t +k)=0整理得:t 3-3t -4k =0,即k =41t 3-43t. 法二:∵a =(3,-1),b =(21, 23), ∴. a =2,b =1且a ⊥b∵x ⊥y ,∴x · y =0,即-k a 2+t(t 2-3)b 2=0,∴t 3-3t -4k =0,即k =41t 3-43t (2) 由(1)知:k =f(t) =41t 3-43t ∴k ˊ=f ˊ(t) =43t 3-43, 令k ˊ<0得-1<t <1;令k ˊ>0得t <-1或t >1.故k =f(t)的单调递减区间是(-1, 1 ),单调递增区间是(-∞,-1)和(1,+∞). [归纳] 第1问中两种解法是解决向量垂直的两种常见的方法:一是先利用向量的坐标运算分别求得两个向量的坐标,再利用向量垂直的充要条件;二是直接利用向量的垂直的充要条件,其过程要用到向量的数量积公式及求模公式,达到同样的求解目的(但运算过程大大简化,值得注意)。

第2问中求函数的极值运用的是求导的方法,这是新旧知识交汇点处的综合运用[变式] 已知平面向量a=(3,-1),b=(21,23),若存在不为零的实数k 和角α,使向量c =a +(sin α-3)b , d =-k a +(sin α)b ,且c ⊥d,试求实数k 的取值范围。

[点拨] 将例题中的t 略加改动,旧题新掘,出现了意想不到的效果,很好地考查了向量与三角函数综合运用能力。

解:仿例3(1)解法(二)可得k =41( sin α-23)2-169,而-1≤sin α≤1,∴当sin α=-1时,k 取最大值1; sin α=1时,k 取最小值-21.又∵k ≠0 ∴k 的取值范围为 1[,0)(0,1]2-.4. 平面向量在平面几何中的应用例8、如图在Rt ∆ABC 中,已知BC=a ,若长为2a 的线段PQ 以A 为中点,问与的夹角θ取何值时, CQ ⋅的值最大?并求出这个最大值解:以直角顶点A 为坐标原点,两直角边所在直线为坐标轴建立如图所示的平面直角坐标系。

相关文档
最新文档