2020年人教版中考数学专题练习【含详解】

合集下载

中考专题特训人教版初中数学七年级下册第十章数据的收集、整理与描述综合测评试题(含答案及详细解析)

中考专题特训人教版初中数学七年级下册第十章数据的收集、整理与描述综合测评试题(含答案及详细解析)

初中数学七年级下册第十章数据的收集、整理与描述综合测评(2021-2022学年考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数为()A.anbB.bnaC.banD.abn2、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为()A.11 B.10 C.9 D.83、下面调查中,最适合采用全面调查的是()A.对全国中学生视力状况的调查B.了解重庆市八年级学生身高情况C.调查人们垃圾分类的意识D.对“天舟三号”货运飞船零部件的调查4、一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成()组.A.10 B.9 C.8 D.75、如图是某超市2017~2021年的销售额及其增长率的统计图,下面说法中正确的是()A.这5年中,销售额先增后减再增B.这5年中,增长率先变大后变小C.这5年中,销售额一直增加D.这5年中,2021年的增长率最大6、下列调查中,最适合采用全面调查的是()A.疫情防控阶段进出某小区人员的体温检测 B.调查湖北省七年级学生的身高C.检测一批手持测温仪的使用寿命D.端午节期间市场上粽子质量7、下列说法中:①除以一个数等于乘以这个数的倒数;②用四个圆心角都是90 的扇形,一定可以拼成一个圆;③把5克盐放入100克水中,盐水的含盐率是5%;④如果小明的体重比小方体重少15,那么小方体重比小明体重多25%;⑤扇形统计图可以直观地表示各部分数量与总数之间的关系.其中正确说法的个数是()A.1个B.2个C.3个D.4个8、下列采用的调查方式中,不合适的是()A.了解一批灯泡的使用寿命,采用普查B.了解神舟十二号零部件的质量情况,采用普查C.了解单县中学生睡眠时间,采用抽样调查D.了解中央电视台《开学第一课》的收视率,采用抽样调查9、某学校计划筹备美食节,为了解学生最喜欢吃的水果,调查组设计了调查问卷(不完整):准备在“①热带水果;②草莓;③火龙果;④西瓜;⑤无核水果”中选取3种作为该调查问卷的备选项目,你认为合理的是()A.①②③B.①③⑤C.②③④D.②④⑤10、空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是()A.扇形统计图B.条形统计图C.折线统计图D.频数直方图二、填空题(5小题,每小题4分,共计20分)1、某中学举行一次演讲比赛,分段统计参赛同学的成绩,结果如下表(分数均为整数,满分为100分):请根据表中提供的信息,解答下列各题:(1)参加这次演讲比赛的同学共有________人;(2)已知成绩在91~100分的同学为优胜者,那么,优胜率为________.2、下图分别用条形统计图和扇形统计图表示七年级学生的出行方式,根据条形统计图和扇形统计图,表示骑自行车的扇形的圆心角的度数为________.3、为了了解社区居民的用水情况,小江调查了80户居民,发现人均日用水量在基本标准量(50升)范围内的频率是0.75,那么他所调查的居民超出了标准量的有________户.4、在一个不透明的袋子中,装有黑球和白球共30个,这些球除颜色外都相同,搅匀后从中任意摸出一个球记下颜色,再把它放回袋子中,不断重复实验,统计结果显示,随着实验次数越来越大,摸到黑球的频率逐渐稳定在0.4左右,则据此估计袋子中大约有白球___个.5、为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了如图的统计图(1)和图(2),则扇形统计图(2)中表示“足球”项目扇形的圆心角的度数为__.三、解答题(5小题,每小题10分,共计50分)1、某地区对其所属中学八年级的英语教学情况进行期末质量调查,从中抽出的20个班级的英语期末平均成绩如下(单位:分):80 81 83 79 64 76 80 66 70 7271 68 69 78 67 80 68 72 70 65试列出频数分布表并绘出频数分布直方图.2、如果要了解全市范围内初中生视力状况随年级的变化趋势,你该如何进行统计活动?如果要了解全国范围内初中生视力状况随年级的变化趋势呢?3、某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题: (1)本次抽样调查的书籍有多少本? (2)请通过计算补全条形统计图;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?4、为了了解某地区60~75岁的老年人的锻炼情况,利用公安机关户籍网,随机电话调查了该区60~75岁的300名老人平均每天的锻炼时间,整理得到下面的表格:(1)男性老年人参加锻炼的人数有________人,女性老年人参加锻炼的人数有________人,老年人中,参加锻炼的占被调查者的________%;(2)不参加锻炼的老年人中,男性大约是女性的几倍?(3)根据此表数据分析,你对该区老年人的锻炼情况有什么建议吗?(4)对本题的课题进行调查时,如果清晨到公园或市人民广场询问300名老年人,或在某居民小区调查10名老年人,你认为这样得到的数据,可以作为调查分析、得出结论的依据吗?请说明理由.5、某小区有500户家庭,从中随机抽取了100户,调查了他们5月的用水量情况,结果如图所示.(1)试估计该小区用水量不高于20t的户数占小区总户数的百分比;(2)把图中每组用水量的值用该组的中间值(如0~10的中间值为5)来代替,估计该小区5月的用水量.---------参考答案-----------一、单选题1、A【解析】【分析】首先求出有记号的b条鱼在a条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【详解】解:∵打捞a条鱼,发现其中带标记的鱼有b条,∴有标记的鱼占ba,∵共有n条鱼做上标记,∴鱼塘中估计有n÷ba=anb(条).故选:A.【点睛】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.2、B【解析】【分析】极差除以组距,大于或等于该值的最小整数即为组数.【详解】解:105238219999-==,∴分10组.故选:B.【点睛】本题考查了组距的划分,一般分为5~12组最科学.3、D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】解:A.对全国中学生视力状况的调查,适合抽样调查,故本选项不合题意;B.了解重庆市八年级学生身高情况,适合抽样调查,故本选项不合题意;C.调查人们垃圾分类的意识,适合抽样调查,故本选项不合题意;D.对“天舟三号”货运飞船零部件的调查,适合普查,故本选项符合题意.故选:D.【点睛】本题考查了抽样调查和全面调查的区别,解题的关键是掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4、A【解析】【分析】求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.【详解】解:145-50=95,95÷10=9.5,所以应该分成10组.故选A.【点睛】本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.5、C【解析】【分析】根据统计图中增长率及销售额的变化逐一判断即可得答案.【详解】A.这5年中,销售额连续增长,故该选项错误,B.这5年中,增长率先变大后变小再变大,故该选项错误,C.这5年中,销售额一直增加,故该选项正确,D.这5年中,2018年的增长率最大,故该选项错误,故选:C.【点睛】本题考查折线统计图与条形统计图,从统计图中,正确得出需要信息是解题关键.6、A【解析】【分析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.【详解】解:A 疫情防控阶段进出某小区人员的体温检测,适合采用全面调查方式,故本选项符合题意;B 调查湖北省七年级学生的身高,适合采用抽样调查,故本选项不合题意;C 检测一批手持测温仪的使用寿命,适合采用抽样调查,故本选项不合题意;D 调查端午节期间市场上粽子质量,适合采用抽样调查,故本选项不合题意.故选:A.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7、B【解析】【分析】根据除法法则、圆与扇形的关系,单位“1”的含义,百分数的意义,以及扇形统计图的特点分析即可.【详解】解:①除以一个不等于零的数等于乘以这个数的倒数,故不正确;②用四个圆心角都是90 且半径相等的扇形,一定可以拼成一个圆,故不正确;③把5克盐放入100克水中,盐水的含盐率是5÷(5+100)≈4.8%,故不正确;④设小方体重为a,则小明的体重为45a.小方的体重比小明的体重多(a-45a)÷45a=25%,正确;⑤扇形统计图可以直观地表示各部分数量与总数之间的关系,正确.故选B.【点睛】本题考查了除法法则,圆与扇形的关系,单位“1”的含义,百分数的意义,以及扇形统计图的特点,掌握单位“1”的含义,百分数的意义是关键.8、A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】解:A、了解一批灯泡的使用寿命,采用抽样调查,本选项说法不合适,符合题意;B、了解神舟十二号零部件的质量情况,采用普查,本选项说法合适,不符合题意;C、了解单县中学生睡眠时间,采用抽样调查,本选项说法合适,不符合题意;D、了解中央电视台《开学第一课》的收视率,采用抽样调查,本选项说法合适,不符合题意;故选:A.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、C【解析】【分析】根据水果的隶属包含关系,以及“热带水果”及“无核水果”与其它水果的关系,综合判断即可.【详解】解:根据水果的隶属包含关系,以及“热带水果”及“无核水果”与其它水果的关系,选择,②草莓;③火龙果;④西瓜比较合理,故选:C.【点睛】本题考查设置问卷的方法,解题的关键是掌握一般情况下问卷的各个选项之间相对独立,不能有重合或交叉的地方.10、A【解析】【分析】根据扇形统计图、折线统计图、条形统计图、频数直方图各自的特点选择即可.【详解】解:根据题意,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:A.【点睛】此题考查扇形统计图、折线统计图、条形统计图各自的特点.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.二、填空题1、 20 20%【解析】【分析】(1)观察表格,求各段的人数的和即可;(2)根据“优胜率=优胜的人数÷总人数×100%”进行计算即可.【详解】(1)参加这次演讲比赛的人数:2+8+6+4=20(人);(2)成绩在91~100分的同学为优胜者,优胜率为:4100%20% 20⨯=.故答案为:20,20%.【点睛】本题考查了统计表,读懂统计表中的信息是解题的关键.2、108°【解析】【分析】先求统计的总人数,然后求出骑自行车的人数,再求出骑自行车的人数所占百分比为:90100%30%300⨯=,利用360°×30%计算即可.【详解】解:统计的人数为:60+90+150=300人,骑自行车的人数为:90人,骑自行车的人数所占百分比为:90100%30% 300⨯=,∴表示骑自行车的扇形的圆心角的度数为:360°×30%=108°.故答案为:108°.【点睛】本题考查条形图获取信息,计算样本中百分比含量,扇形圆心角,掌握条形图获取信息,计算样本中百分比含量,扇形圆心角是解题关键.3、20【解析】【分析】根据频数等于总数乘以频率,即可求解.【详解】解:调查的居民超出了标准量的有()8010.7520⨯-= 户.故答案为:20.【点睛】本题主要考查了频数和频率,熟练掌握频率之和等于1,且频数等于总数乘以频率是解题的关键. 4、18【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在某个数值附近,可以从比例关系入手,列出方程求解.【详解】解:设盒子中大约有白球x 个,根据题意得:3030x -=0.4, 解得:x =18,故答案为:18.【点睛】本题主要考查了利用频率求频数,本题利用了用大量试验得到的频率稳定在某个数值附近,关键是根据黑球的频率得到相应的等量关系.5、72°【解析】【分析】先算出总人数,再用足球人数占总人数的百分比乘360︒即可得.【详解】解:总人数是:20÷40%=50(人),∵足球的人数为10人,∴“足球”项目扇形的圆心角的度数为:360°×1050=72°;故答案为:72°.【点睛】本题考查了扇形统计图,解题的关键的是求出总人数.三、解答题1、见解析【分析】按照作直方图的四个步骤:计算最大值与最小值的差;决定组距与组数;列频数分布表;画出频数分布直方图,即可.【详解】解:(1)计算最大值与最小值的差:83-64=19(分).(2)决定组距与组数:若取组距为4分,则有194≈5,所以组数为5.(3)列频数分布表:(4)画出频数分布直方图.如图所示.【点睛】本题主要考查频数分布表和频数直方图,掌握作图步骤是关键.因选取的组距不同,所列的频数分布表及直方图也不一样,在统计时,数据不能出现重复或遗漏的现象.2、抽样调查;随机抽样调查【分析】抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查.【详解】用抽样调查的方法进行统计.要了解全国范围初中生视力状况随年纪变化的趋势要在全国范围内随机抽样调查.【点睛】本题考查随机抽样调查的实际应用,掌握其含义和使用范围是本题关键.3、(1)40;(2)见解析;(3)360【分析】(1)由艺术类书籍的数量及其所占百分比可得抽取的总数量;(2)用样本容量乘以其它类书籍对应的百分比求出具体数量,从而补全图形;(3)用总数量乘以样本中科普类书籍数量所占比例可得.【详解】(1)本次抽样调查的书有8÷20%=40(本);(2)其它类的书的数量为40×15%=6(本),补全图形如下:(3)估计科普类书籍的本数为1200×1240=360(本).【点睛】本题考查的是条形统计图和扇形统计图,解决问题的关键是读懂统计图,从不同的统计图中得到必要的信息.4、(1)70,116,62;(2)2倍;(3)要增强该地区老年人“生命在于运动”的观念;(4)不可以,理由见解析【分析】(1)观察表格可得出男性老年人和女性老年人参加锻炼的人数,由此进行解答;(2)由表格可知不参加锻炼的老年人中,其中男性有77人,女性有37人,进而可得到男性人数和女性人数的倍数关系;(3)此题答案不唯一,根据图表分析参加锻炼的人数不太多,可以就注重锻炼来分析;(4)可以根据抽样调查中样本的代表性进行解答.【详解】解:(1)男性老年人参加锻炼的人数有43+20+7=70(人),女性参加锻炼的人数有83+28+5=116(人);老年人中,参加锻炼的占被调查者的70116100%62% 300+⨯=.(2)不参加锻炼的老年人中,其中男性有77人,女性有37人,故男性大约是女性的2倍.(3)根据此表数据分析:不参加锻炼的老年人约占38%,可见该地区的老年人锻炼意识不强,尤其是男性老年人,只有半数的男性老年人参加锻炼,所以要增强该地区老年人“生命在于运动”的观念.(4)不可以,因为,清晨到公园或市民广场的老年人都是注意锻炼的老年人,不能代表该区所有的老年入的锻炼情况,不具有广泛的代表性,即样本不具有代表性、广泛性,故这种调查方法得出的结论不符合实际.【点睛】本题考查抽样调查的知识,解题的关键是对表格进行正确分析进而得到答案.5、(1)84%;(2)6050t【分析】(1)由统计图可知不高于20t的户数为84,进而问题可求解;(2)根据题意可直接进行求解.【详解】解:(1)由题意得:()5133100100%=84%+÷⨯;(2)由题意得:()()515331510256351005006050t⨯+⨯+⨯+⨯÷⨯=;答:该小区5月的用水量为6050吨.【点睛】本题主要考查数据分析,解题的关键是分析统计图,找准等量关系即可.。

人教版中考仿真押题卷《数学试卷》含答案解析

人教版中考仿真押题卷《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题 1.12-的倒数是( ) A. B. 12 C. D.2.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动. 现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处. 下列图书馆标志的图形中不是..轴对称图形的是( ) A. B. C. D. 3. 下列图形中,由AB ∥CD ,能得到∠1=∠2的是A. B. C. D. 4.如图,将RtABC 绕直角项点C 顺时针旋转90°,得到A' B'C ,连接AA',若∠1=20°,则∠B 度数是( )A. 70°B. 65°C. 60°D. 55°5.已知a b <,下列不等式中,变形正确的是( ) A. a 3b 3->- B. 3a 13b 1->- C. 3a 3b ->- D. a b 33> 6.2018年10月24日上午9时,港珠澳大桥正式通车,它是连接香港、珠海、澳门的超大型跨海通道,全长55 000米,数据55 000用科学记数法表示是( )A. 55×103B. 55×103C. 0.55×104D. 5.5×104 7.如图,下列选项中不是正六棱柱的三视图的是( )A. B. C. D.8.一组数据3、2、4、5、2,则这组数据的众数是( )A. 2B. 3C. 3.2D. 49.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,ED ⊥AB 于点D .若∠A =30°,AE =6 cm ,则BC 等于( )3 B. 3 cm 3 D.4 cm10.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为d 0022A B +,例如:点P 0(0,0)到直线4x +3y ﹣3=0的距离为d 223543=+,根据以上材料,求点P 1(3,4)到直线y =﹣3544x +的距离为( ) A. 3 B. 4 C. 5 D. 6二.填空题11.因式分解:2ax 2﹣4axy +2ay 2=_____.12.函数2y x =-中,自变量的取值范围是 . 13.如图,点A(t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tanα=32 ,则t 的值是________.14.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于___________.15.如图,一折扇完全打开后,若外侧两竹片OA,OB的夹角为120°,扇面ABDC的宽度AC是OA的一半,且OA=30 cm,则扇面ABDC的周长为__________cm.16.如图,在平面直角坐标系中,已知△ABC与△DEF位似,原点O是位似中心,位似比12OAAD,若AB=1.5,则DE=_____.17.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是cm.18.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.三.解答题19.计算:(﹣1)2020+(π﹣3)0﹣3tan30°+11()2-.20.已知x 、y 满足方程组52251x y x y -=-⎧⎨+=-⎩,求代数式()()()222x y x y x y --+-的值. 21.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,求OM 的长.22.如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A 2,B 2,C 2,请画出△A 2B 2C 2;(3)△A 1B 1C 1与△A 2B 2C 2面积之比为 (不写解答过程,直接写出结果).23.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A(-1,n),B(2,-1)两点,与y 轴相交于点C .(1)求一次函数与反比例函数的表达式;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积.24.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF .(2)若BE =4,EC =6,△DGF 面积为8,求▱ABCD 的面积.25.随着城际铁路的开通,从甲市到乙市的高铁里程比快里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?26.如图,AB 是⊙O 的直径,D 是⊙O 上一点,点E 时AD 的中点,过点A 作⊙O 的切线交BD 的延长线于点F .连接AE 并延长交BF 于点C .(1)求证:AB =BC ;(2)如果AB =10.tan ∠FAC =12,求FC 的长.27.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.答案与解析一、选择题1.12-的倒数是( )A. B. 12C. D.【答案】A【解析】【分析】根据倒数的定义求解即可.【详解】12-的倒数是,故选A.【点睛】本题考查了倒数,分子分母交换位置是求一个数倒数的关键.2.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动. 现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处. 下列图书馆标志的图形中不是..轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴.据此可以分析.【详解】根据轴对称图形的定义可知,选项A,C,D,是轴对称图形,选项B不是轴对称图形.故选B【点睛】本题考核知识点:轴对称图形.解题关键点:理解轴对称图形的定义.3. 下列图形中,由AB∥CD,能得到∠1=∠2的是A. B. C. D.【答案】B【解析】【详解】分析:根据平行线的性质应用排除法求解:A、∵AB∥CD,∴∠1+∠2=180°.故本选项错误.B、如图,∵AB∥CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB∥CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项错误.D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项错误.故选B.4.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )A. 70°B. 65°C. 60°D. 55°【答案】B【解析】【分析】根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.【详解】∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故选B.【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.5.已知a b <,下列不等式中,变形正确的是( )A. a 3b 3->-B. 3a 13b 1->-C. 3a 3b ->-D. a b 33> 【答案】C【解析】【分析】根据不等式的性质解答即可.【详解】解:A 、不等式a b <的两边同时减去3,不等式仍成立,即33a b -<-,故本选项错误; B 、不等式a b <的两边同时乘以3再减去1,不等式仍成立,即3131a b -<-,故本选项错误; C 、不等式a b <的两边同时乘以3-,不等式的符号方向改变,即33a b ->-,故本选项正确; D 、不等式a b <的两边同时除以3,不等式仍成立,即33a b <,故本选项错误; 故选C .【点睛】本题考查了不等式的性质注意:不等式两边都乘以同一个负数,不等号的方向改变.6.2018年10月24日上午9时,港珠澳大桥正式通车,它是连接香港、珠海、澳门的超大型跨海通道,全长55 000米,数据55 000用科学记数法表示是( )A. 55×103 B. 5.5×103 C. 0.55×104 D. 5.5×104 【答案】D【解析】【分析】由科学记数法公式()101<10n a a ⨯≤即可得到结果;【详解】455000=5.510⨯;故答案选D .【点睛】本题主要考查了科学记数法的表示,准确判断小数点的位置是关键.7.如图,下列选项中不是正六棱柱的三视图的是( )A. B. C. D.【答案】A【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选A.【点睛】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.8.一组数据3、2、4、5、2,则这组数据的众数是( )A. 2B. 3C. 3.2D. 4【答案】A【解析】【分析】根据众数的概念进行求解即可.【详解】2出现了两次,其余数据均出现一次,2出现的次数最多,所以这组数据的众数是2,故选A.【点睛】本题考查了众数的概念,熟练掌握”众数是指一组数据中出现次数最多的数据”是解题的关键.9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于点D.若∠A=30°,AE=6 cm,则BC等于()3cm B. 3 cm 3 D. 4 cm【答案】C【解析】【分析】根据直角三角形的性质求出DE ,根据角平分线的性质求出CE ,根据正切的定义计算即可.【详解】解:在Rt △ADE 中,∠A=30°,∴DE=12AE=3,∠ABC=60°, ∵BE 平分∠ABC ,ED ⊥AB ,∠ACB=90°,∴CE=DE=3,∠EBC=30°,在Rt △CBE 中,BC=tan CE EBC =∠(cm ), 故选:C .【点睛】本题考查的是角平分线的性质、直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为d,例如:点P 0(0,0)到直线4x +3y ﹣3=0的距离为d35=,根据以上材料,求点P 1(3,4)到直线y =﹣3544x +的距离为( ) A. 3 B. 4 C. 5 D. 6【答案】B【解析】【分析】先将直线的解析式化为定义中的形式,再根据距离公式计算即可. 【详解】∵3544y x =-+ ∴35044x y +-= ∴点1)(3,4P 到直线3544y x =-+5454== 故选:B .【点睛】本题考查了一次函数的几何应用:点到直角的距离公式,掌握理解距离公式是解题关键.二.填空题11.因式分解:2ax2﹣4axy+2ay2=_____.【答案】2a(x﹣y)2【解析】【分析】先提取公因式2a,再对余下的多项式利用平方差公式继续分解.【详解】解:原式=2a(x2﹣2xy+y2)=2a(x﹣y)2,故答案为:2a(x﹣y)2【点睛】本题主要考查因式分解,因式分解时,如果多项式的各项有公因式,首先考虑提取公因式,然后根据多项式的项数来选择方法继续因式分解,如果是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式,掌握上述因式分解的知识点是解题的关键.12.函数12yx=-中,自变量的取值范围是.【答案】x>2【解析】【分析】根据分式有意义和二次根式有意义的条件求解.详解】解:根据题意得,x﹣2>0,解得x>2.故答案为x>2.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα= 32,则t的值是________.【答案】2 【解析】【分析】根据正切的定义即可求解.【详解】∵点A (t ,3)在第一象限,∴AB=3,OB=t ,又∵tanα=AB OB =32, ∴t=2.故答案为2.14.如图,△ABC 绕点A 顺时针旋转45°得到△A′B′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于___________.2-1【解析】【分析】由旋转的性质可得45CAC BAB ∠'=∠'=︒,45B B ∠'=∠=︒,2AB AB '==可证AFB ∆',ADB ∆和BEF ∆为等腰直角三角形,分别求出ADB S ∆,BEF S ∆的值,即可求解.【详解】解:如图,设,AB B C ''交于点,BC B C '',交于点,90BAC ∠=︒,2AB AC ==45B C ∴∠=∠=︒,ABC ∆绕点顺时针旋转45︒得到△AB C '',45CAC BAB ∴∠'=∠'=︒,45B B ∠'=∠=︒,2AB AB '==, AFB ∴∆'是等腰直角三角形,AD BC ∴⊥,B F AF '⊥,212AF AB ='=, 21BF AB AF ∴=-=-, 45B ∠=︒,EF BF ⊥,AD BD ⊥,ADB ∴∆和BEF ∆为等腰直角三角形,212AD BD AB ∴===,21EF BF ==-, 图中阴影部分的面积1111(21)(21)2122ADB BEF S S ∆∆=-=⨯⨯---=-, 故答案为:21-.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.15.如图,一折扇完全打开后,若外侧两竹片OA ,OB 的夹角为120°,扇面ABDC 的宽度AC 是OA 的一半,且OA =30 cm ,则扇面ABDC 的周长为__________cm .【答案】(30π+30)【解析】【分析】根据题意求出OC ,根据弧长公式分别求出AB 、CD 的弧长,根据扇形周长公式计算.【详解】由题意可得:1152OC AC OA ===, 弧AB 长=12030=20180ππ⨯, 弧CD 的长=12015=10180ππ⨯, ∴扇形ABCD 的周长=()20+10+15+15=30+30cm πππ, 故答案为()30+30π. 【点睛】本题主要考查了弧长的计算,准确理解所给图形找出相关的量是解题的关键. 16.如图,在平面直角坐标系中,已知△ABC 与△DEF 位似,原点O 是位似中心,位似比12OA AD =,若AB =1.5,则DE =_____.【答案】4.5【解析】【分析】根据位似图形的性质得出AO,DO 的长,进而得出, 13OA OD =,13AB DE =求出DE 的长即可 【详解】∵△ABC 与△DEF 位似,原点O 是位似中心,∴AB OA DE OD =, ∵12OA AD =, ∴13OA OD =, ∴13AB DE =, ∴DE =3×1.5=4.5. 故答案为4.5.【点睛】此题考查坐标与图形性质和位似变换,解题关键在于得出AO,DO 的长17.在等腰△ABC 中,AB=AC ,其周长为20cm ,则AB 边的取值范围是 cm .【答案】5<x <10.【解析】【分析】设AB=AC=x ,则BC=20﹣2x ,根据三角形的三边关系即可得出结论.【详解】∵在等腰△ABC 中,AB=AC ,其周长为20cm ,∴设AB=AC=x cm ,则BC=(20﹣2x )cm ,∴22022020x x x >-⎧⎨->⎩ , 解得5cm <x <10cm ,故答案为5<x <10.【点睛】本题考查了等腰三角形的性质,三角形三边关系,正确理解和灵活运用相关知识是解题的关键. 18.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.【答案】20﹣208000=401401. 【解析】【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+=归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键.三.解答题19.计算:(﹣1)2020+(π+11()2-.【答案】3.【解析】【分析】先计算有理数的乘方、零指数幂、特殊角的正切函数值、负整数指数幂,再计算实数的乘法,最后计算实数的加减运算即可.【详解】原式1123=+-+1112=+-+3=.【点睛】本题考查了有理数的乘方、零指数幂、特殊角的正切函数值、负整数指数幂等知识点,熟记各运算法则是解题关键.20.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.【答案】35【解析】【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.【详解】原式=(x2-2xy+y2)-(x2-4y2)=x2-2xy+y2-x2+4y2=-2xy+5y2,方程组52251x yx y--⎧⎨+-⎩=①=②,①+②得:3x=-3,即x=-1,把x=-1代入①得:y=15,则原式=213+=555.【点睛】此题考查了代数式求值,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.21.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,求OM的长.【答案】OM=5.【解析】【分析】作PD⊥MN于D,根据30°角所对直角边是斜边一半的性质可得OD的长,根据等腰三角形三线合一的性质求出MD,即可得出OM的长.【详解】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,∠AOB=60º,OP=12,∴OD=12OP=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=12MN=1,∴OM=OD-MD=6-1=5.【点睛】本题主要考查了含30º角的直角三角形性质、等腰三角形的”三线合一”性质,过点P作PD⊥OB 是解答的关键.22.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)△A1B1C1与△A2B2C2面积之比为(不写解答过程,直接写出结果).【答案】(1)作图见解析;(2)作图见解析;(3)1:4【解析】【分析】(1)根据关于x轴对称点的性质得出对应点位置进而得出答案;(2)根据将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以-2,得出各点坐标,进而得出答案;(3)利用位似图形的性质得出位似比,进而得出答案.【详解】(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3) ∵将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,∴△A1B1C1与△A2B2C2的相似比为:1∶2,∴△A1B1C1与△A2B2C2面积之比为:1∶4.【点睛】本题考查了作图-轴对称变换、作图-位似变换,熟练掌握直角坐标系中的基本作图方法是解答的关键.23.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A(-1,n),B(2,-1)两点,与y 轴相交于点C .(1)求一次函数与反比例函数的表达式;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积.【答案】(1)一次函数的表达式为y =-x +1,反比例函数的表达式为y =-2x ;(2)S △ABD =3. 【解析】【分析】(1)先把B 点坐标代入m y x=中求出m ,得到反比例函数解析式为2y x =-,再利用解析式确定A 点坐标,然后利用待定系数法求一次函数解析式即可;(2)先利用一次函数解析式确定()0,1C ,利用关于x 轴对称的性质得到()0,1D -,则BD x ∥轴,然后根据三角形面积公式计算即可;【详解】解:(1)∵反比例函数m y x =的图象经过点B(2,-1), ∴m =-2.……∵点A(-1,n)在2y x=-的图象上,∴n =2.∴A(-1,2). 把点A ,B 的坐标代入y =kx +b ,得221k b k b ⎧-+=⎨+=-⎩解得11k b ⎧=-⎨=⎩, ∴一次函数的表达式为y =-x +1,反比例函数的表达式为2y x =-; (2)∵直线y =-x +1交y 轴于点C ,∴C(0,1).∵点D 与点C 关于x 轴对称,∴D(0,-1).∵B(2,-1),∴BD ∥x 轴.∴S △ABD =12×2×3=3. 【点睛】本题主要考查了反比例函数与一次函数的交点问题知识点,准确理解待定系数法求解析式是关键.24.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF .(2)若BE =4,EC =6,△DGF 的面积为8,求▱ABCD 的面积.【答案】(1)证明见解析;(2)ABCD 的面积为100.【解析】【分析】(1)根据平行四边形的判定与性质即可得证;(2)先根据平行四边形的性质得出DF 、AD 的长和//,//AB CD BD EF ,再根据平行线的性质得出,F ADB FDG A ∠=∠∠=∠,然后根据相似三角形的判定与性质得出2()DFG ADB SDF S AD =,从而可求出ADB △的面积,由此即可得ABCD 的面积.【详解】(1)证明:∵四边形ABCD 是平行四边形∴//AD BC ,即//DF BE又∵DF =BE∴四边形BEFD 是平行四边形∴//BD EF ;(2)∵四边形ABCD 是平行四边形,4,6BE EC ==∴4,4610DF BE AD BC BE EC ====+=+=,//AB CD∴FDG A ∠=∠∵四边形BEFD 是平行四边形//BD EF ∴∴F ADB ∠=∠ ∴DFG ADB ~∴2244()()1025DFG ADB S DF SAD === ∵8DFG S =∴50ADBS=∴ABCD的面积为2250100ADBS=⨯=.【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质等知识点,较难的是题(2),利用平行四边形的性质得到两个三角形相似的条件是解题关键.25.随着城际铁路的开通,从甲市到乙市的高铁里程比快里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?【答案】(1)高铁列车的平均时速为240千米/小时;(2)王老师能在开会之前到达.【解析】【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意可得,高铁走(1220-90)千米比普快走1220千米时间减少了8小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.【详解】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,122012209082.5x x--=,解得:x=96,经检验,x=96是原分式方程的解,且符合题意,则2.5x=240,答:高铁列车的平均时速为240千米/小时;(2)780÷240=3.25,则坐车共需要3.25+0.5=3.75(小时),从10:00到下午14:00,共计4小时>3.75小时,故王老师能在开会之前到达.【点睛】此题考查分式方程的应用,解题关键在于列出方程26.如图,AB是⊙O的直径,D是⊙O上一点,点E时AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=10.tan∠FAC =12,求FC的长.【答案】(1)证明见解析;(2)FC=203.【解析】【分析】(1)连接EB,可得BE⊥AC,∠ABE=∠CBE,再证∆ABE≅∆CBE,即可得到结论;(2)易得∠FAC=∠ABE,从而得AEBE=12,设AE=x,则BE=2x,可得AC=5BE=5,作CH⊥AF于点H,易证Rt△ACH∽Rt△BAE,可得HC=4,AH=8,由HC∥AB,得FCFB=HCAB,进而即可求解.【详解】(1)连接EB,∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵点E为AD弧的中点,∴∠ABE=∠CBE,在∆ABE与∆CBE中,∵=90{AEB CEBBE BEABE CBE∠∠=︒=∠∠=,∴∆ABE≅∆CBE(ASA),∴BA=BC;(2)∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan ∠ABE =tan ∠FAC =12, ∵在Rt △ABE 中,tan ∠ABE =AE BE =12, ∴设AE =x ,则BE =2x , ∴AB =5x ,即5x =10,解得:x =25,∴∆ABE ≅∆CBE ,∴AC =2AE =45,BE =45,作CH ⊥AF 于点H ,∵∠HAC =∠ABE ,∴Rt △ACH ∽Rt △BAE ,∴HC AE =AH BE =AC AB ,即HC 25=AH 45=4510, ∴HC =4,AH =8,∵HC ∥AB ,∴FC FB =HC AB ,即FC FC 10+=25, 解得:FC =203.【点睛】本题主要考查圆的基本性质,锐角三角函数以及相似三角形的综合,掌握圆周角定理的推论,锐角三角函数的定义以及相似三角形的判定和性质定理,是解题的关键.27.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.【答案】(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) (3,23)Q -或()3,23-或113113,22⎛⎫-+- ⎪ ⎪⎝⎭或1133313,22⎛⎫--+ ⎪ ⎪⎝⎭. 【解析】【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角关系,确定直线OQ 倾斜角,进而求解.【详解】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况: ①当ACB BOQ ∠=∠时,4AB =,32BC =,10AC =,过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:22AH =, ∴CH 2则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:3x =±故点(3,3)Q -或()3,23-;②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:12x -±=,故点13,22Q ⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭;综上,点Q -或(或1122⎛⎫-+- ⎪ ⎪⎝⎭或⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.。

2020年中考数学试卷(及答案)

2020年中考数学试卷(及答案)

2020年中考数学试卷(及答案)一、选择题1.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.2.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5kmB.体育场离文具店1kmC .林茂从体育场出发到文具店的平均速度是50min mD .林茂从文具店回家的平均速度是60min m3.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A .154 B .14 C .1515 D .417174.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭C .()()222323m n ++=D .()222349m n ++=5.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A.12 B.15 C.12或15 D.186.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣57.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a 的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣58.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+43与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6 B.8 C.10 D.129.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤10.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5 B.15.5,15 C.15,15.5 D.15,1511.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折12.下列各式化简后的结果为32的是()A.6B.12C.18D.36二、填空题13.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是.14.分解因式:x3﹣4xy2=_____.15.若一个数的平方等于5,则这个数等于_____.16.已知关于x的一元二次方程2220ax x c++-=有两个相等的实数根,则1ca+的值等于_______.17.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.18.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B 沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .19.如图,在平面直角坐标系xOy中,函数y=kx(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为_____.20.已知M、N两点关于y轴对称,且点M在双曲线12yx上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.三、解答题21.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?22.如图,在四边形ABCD中,AB DC,AB AD=,对角线AC,BD交于点O,AC 平分BAD⊥交AB的延长线于点E,连接OE.∠,过点C作CE AB(1)求证:四边形ABCD是菱形;(2)若5AB=,2BD=,求OE的长.23.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b 的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70624.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)25.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.2.C解析:C【解析】【分析】从图中可得信息:体育场离文具店1000m,所用时间是(45﹣30)分钟,可算出速度.解:从图中可知:体育场离文具店的距离是:2.5 1.511000km m -==, 所用时间是()453015-=分钟,∴体育场出发到文具店的平均速度1000200min 153m ==/故选:C .【点睛】本题运用函数图象解决问题,看懂图象是解决问题的关键.3.A解析:A【解析】∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC ,则cos B =BC AB =4 ,4.D解析:D【解析】【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可.【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点,∴32a m -+=,02bn +=,∴23,2a m b n =+=,又,a b 满足等式:229a b +=,∴()222349m n ++=,故选D .本题考查了坐标与图形性质,解题的关键是理解中点坐标公式.5.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.考点:等腰三角形的性质.6.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0007=7×10﹣4故选C.【点睛】本题考查科学计数法,难度不大.7.A解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.8.A解析:A【解析】试题解析:∵直线l:与x轴、y轴分别交于A、B,∴B(0,∴在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A .考点:1.切线的性质;2.一次函数图象上点的坐标特征.9.A解析:A【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >0.【详解】①∵对称轴在y 轴右侧,∴a 、b 异号,∴ab <0,故正确;②∵对称轴1,2b x a =-=∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选A.【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c ).10.D解析:D【解析】【分析】【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,故选D .11.B解析:B【解析】【详解】设可打x 折,则有1200×10x-800≥800×5%,解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.12.C解析:C【解析】A、不能化简;B,故错误;C,故正确;D,故错误;故选C.点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.二、填空题13.【解析】【分析】连接BD交AC于点O由勾股定理可得BO=3根据菱形的性质求出BD再计算面积【详解】连接BD交AC于点O根据菱形的性质可得AC⊥BDAO=CO=4由勾股定理可得BO=3所以BD=6即可解析:【解析】【分析】连接BD,交AC于点O,由勾股定理可得BO=3,根据菱形的性质求出BD,再计算面积.【详解】连接BD,交AC于点O,根据菱形的性质可得AC⊥BD,AO=CO=4,由勾股定理可得BO=3,所以BD=6,即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.14.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式解析:x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:故答案为:【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.16.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca-=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.17.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.试题解析:如图,连接AE ,∵点C 关于BD 的对称点为点A ,∴PE+PC=PE+AP ,根据两点之间线段最短可得AE 就是AP+PE 的最小值,∵正方形ABCD 的边长为2,E 是BC 边的中点,∴BE=1,∴AE=22125+=. 考点:1.轴对称-最短路线问题;2.正方形的性质.18.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC 先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.19.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x 轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q解析:25【解析】【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),则C点的坐标为(a+3,b),∵E为AC的中点,∴EF=12CM=12b,AF=12AM=12OQ=12a,E点的坐标为(3+12a,12b),把D、E的坐标代入y=kx得:k=ab=(3+12a)12b,解得:a=2,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:5∴5故答案为【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a 、b 的方程是解此题的关键.20.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-ab )分别代入相应的函数中得b=①a+3=b②∴ab=(a+b )2=(a-b )2+4ab=11a+b=∴y=-x2x∴顶点坐标为解析: ,112).【解析】【详解】∵M 、N 两点关于y 轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a ①,a+3=b ②,∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=,∴y=-12x 2,∴顶点坐标为(2b a -=244ac b a -=112),即(112).点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.三、解答题21.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x +=解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.22.(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出2OA=.根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:∵AB∥CD,∴CAB ACD∠=∠∵AC平分BAD∠∴CAB CAD∠=∠,∴CAD ACD∠=∠∴AD CD=又∵AD AB=∴AB CD=又∵AB∥CD,∴四边形ABCD是平行四边形又∵AB AD=∴ABCD是菱形(2)解:∵四边形ABCD是菱形,对角线AC、BD交于点O.∴AC BD⊥.12OA OC AC==,12OB OD BD==,∴112OB BD==.在Rt AOB中,90AOB∠=︒.∴2OA=.∵CE AB⊥,∴90AEC∠=︒.在Rt AEC中,90AEC∠=︒.O为AC中点.∴122OE AC OA===.点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.23.(1)4,4,1,1;(2)x=2或x=﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,再整理化简求出y的值,最后求出x的值.【详解】(1)因为3和5的均值为4,所以,设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,去括号,得:(y2﹣2y+1)2+(y2+2y+1)2=706,y4+4y2+1﹣4y3+2y2﹣4y+y4+4y2+1+4y3+2y2+4y=706,整理,得:2y4+12y2﹣704=0(成功地消去了未知数的奇次项),解得:y2=16或y2=﹣22(舍去)所以y=±4,即x+2=±4.所以x=2或x=﹣6.【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.24.123米.【解析】【分析】在Rt△ABC中,利用tanBC CABAB∠=即可求解.【详解】解:∵CD∥AB,∴∠CAB=∠DCA=39°.在Rt△ABC中,∠A BC=90°,tanBC CABAB∠=.∴100123tan 0.81BC AB CAB ==≈∠.答:A 、B 两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.25.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点睛】考查统计知识,考查扇形图的理解,难度较容易.。

2020年度初三数学专题复习中考 圆的折叠专题(含答案详解)

2020年度初三数学专题复习中考 圆的折叠专题(含答案详解)

2020年度初三数学专题复习中考 圆的折叠专题1. 如图①是半径为2的半圆,点C 是︵AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .4π3B .4π3 -3C .23+π3D .23-23π2. 如图,AB 是⊙O 的弦,AC 是⊙O 的直径,将︵ AB 沿着AB 弦翻折,恰好经过圆心O .若⊙O 的半径为6,则图中阴影部分的面积等于( )A .6πB .93C .9πD .633. 如图,将⊙O 的劣弧︵AB 沿AB 翻折,D 为优弧︵ADB 上一点,连接AD ,交︵ AB 于点C ,连接BC 、BD ;若BC=5,则BD= .4. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.25.如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为()A.9π-9 B.9π-63C.9π-18 D.9π-1236.如图,是一个圆心角为90°的扇形,AO=2cm,点P在半径AO上运动,点Q在弧AB上运动,沿PQ将它以上的部分向下翻折,使翻折后的弧恰好过点O,则OP的最大距离为.7.如图,⊙O的半径为5,弦AB的长为8,将沿直线AB折叠,折叠后如右图,则⊙O到所作的圆的切线OC的长为()A.22B.5C.3 D.118.如图,将半径为12的⊙O沿AB折叠,弧AB恰好经过与AB垂直的半径OC的中点D,则折痕AB长为()A.42B.82C.6 D.629. 已知如图:⊙O 的半径为8cm ,把弧AmB 沿AB 折叠使弧AmB 经过圆心O ,再把弧AOB 沿CD 折叠,使弧COD 经过AB 的中点E ,则折线CD 的长为( )A .8cmB .38cmC .72cmD .47cm10. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.211. 如图,将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD=6,DB=7,则BC 的长是( )A .91B .37C .134D .13012. 如图,在⊙O 中,点C 在优弧 AB ︵ 上,将弧︵BC 沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是( )A .AC=CDB .︵ AC +︵ BD =︵ BCC .OD ⊥AB D .CD 平分∠ACB13. 如图,点O 是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB 和弧BC 都经过圆心O ,则阴影部分的面积为( )A .2πB .3πC .34πD .5314. 如图,△ABC 内接于⊙O ,BC=22,∠BAC=45°,将劣弧︵ AB 和︵AC 分别沿直线AB 、AC 折叠后交于点M ,点S 、T 是弦AB 、AC 上的动点,则△MST 的周长的最小值为( )A .22B .4C .24D .815. 如图,在⊙O 中,点C 在优弧⌢ACB 上,将弧沿⌢BC 折叠后刚好经过AB 的中点D ,若⊙O 的半径为5,AB=4,则BC 的长是 .16. 如图,AB 是半径为2的⊙O 的弦,将︵ AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的︵AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD ,EO .则下列结论:①∠ACB=120°,②△ACD 是等边三角形,③EO 的最小值为1,其中正确的是 .(请将正确答案的序号填在横线上)17. 如图,将︵ AB 沿着弦AB 翻折,C 为翻折后的弧上任意一点,延长AC 交圆于D ,连接BC .(1)求证:BC=BD;(2)若AC=1,CD=4,︵AB=120°,求弦AB的长和圆的半径.18.如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将︵CD 沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC (1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为︵ADB 的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交︵BC 于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.19.如图1和图2,AB是⊙O的直径,AB=10,C是⊙O上的一点,将︵BC 沿弦BC翻折,交AB于点D.(1)若点D与圆心O重合,直接写出∠B的度数;(2)设CD交⊙O于点E,若CE平分∠ACB,①求证:△BDE是等腰三角形;②求△BDE的面积;(3)将图1中的︵BD 沿直径AB翻折,得到图2,若点F恰好是翻折后的︵BD 的中点,直接写出∠B的度数.20.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将︵CE 沿弦CE翻折,交CD于点F,求图中阴影部分的面积.21.如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于点B.抛物线y=ax2+bx+c 经过P、B、M三点.(1)求该抛物线的函数表达式;(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q的横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,并说明理由.2020年度初三数学专题复习中考 圆的折叠专题22. 如图①是半径为2的半圆,点C 是︵AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .4π3B .4π3 -3C .23+π3D .23-23π【分析】连接OC 交MN 于点P ,连接OM 、ON ,根据折叠的性质得到OP=12OM ,得到∠POM=60°,根据勾股定理求出MN ,结合图形计算即可.【解答】解:连接OC 交MN 于点P ,连接OM 、ON ,由题意知,OC ⊥MN ,且OP=PC=1,在Rt △MOP 中,∵OM=2,OP=1,∴cos ∠POM=OPOM=12,AC=22OP OM =3, ∴∠POM=60°,MN=2MP=23,∴∠AOB=2∠AOC=120°,则图中阴影部分的面积=S 半圆-2S 弓形MCN =12×π×22-2×(120π×22360 -12×23×1)=23-23π, 故选:D .【点评】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.23. 如图,AB 是⊙O 的弦,AC 是⊙O 的直径,将︵AB 沿着AB 弦翻折,恰好经过圆心O .若⊙O 的半径为6,则图中阴影部分的面积等于( )A .6πB .93C .9πD .63【分析】由题意△OBC 是等边三角形,弓形OnB 的面积=弓形BmC 的面积,根据S 阴=S △OBC 计算即可.【解答】解:如图,连接OB ,BC .由题意△OBC 是等边三角形,弓形OnB 的面积=弓形BmC 的面积,∴S 阴=S △OBC=43×62=93, 故选:B .【点评】本题考查扇形的面积的计算,垂径定理,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24. 如图,将⊙O 的劣弧︵ AB 沿AB 翻折,D 为优弧︵ADB 上一点,连接AD ,交︵ AB 于点C ,连接BC 、BD ;若BC=5,则BD= .【分析】根据圆周角定理、翻转变换的性质得到∠ADB=∠BCD ,根据等腰三角形的判定定理解答.【解答】解:由翻转变换的性质可知,∠ADB 所对的弧是劣弧︵AB ,∠CAB 所对的弧是劣弧︵ BC ,∠CBA 所对的弧是劣弧︵ AC ,∴∠ADB=∠CAB+∠CBA ,由三角形的外角的性质可知,∠BCD=∠CAB+∠CBA ,∴∠ADB=∠BCD,∴BD=BC=5,故答案为:5.【点评】本题考查的是翻转变换的性质、圆周角定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.25.如图,AB是⊙O的直径,且AB=4,C是⊙O上一点,将弧AC沿直线AC翻折,若翻折后的圆弧恰好经过点O,π≈314,2≈1.41,3≈1.73,那么由线段AB、AC和弧BC所围成的曲边三角形的面积与下列四个数值最接近的是()A.3.2 B.3.6 C.3.8 D.4.2【分析】作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,构造全等三角形,然后利用勾股定理、割线定理解答.【解答】解:如图,作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,可得M、A、M′三点共线,MA=M′A,MB=M′B′=4,M′N=MN=10.连接AB',∵四边形AMNB'是圆内接四边形,∴∠M'AB'=∠M'NM,∵∠M'=∠M',∴△M'AB'∽△M'NM,∴M′AM′N=M′B′M′M∴M′A•M′M=M′B′•M′N,即M′A•2M′A=4×10=40.则M′A2=20,又∵M′A2=M′N2-AN2,∴20=100-AN2,∴AN=45.故选:B.【点评】此题将翻折变换、勾股定理、割线定理相结合,考查了同学们的综合应用能力,要善于观察图形特点,然后做出解答.26. 如图,在扇形AOB 中,∠AOB=90°,半径OA=6,将扇形AOB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,则整个阴影部分的面积为( )A .9π-9B .9π-63C .9π-18D .9π-123【分析】首先连接OD ,由折叠的性质,可得CD=CO ,BD=BO ,∠DBC=∠OBC ,则可得△OBD 是等边三角形,继而求得OC 的长,即可求得△OBC 与△BCD 的面积,又在扇形OAB 中,∠AOB=90°,半径OA=6,即可求得扇形OAB 的面积,继而求得阴影部分面积.【解答】解:连接OD .根据折叠的性质,CD=CO ,BD=BO ,∠DBC=∠OBC ,∴OB=OD=BD ,即△OBD是等边三角形,∴∠DBO=60°,∴∠CBO=12∠DBO=30°, ∵∠AOB=90°,∴OC=OB•tan ∠CBO=6×33=23, ∴S △BDC =S △OBC =12×OB×OC=12×6×23=63, S 扇形AOB =90360•π×62=9π, ∴整个阴影部分的面积为:S 扇形AOB -S △BDC -S △OBC =9π-63-63=9π-123.故选:D .【点评】此题考查了折叠的性质、扇形面积公式以及直角三角形的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.27.如图,是一个圆心角为90°的扇形,AO=2cm,点P在半径AO上运动,点Q在弧AB上运动,沿PQ将它以上的部分向下翻折,使翻折后的弧恰好过点O,则OP的最大距离为.【分析】作O关于PQ的对称点O′,O′恰好落在⊙O上,于是得到OP=12Rcos∠POE,推出△OO′Q为等边三角形,根据等边三角形的性质得到OQ=O′Q=OO′=R,当cos∠POE最小时,∠POE最大,当∠QOB=0°时,∠POE=30°于是得到结论.【解答】解:作O关于PQ的对称点O′,O′恰好落在⊙O上,∴OP=12Rcos∠POE,∵△OO′Q为等边三角形,∴OQ=O′Q=OO′=R,∠POE+∠QOB=30°,当cos∠POE最小时,∠POE最大,当∠QOB=0°时,∠POE=30°,∴OP=1cos30°=332.故答案为:332.【点评】本题考查了翻折变换-折叠问题,等边三角形的判定和性质,正确的在才辅助线是解题的关键.28.如图,⊙O的半径为5,弦AB的长为8,将沿直线AB折叠,折叠后如右图,则⊙O到所作的圆的切线OC的长为()A .22B .5C .3D .11【分析】根据题意先画出图形,可知翻转过后的弧AB 所在的圆和⊙O 全等,且两个圆的圆心相距为6,又已知圆的半径,故根据勾股定理即可求出答案.【解答】解:根据题意画出图形如下所示:BD=4,OB=5,点O′为翻转过后的弧AB 所在圆的圆心,则有O′D=OD=2245-=3.又O′C=5,O′O=6,∴OC=22C ′O O ′O -=2256-=11.故选:D .【点评】本题考查了翻转变换、垂径定理及圆的切线的性质,难度不大,找出翻转过后的弧AB 所在圆的圆心是解题关键.29. 如图,将半径为12的⊙O 沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,则折痕AB长为( )A .42B .82C .6D .62【分析】延长CO 交AB 于E 点,连接OB ,构造直角三角形,然后再根据勾股定理求出AB 的长【解答】解:延长CO 交AB 于E 点,连接OB ,∵CE ⊥AB ,∴E 为AB 的中点,∵OC=6,CD=2OD ,∴CD=4,OD=2,OB=6,∴DE=12(2OC-CD )=12(6×2-4)=12×8=4, ∴OE=DE-OD=4-2=2,在Rt △OEB 中,∵OE 2+BE 2=OB 2,∴BE=22OE OB -=2246-42∴AB=2BE=82.故选:B .【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.30. 已知如图:⊙O 的半径为8cm ,把弧AmB 沿AB 折叠使弧AmB 经过圆心O ,再把弧AOB 沿CD 折叠,使弧COD 经过AB 的中点E ,则折线CD 的长为( )A .8cmB .38cmC .72cmD .47cm【分析】连接OE 并延长交CD 于点F ,交C′D′于点F′,交弧AmB 于点G ,根据翻折的性质得出OF′=6,再由勾股定理得出.【解答】解:连接OE 并延长交CD 于点F ,交C′D′于点F′,交弧AmB 于点G ,∵OC′=8cm ,∴OF′=6cm ,∴C′F′=CF=2268-=27cm ,F∴CD=2CD=47cm .故选:D . 【点评】本题考查了垂径定理和勾股定理以及翻折的性质,是基础知识要熟练掌握. 31. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.2【分析】作OE ⊥AC 交⊙O 于F ,交AC 于E ,根据折叠的性质得到OE=12OF ,求出∠ACB 的度数即可解决问题.【解答】解:作OE ⊥AC 交⊙O 于F ,交AC 于E .连接OB ,BC .由折叠的性质可知,EF=OE=12OF , ∴OE=12OA ,在Rt △AOE 中,OE=12OA , ∴∠CAB=30°,∵AB 是直径,∴∠ACB=90°,∠BOC=2∠BAC=60°,∵AB=4,∴BC=12AB=2,AC=3BC=23, ∴线段AB 、AC 和弧BC 所围成的曲边三角形的面积为S=12•AC•B C+S 扇形OBC -S △OBC =12×23×2+60π•22360-43×22=3+23π≈3.8,故选:C .【点评】本题考查的是翻折变换的性质、圆周角定理,折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.32. 如图,将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD=6,DB=7,则BC 的长是( )A .91B .37C .134D .130【分析】连接CA 、CD ,根据翻折的性质可得弧CD 所对的圆周角是∠CBD ,再根据AC 弧所得的圆周角也是∠CBA ,然后求出AC=CD ,过点C 作CE ⊥AB 于E ,根据等腰三角形三线合一的性质可得AE=ED=12AD ,根据直径所对的圆周角是直角可得∠ACB=90°,然后求出△ACE 和△CBE 相似,根据相似三角形对应边成比例求出CE 2,再求出BE ,然后利用勾股定理列式计算即可求出BC .【解答】解:如图,连接CA 、CD , 根据折叠的性质,弧CD 所对的圆周角是∠CBD , ∵弧AC 所对的圆周角是∠CBA ,∠CBA=∠CBD ,∴AC=CD (相等的圆周角所对的弦相等),过点C 作CE ⊥AB 于E , 则AE=ED=12AD=12×6=3, ∴BE=BD+DE=7+3=10, ∵AB 是直径,∴∠ACB=90°, ∵CE ⊥AB ,∴∠ACB=∠AEC=90°,∴∠A+∠ACE=∠ACE+∠BCE=90°,∴∠A=∠BCE ,∴△ACE ∽△CBE ,∴AE CE = CE BE, 即CE 2=AE•BE=3×10=30, 在Rt △BCE 中,BC=22CE BE + =30102+= 130,故选:D .【点评】本题考查了翻折的性质,相似三角形的判定与性质,圆的性质,等腰三角形的判定与性质,作辅助线并求出AC=CD 是解题的关键.33. 如图,在⊙O 中,点C 在优弧 AB ︵ 上,将弧︵BC 沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是( )A .AC=CDB .︵ AC +︵ BD =︵ BCC .OD ⊥AB D .CD 平分∠ACB【分析】A 、作辅助线,构建折叠的性质可得AD=CD ;B 、相等两弧相加可作判断;C 、根据垂径定理可作判断;D 、延长OD 交⊙O 于E ,连接CE ,根据垂径定理可作判断.【解答】解:A 、过D 作DD'⊥BC ,交⊙O 于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD ,故①正确;B 、∵AC=CD',∴︵ AC =︵ CD′ ,由折叠得:︵ BD =︵ BD ′,∴︵ AC+︵ BD=︵ BC ,故②正确;C 、∵D 为AB 的中点,∴OD ⊥AB ,故③正确;D 、延长OD 交⊙O 于E ,连接CE ,∵OD ⊥AB ,∴∠ACE=∠BCE ,∴CD 不平分∠ACB ,故④错误;故选:D .【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.34. 如图,点O 是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB 和弧BC 都经过圆心O ,则阴影部分的面积为( )A .2πB .3πC .34πD .53【分析】作OD ⊥AB 于点D ,连接AO ,BO ,CO ,求出∠OAD=30°,得到∠AOB=2∠AOD=120°,进而求得∠AOC=120°,再利用阴影部分的面积=S 扇形AOC 得出阴影部分的面积是⊙O 面积的13,即可得出答案.【解答】解:作OD ⊥AB 于点D ,连接AO ,BO ,CO ,如图所示:∵OD=12AO ∴∠OAD=30°, ∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S 扇形BOC =13×⊙O 面积=13×π×32=3π,故选:B . 【点评】本题主要考查了翻折变换的性质、扇形面积以及圆的面积公式等知识;解题的关键是确定∠AOC=120°.35. 如图,△ABC 内接于⊙O ,BC=22,∠BAC=45°,将劣弧︵ AB 和︵AC 分别沿直线AB 、AC 折叠后交于点M ,点S 、T 是弦AB 、AC 上的动点,则△MST 的周长的最小值为( )A .22B .4C .24D .8【分析】作点M 关于AB 的对称点M ′,关于AC 的对称点M ″,根据折叠的性质得到点M ′,M ″在圆周上,连接M ′M ″,交AB 于S ,交AC 于T ,则△MST 的周长最小,连接AM ′,AM ″,OB ,OC ,根据圆周角定理得到M ′M ″是⊙O 的直径,即可得到结论.【解答】解:作点M 关于AB 的对称点M′,关于AC 的对称点M″,∵将劣弧AB 和AC 分别沿直线AB 、AC 折叠后交于点M ,∴点M′,M″在圆周上,连接M′M″,交AB 于S ,交AC 于T ,则△MST 的周长最小,连接AM′,AM″,OB ,OC ,则∠M′AM″=2∠BAC ,∵∠BAC=45°,∴∠M′AM″=∠BOC=90°,∵BC=22,∴OB=2,∴M′M″=2OB=4,∴△MST 的周长的最小值为4,故选:B .【点评】本题考查了三角形的外接圆与外心,轴对称-最短路线问题,翻折变换(折叠问题),圆周角定理,勾股定理,正确的作出辅助线是解题的关键.36. 如图,在⊙O 中,点C 在优弧⌢ACB 上,将弧沿⌢BC 折叠后刚好经过AB 的中点D ,若⊙O 的半径为5,AB=4,则BC 的长是 .【分析】连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,利用垂径定理得到OD ⊥AB ,则AD=BD=12AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC 和弧CD 所在的圆为等圆,则根据圆周角定理得到︵ AC=︵CD ,所以AC=DC ,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF 为正方形得到OF=EF=1,然后计算出CF 后得到CE=BE=3,于是得到BC=32.【解答】解:连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,∵D 为AB 的中点,∴OD ⊥AB ,∴AD=BD=12AB=2, 在Rt △OBD 中,OD=22BD OB -=222)5(-=1,∵将弧︵ BC 沿BC 折叠后刚好经过AB 的中点D .∴︵ AC 和︵ CD 所在的圆为等圆,∴︵ AC=︵CD ,∴AC=DC ,∴AE=DE=1,易得四边形ODEF 为正方形,∴OF=EF=1,在Rt △OCF 中,CF=22OF CO -=221)5(-=2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=32.故答案为32.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.37. 如图,AB 是半径为2的⊙O 的弦,将︵ AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的︵ AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD ,EO .则下列结论:①∠ACB=120°,②△ACD 是等边三角形,③EO 的最小值为1,其中正确的是 .(请将正确答案的序号填在横线上)【分析】根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO 的最小值问题是个难点,这是一个动点问题,只要把握住E 在什么轨迹上运动,便可解决问题.【解答】解:如图1,连接OA 和OB ,作OF ⊥AB .由题知:︵AB 沿着弦AB 折叠,正好经过圆心O ∴OF=OA=12OB∴∠AOF=∠BOF=60° ∴∠AOB=120°∴∠ACB=120°(同弧所对圆周角相等)∠D=12∠AOB=60°(同弧所对的圆周角是圆心角的一半)∴∠ACD=180°-∠ACB=60°∴△ACD 是等边三角形(有两个角是60°的三角形是等边三角形) 故,①②正确下面研究问题EO 的最小值是否是1 如图2,连接AE 和EF∵△ACD 是等边三角形,E 是CD 中点 ∴AE ⊥BD (三线合一) 又∵OF ⊥AB∴F 是AB 中点即,EF 是△ABE 斜边中线∴AF=EF=BF 即,E 点在以AB 为直径的圆上运动. 所以,如图3,当E 、O 、F 在同一直线时,OE 长度最小 此时,AE=EF ,AE ⊥EF∵⊙O的半径是2,即OA=2,OF=1∴AF=3(勾股定理)∴OE=EF-OF=AF-OF=3-1所以,③不正确综上所述:①②正确,③不正确.故答案为①②.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.38.如图,将︵AB沿着弦AB翻折,C为翻折后的弧上任意一点,延长AC交圆于D,连接BC.(1)求证:BC=BD;(2)若AC=1,CD=4,︵AB=120°,求弦AB的长和圆的半径.【分析】(1)作点C关于AB的对称点C′,连接AC′,BC′.利用翻折不变性,以及圆周角定理即可解决问题;(2)连接OA,OB,作OM⊥AB于M,AH⊥BC交BC的延长线于H.解直角三角形求出AB,OA即可;【解答】(1)证明:作点C关于AB的对称点C′,连接AC′,BC′.由翻折不变性可知:BC=BC′,∠CAB=∠BAC′,∴︵BD=︵BC′,∴BD=BC′,∴BC=BD.(2)解:连接OA,OB,作OM⊥AB于M,AH⊥BC交BC的延长线于H.∵︵AB=120°,∴∠D=12×120°=60°,∴∠AOB=∠ACB=2∠D=120°, ∵BC=BD ,∴△BCD 是等边三角形, ∴BC=DC=4,在Rt △ACH 中, ∵∠H=90°,∠ACH=60°,AC=1,∴CH=12,AH=23,∴AB=22BH AH +=22)29()23(+=21, ∵OM ⊥AB , ∴AM=BM=221,在Rt △AOM 中, ∵∠OAM=30°,∠AMO=90°, ∴OA=AMcos30°=7【点评】本题考查圆心角、弧、弦之间的关系,垂径定理,勾股定理,翻折变换,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.39. 如图,已知⊙O 的半径为2,AB 为直径,CD 为弦.AB 与CD 交于点M ,将︵CD 沿CD 翻折后,点A与圆心O 重合,延长OA 至P ,使AP=OA ,连接PC (1)求CD 的长;(2)求证:PC 是⊙O 的切线;(3)点G 为︵ADB 的中点,在PC 延长线上有一动点Q ,连接QG 交AB 于点E .交︵BC 于点F (F 与B 、C 不重合).问GE•GF 是否为定值?如果是,求出该定值;如果不是,请说明理由.【分析】(1)连接OC ,根据翻折的性质求出OM ,CD ⊥OA ,再利用勾股定理列式求解即可;(2)利用勾股定理列式求出PC ,然后利用勾股定理逆定理求出∠PCO=90°,再根据圆的切线的定义证明即可;(3)连接GA 、AF 、GB ,根据等弧所对的圆周角相等可得∠BAG=∠AFG ,然后根据两组角对应相等两三角相似求出△AGE 和△FGA 相似,根据相似三角形对应边成比例可得AG GE =FGAG ,从而得到GE•GF=AG 2,再根据等腰直角三角形的性质求解即可.【解答】(1)解:如图,连接OC ,∵︵CD 沿CD 翻折后,点A 与圆心O 重合, ∴OM=12OA=12×2=1,CD ⊥OA ,∵OC=2,∴CD=2CM=222OM OC -=22212-=23;(2)证明:∵PA=OA=2,AM=OM=1,CM=12CD=3,∠CMP=∠OMC=90°,∴PC=22PM MC +=223)3(+=23,∵OC=2,PO=2+2=4,∴PC 2+OC 2=(23)2+22=16=PO 2, ∴∠PCO=90°, ∴PC 是⊙O 的切线;(3)解:GE•GF是定值,证明如下,连接GO并延长,交⊙O于点H,连接HF∵点G为︵ADB 的中点∴∠GOE=90°,∵∠HFG=90°,且∠OGE=∠FGH ∴△OGE∽△FGH∴OGGF=GEGH∴GE•GF=OG•GH=2×4=8.【点评】本题是圆的综合题型,主要利用了翻折变换的性质,垂径定理,勾股定理,勾股定理逆定理,圆的切线的定义,相似三角形的判定与性质,难点在于(3)作辅助线构造出相似三角形.40.如图1和图2,AB是⊙O的直径,AB=10,C是⊙O上的一点,将︵BC 沿弦BC翻折,交AB于点D.(1)若点D与圆心O重合,直接写出∠B的度数;(2)设CD交⊙O于点E,若CE平分∠ACB,①求证:△BDE是等腰三角形;②求△BDE的面积;(3)将图1中的︵BD 沿直径AB翻折,得到图2,若点F恰好是翻折后的︵BD 的中点,直接写出∠B的度数.【分析】(1)如图所示:将⊙O沿BC翻折得到⊙O′,则⊙O与⊙O′为等圆,然后证明︵AC =︵CD =︵BD ,则可得到︵AC 的弧度,从而可求得∠B的度数;(2)①将⊙O沿BC翻折得到⊙O′,则⊙O与⊙O′为等圆,在⊙O′上取点E′,连接CE′,BE′.由等弧所对的圆周角相等可得到∠CEB=∠E′,依据圆内接四边形的性质可得到E′=∠BDE,故此可证明∠CEB=∠BDE ;②连接OE .先证明∠BOE 为直角,依据勾股定理可求得BE 的长,从而得到BD 的长,最后依据△DBE 的面积=12BD•OE 求解即可;(3)将⊙O 沿BC 翻折得到⊙O′,将⊙O′沿BD 翻折得到⊙O″,则⊙O 、⊙O′、⊙O″为等圆.依据在同圆或等圆中相等的圆周角所对的弧相等可证明︵AC =︵CD =︵ DF=︵FB ,从而可得到弧AC 的度数,由弧AC 的度数可求得∠B 的度数.【解答】解:(1)如图所示:将⊙O 沿BC 翻折得到⊙O′,则⊙O 与⊙O′为等圆.∵︵AC 与︵CD 所对的角均为∠CBA ,⊙O 与⊙O′为等圆, ∴︵AC =︵ CD . 又∵CD=BC , ∴︵CD =︵ BD .又∵︵ CDB =︵CO′B ,∴︵ AC =13︵ ACB ,∴∠ADC=13×180°=60°.∴∠B=30°.(2)①将⊙O 沿BC 翻折得到⊙O′,则⊙O 与⊙O′为等圆,在⊙O′上取点E′,连接CE′,BE′.由翻折的性质可知:︵ CFB=︵ CDB ,∴∠CEB=∠E′.∵四边形CDBE′是圆内接四边形, ∴∠E′=∠BDE . ∴∠CEB=∠BDE . ∴BE=BD .∴△BDE 为等腰三角形.②如图2所示:连接OE .∵AB 是⊙O 的直径,∴∠ACB=90°.∵CE 是∠ACB 的角平分线, ∴∠BCE=45°. ∴∠BOE=90°.在Rt △OBE 中,BE=22OB OE =52. ∴BD=52.∴△DBE 的面积=12BD•OE=12×52×5=2225.(3)将⊙O 沿BC 翻折得到⊙O′,将⊙O′沿BD 翻折得到⊙O″,则⊙O 、⊙O′、⊙O″为等圆.∵⊙O 与⊙O′为等圆,劣弧AC 与劣弧CD 所对的角均为∠ABC , ∴︵AC =︵CD . 同理:︵DF =︵CD .又∵F 是劣弧BD 的中点, ∴︵DF =︵ BF . ∴︵AC =︵CD =︵ DF =︵FB .∴弧AC 的度数=180°÷4=45°. ∴∠B=12×45°=22.5°.【点评】本题主要考查的是圆的综合应用,解答本题主要应用了翻折的性质、弧、弦、圆周角之间的关系、圆内接四边形的性质,等腰三角形的判定,找出图形中的等弧是解题的关键.41. 如图,CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD ,垂足为G ,OG :OC=3:5,AB=8.(1)求⊙O 的半径;(2)点E 为圆上一点,∠ECD=15°,将︵CE 沿弦CE 翻折,交CD 于点F ,求图中阴影部分的面积.【分析】(1)根据AB ⊥CD ,垂足为G ,OG :OC=3:5,AB=8,可以求得⊙O 的半径;(2)要求阴影部分的面积只要做出合适的辅助线,然后利用锐角三角函数、扇形的面积和三角形的面积即可解答本题.【解答】解:(1)连接AO ,如右图1所示,∵CD 为⊙O 的直径,AB ⊥CD ,AB=8, ∴AG=12AB=4,∵OG :OC=3:5,AB ⊥CD ,垂足为G , ∴设⊙O 的半径为5k ,则OG=3k , ∴(3k )2+42=(5k )2, 解得,k=1或k=-1(舍去), ∴5k=5,即⊙O 的半径是5;(2)如图2所示,将阴影部分沿CE 翻折,点F 的对应点为M ,∵∠ECD=15°,由对称性可知,∠DCM=30°,S 阴影=S 弓形CBM , 连接OM ,则∠MOD=60°, ∴∠MOC=120°,过点M 作MN ⊥CD 于点N , ∴MN=MO•sin60°=5×23=235, ∴S 阴影=S 扇形OMC -S △OMC =120×π×52360 −12×5×235=25π3−435, 即图中阴影部分的面积是:25π3−435. 【点评】本题考查垂径定理、扇形的面积、翻折变换,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.42.如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于点B.抛物线y=ax2+bx+c 经过P、B、M三点.(1)求该抛物线的函数表达式;(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q的横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,并说明理由.【分析】【解答】【点评】本题考查了二次函数解析式的确定、图形面积的求法、圆心角定理、切线的性质与判定、特殊三角形的判定和性质等知识点.。

2020中考数学冲刺练习-第19讲 线段的最值问题--含解析

2020中考数学冲刺练习-第19讲 线段的最值问题--含解析

2020数学中考冲刺专项练习专题19线段的最值问题【难点突破】着眼思路,方法点拨, 疑难突破;两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题.【名师原创】原创检测,关注素养,提炼主题;【原创】如图,抛物线y=ax2+bx+c与y轴交于点A(0,2),与x轴交于一点(-2+ 2,0),对称轴为直线x=﹣2,抛物线上存在B、C两点,点B在对称轴左侧,点C在对称轴右侧,BC=6且平行于x轴。

(1)求此抛物线的解析式.(2)求△ABC的面积.(3)点P在x轴负半轴上,且PA+PB的最小值为,求点P的坐标.直线CP将线段AB分成1:3两部分,试求点P的坐标。

【解答】解:(1)由题意得:x=﹣=﹣2,b=4a,c=2,又∵过点(-2+2,0),代入y=ax 2+4ax+2,解得a=1,故b=4则此抛物线的解析式为y=x 2+4x+2; (2)∵抛物线对称轴为直线x=﹣2,BC=6, ∴B 横坐标为﹣5,C 横坐标为1, 把x=1代入抛物线解析式得:y=7,又∵点A 的坐标为(0,2),故点A 到BC 的距离为7-2=5, ∴△ABC 的面积=5×6÷2=15. (3)由(2)题可知B (﹣5,7),C (1,7), 设直线PC 解析式为y=kx+b ,交AB 与点D , 过点A 作AE//BC ,交PC 于点E ,① 当AD :BD=1:3时,则有AE :BC=1:3又∵BC=6,故AE=2,从而得到点E 的坐标为(-2,2) 则代入PC 解析式可得:722k b k b +=⎧⎨-+=⎩解得:53163k b ⎧=⎪⎪⎨⎪=⎪⎩则直线PC 解析式为y=53x+163,则可得点P 的坐标为(0,165-) ②当AD :BD=3:1时,则有AE :BC=3:1 同理可得到点E 的坐标为(-18,2) 则代入PC 解析式可得:7182k b k b +=⎧⎨-+=⎩解得:51912819k b ⎧=⎪⎪⎨⎪=⎪⎩则直线PC 解析式为y=519x+ 12819,则可得点P 的坐标为(0,1285-) 综上所述可得点P 的坐标为(0,165-)或(0,1285-).【典题精练】典例精讲,运筹帷幄,举一反三;【例题1】如图1,菱形ABCD 中,AB =2,∠A =120°,点P 、Q 、K 分别为线段B C 、CD 、BD 上的任意一点,求PK +QK 的最小值.图1【解析】如图2,点Q 关于直线BD 的对称点为Q ′,在△KPQ ′中,PK +QK 总是大于PQ ′的.如图3,当点K 落在PQ ′上时,PK +QK 的最小值为PQ ′.如图4,PQ ′的最小值为Q ′H ,Q ′H 就是菱形ABCD 的高,Q ′H=3.这道题目应用了两个典型的最值结论:两点之间,线段最短;垂线段最短.图2 图3 图4【例题2】如图1,已知A (0, 2)、B (6, 4)、E (a , 0)、F (a +1, 0),求a 为何值时,四边形ABEF 周长最小?请说明理由.图1【解析】在四边形ABEF 中,AB 、EF 为定值,求AE +BF 的最小值,先把这两条线段经过平移,使得两条线段有公共端点.如图2,将线段BF 向左平移两个单位,得到线段ME .如图3,作点A 关于x 轴的对称点A ′,MA ′与x 轴的交点E ,满足AE +ME 最小. 由△A ′OE ∽△BHF ,得'OE HF OA HB =.解方程6(2)24a a -+=,得43a =.图2 图3【例题3】在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).【分析】(1)利用勾股定理即可求出AE′,BF′的长.(2)运用全等三角形的判定与性质、三角形的外角性质就可解决问题.(3)首先找到使点P的纵坐标最大时点P的位置(点P与点D′重合时),然后运用勾股定理及30°角所对的直角边等于斜边的一半等知识即可求出点P的纵坐标的最大值.【解答】解:(Ⅰ)当α=90°时,点E′与点F重合,如图①.∵点A(﹣2,0)点B(0,2),∴OA=OB=2.∵点E,点F分别为OA,OB的中点,∴OE=OF=1∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,∴OE′=OE=1,OF′=OF=1.在Rt△AE′O中,AE′=.在Rt△BOF′中,BF′=.∴AE′,BF′的长都等于.(Ⅱ)当α=135°时,如图②.∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,∴∠AOE′=∠BOF′=135°.在△AOE′和△BOF′中,,∴△AOE′≌△BOF′(SAS).∴AE′=BF′,且∠OAE′=∠OBF′.∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,∴∠CPB=∠AOC=90°∴AE′⊥BF′.(Ⅲ)∵∠BPA=∠BOA=90°,∴点P、B、A、O四点共圆,∴当点P在劣弧OB上运动时,点P的纵坐标随着∠PAO的增大而增大.∵OE′=1,∴点E′在以点O为圆心,1为半径的圆O上运动,∴当AP与⊙O相切时,∠E′AO(即∠PAO)最大,此时∠AE′O=90°,点D′与点P重合,点P的纵坐标达到最大.过点P作PH⊥x轴,垂足为H,如图③所示.∵∠AE′O=90°,E′O=1,AO=2,∴∠E′AO=30°,AE′=.∴AP=+1.∵∠AHP=90°,∠PAH=30°,∴PH=AP=.∴点P的纵坐标的最大值为.【最新试题】名校直考,巅峰冲刺,一步到位。

2020年中考数学试卷含答案

2020年中考数学试卷含答案

2020年中考数学试卷含答案一、选择题1.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.2.如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.2B.4C.22D.23.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个4.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣55.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A .10B .5C .22D .36.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°7.已知直线//m n ,将一块含30°角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30°D .40︒8.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm9.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A .1 个B .2 个C .3 个D .4个10.若0xy <,则2x y 化简后为( )A .x y -B .x yC .x y -D .x y --11.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A .60°B .50°C .45°D .40°12.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.如果a 是不为1的有理数,我们把11a-称为a 的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则 2019a =___________ .15.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.16.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.17.在函数3yx=-的图象上有三个点(﹣2,y1),(﹣1,y2),(12,y3),则y1,y2,y3的大小关系为_____.18.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.19.关于x的一元二次方程(a+1)x2-2x+3=0有实数根,则整数a的最大值是_____.20.若ab=2,则222a ba ab--的值为________.三、解答题21.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.22.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?23.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.已知抛物线y=ax2﹣13x+c经过A(﹣2,0),B(0,2)两点,动点P,Q同时从原点出发均以1个单位/秒的速度运动,动点P沿x轴正方向运动,动点Q沿y轴正方向运动,连接PQ,设运动时间为t秒(1)求抛物线的解析式;(2)当BQ=13AP时,求t的值;(3)随着点P,Q的运动,抛物线上是否存在点M,使△MPQ为等边三角形?若存在,请求出t的值及相应点M的坐标;若不存在,请说明理由.25.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【详解】①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴ABDE=APADAB APDE AD,即34xy=,∴y=12x,纵观各选项,只有B选项图形符合,故选B.2.C解析:C【解析】【分析】由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.【详解】解:连接OA,OB.∵∠APB=45°,∴∠AOB=2∠APB=90°.∵OA=OB=2,∴AB=22OA OB+=22.故选C.3.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.4.A解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.5.C解析:C【解析】【分析】蚂蚁有两种爬法,就是把正视和俯视(或正视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短路程.【详解】如图所示,路径一:AB22()22;211=++=路径二:AB22().=++=21110<,∴蚂蚁爬行的最短路程为22.∵2210故选C.【点睛】本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.6.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.7.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】m n,解:Q直线//+︒,∴∠+∠∠+∠=21180ABC BAC∠=︒,Q,90ABC=︒30∠∠=︒,140BAC︒︒︒,︒︒=∴∠=---218030904020故选:B.【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.8.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.9.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C .10.A解析:A【解析】【分析】二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简. 解答【详解】y>0,∵xy<0,∴x<0,∴原式=-故选A【点睛】此题考查二次根式的性质与化简,解题关键在于掌握其定义11.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB ∥CD ,∴∠BAD=∠D=40°.故选D .12.C解析:C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BA E+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a2019解析:3 4 .【解析】【分析】利用规定的运算方法,分别算得a1,a2,a3,a4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环, ∵2019÷3=673, ∴a 2019=a 3=34, 故答案为:34. 【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.15.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x 轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x 轴,左边树为y 轴建立平面直角坐标系,由题意可得A (0,2.5),B (2,2.5),C (0.5,1)设函数解析式为y =ax 2+bx +c把A. B. C 三点分别代入得出c =2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.16.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x 轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.17.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.18.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E 连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣43【解析】【分析】【详解】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=3,∴∠AOE=45°,ED=1,∴AE=EO=3,DO=3﹣1,∴S正方形DNMF=2(3﹣1)×2(3﹣1)×12=8﹣43,S△ADF=12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.19.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根解析:-2【解析】【分析】若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0.【详解】∵关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,∴△=4-4(a+1)×3≥0,且a+1≠0,解得a≤-23,且a≠-1, 则a 的最大整数值是-2.故答案为:-2.【点睛】本题考查了根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系: ①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的定义.20.【解析】分析:先根据题意得出a=2b 再由分式的基本性质把原式进行化简把a=2b 代入进行计算即可详解:∵=2∴a=2b 原式==当a=2b 时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本 解析:32【解析】分析:先根据题意得出a =2b ,再由分式的基本性质把原式进行化简,把a =2b 代入进行计算即可. 详解:∵a b =2,∴a =2b , 原式=()()()a b a b a a b +-- =a b a+ 当a =2b 时,原式=22b b b +=32. 故答案为32. 点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.三、解答题21.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:AB 10===,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 22.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.23.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.24.(1)y=-23x2-13x+2;(2)当BQ=13AP时,t=1或t=4;(3)存在.当t=13-+M(1,1),或当t=333+M(﹣3,﹣3),使得△MPQ为等边三角形.【解析】【分析】(1)把A(﹣2,0),B(0,2)代入y=ax2-13x+c,求出解析式即可;(2)BQ=13AP,要考虑P在OC上及P在OC的延长线上两种情况,有此易得BQ,AP关于t的表示,代入BQ=13AP可求t值.(3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑△MPQ,发现PQ为一有规律的线段,易得OPQ为等腰直角三角形,但仅因此无法确定PQ运动至何种情形时△MPQ为等边三角形.若退一步考虑等腰,发现,MO应为PQ的垂直平分线,即使△MPQ为等边三角形的M点必属于PQ的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足△MPQ为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t的方程,考虑t的存在性.【详解】(1)∵抛物线经过A(﹣2,0),B(0,2)两点,∴240,32.a cc⎧++=⎪⎨⎪=⎩,解得2,32.ac⎧=-⎪⎨⎪=⎩∴抛物线的解析式为y=-23x2-13x+2.(2)由题意可知,OQ=OP=t,AP=2+t.①当t≤2时,点Q在点B下方,此时BQ=2-t.∵BQ=13AP,∴2﹣t=13(2+t),∴t=1.②当t>2时,点Q在点B上方,此时BQ=t﹣2.∵BQ=13AP,∴t﹣2=13(2+t),∴t=4.∴当BQ=13AP时,t=1或t=4.(3)存在.作MC⊥x轴于点C,连接OM.设点M的横坐标为m,则点M的纵坐标为-23m2-13m+2.当△MPQ为等边三角形时,MQ=MP,又∵OP=OQ,∴点M点必在PQ的垂直平分线上,∴∠POM=12∠POQ=45°,∴△MCO为等腰直角三角形,CM=CO,∴m=-23m2-13m+2,解得m1=1,m2=﹣3.∴M点可能为(1,1)或(﹣3,﹣3).①如图,当M 的坐标为(1,1)时,则有PC =1﹣t ,MP 2=1+(1﹣t )2=t 2﹣2t +2,PQ 2=2t 2,∵△MPQ 为等边三角形,∴MP =PQ ,∴t 2﹣2t +2=2t 2,解得t 1=1+3-,t 2=13--(负值舍去).②如图,当M 的坐标为(﹣3,﹣3)时,则有PC =3+t ,MC =3,∴MP 2=32+(3+t )2=t 2+6t +18,PQ 2=2t 2,∵△MPQ 为等边三角形,∴MP =PQ , ∴t 2+6t +18=2t 2,解得t 1=333+t 2=333-∴当t =3-M (1,1),或当t =333+M (﹣3,﹣3),使得△MPQ 为等边三角形.【点睛】本题是二次函数、一次函数及三角形相关知识的综合题目,其中涉及的知识点有待定系数法求抛物线,三角形全等,等腰、等边三角形性质及一次函数等基础知识,在讨论动点问题是一定要注意考虑全面分情形讨论分析.25.123米.【解析】【分析】在Rt△ABC中,利用tanBC CABAB∠=即可求解.【详解】解:∵CD∥AB,∴∠CAB=∠DCA=39°.在Rt△ABC中,∠ABC=90°,tanBC CABAB∠=.∴100123tan0.81BCABCAB==≈∠.答:A、B两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.。

人教版中考全真模拟测试《数学试卷》含答案解析

人教版中考全真模拟测试《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1.计算1|2|2--+的结果是() A. 112-B. 0C. 112D. 1222.自新型冠状病毒肺炎肆虑全球以来,万众一心战疫情已成为世界各国的共同语言,截止到2020年4月26日,全球感染新型冠状病毒肺炎的治愈人数已经突破858000人,将858000用科学记数法表示为() A 58.5810⨯B. 60.85810⨯C. 58.5810-⨯D. 385810⨯3.下列几何体中,俯视图...为三角形的是( ) A. B. C. D.4.在下列图形中,既是轴对称图形,又是中心对称图形的是() A. 等边三角形B. 直角三角形C. 正五边形D. 矩形5. 下列事件是必然事件的是( ).A. 随意掷两个均匀的骰子,朝上面的点数之和为6B. 抛一枚硬币,正面朝上C. 3个人分成两组,一定有2个人分一组D. 打开电视,正在播放动画片 6.下列运算中正确的是() A. 623a a a ÷=B. 23a a a ⋅=C. 2222a a -=D. ()22436a a -=7.已知一个多边形的内角和等于900º,则这个多边形是( ) A. 五边形B. 六边形C. 七边形D. 八边形8.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A 0a b +>B. 0a c +>C. 0b c +>D. 0ac <9.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程( ) A.7512x x+=+ B.2175x x++= C.7512x x-=+ D.275x x+= 10.若(),a b a b <是关于方程()()()10x m x n m n --+=<的两个实数根,则实数,,,a b m n 的大小关系是()A. a b m n <<<B. m n a b <<<C. a m n b <<<D. m a b n <<<二、填空题11.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .12.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表: 投中次数 3 5 6 7 8 人数 13222则这些队员投中次数众数为___________.13.如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点,AB AC ⊥,若8AC =,120BOC ∠=︒,则BD 的长是__________.14.如图在圆内接四边形ABCD 中,::3:5:6A ABC BCD ∠∠∠=,分别延长AB ,DC 交于点,则P ∠的大小为__________.15.如图,已知等边三角形ABC 的顶点,A B 分别在反比例函数1y x=图像的两个分支上,点在反比例函数()0ky k x=≠的图像上,当ABC ∆的面积最小时,的值__________.三.解答题16.解不等式组127111x x -≤⎧⎪⎨+<⎪⎩,并将解集在数轴上表示出来.17.如图,在菱形ABCD 中,点、分别在AB 、CD 上,且AE CF =.求证:DAF DCE ∠=∠.18.先化简,再求值:11221x x x x ⎛⎫÷-+ ⎪++⎝⎭,其中2x =.19.如图,ABC ∆中,是AB 边上一点.(1)在边AC 上求作一点,使得AE ADAC AB=.(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)条件下,若ABC ∆的面积是ADE ∆面积的9倍,且6BC =,求DE 的长.20.如图,矩形ABCD 中,2BC =,AB m =,将矩形ABCD 绕点顺时针旋转90︒,点,,A B C 分别落在点,,处.(1)直接填空:当1m =时,点所经过的路径的长为___________; (2)若点,,在同一直线上,求tan ABA '∠的值.21.某印刷厂的打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每盒150元,每台新机最多可配买24盒;若非同时配买,则每盒需220元. 公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如表: 消耗墨盒数 22 23 24 25 打印机台数 1441(1)以这十台打印机消耗墨盒数为样本,估计”一年该款打印机正常工作5年消耗的墨盒数不大于24”的概率;(2)试以这10台打印机5年消耗的墨盒数的平均数作为决策依据,说明购买10台该款打印机时,每台应统一配买23盒墨还是24盒墨更合算?22.某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.设该笔记本的销售单价为元,每天获得的销售利润为元.(1)当12x ≥时,求与之间的函数关系式;(2)当1215x ≤≤时,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值. 23.如图,已知ABC ∆,以AC 为直径的O 交边AB 于点,BC 与O 相切.(1)若45ABC ∠=︒,求证:AE BE =;(2)点是O 上一点,点,D E 两点在AC 的异侧.若2EAC ACD ∠=∠,6AE =,CD =求O 半径的长.24.抛物线2(0)y ax bx c a =++≠与轴交于,A B 两点,与轴交于点.已知点()1,0A -,点()0,P p -. (1)当2a p =时,求点的坐标;(2)直线y x m =-+与抛物线交于,P N 两点,抛物线的对称轴为直线1x = ①求,所满足的数量关系式; ②当OP=OA 时,求线段PN 的长度.答案与解析一.选择题1.计算1|2|2--+的结果是() A. 112- B. 0C. 112D. 122【答案】D 【解析】 【分析】先化简绝对值和负整数指数幂,然后再计算. 【详解】解:111|2|2=2+=222--+ 故选:D .【点睛】本题考查负整数指数幂的的计算,掌握计算法则正确计算是解题关键.2.自新型冠状病毒肺炎肆虑全球以来,万众一心战疫情已成为世界各国的共同语言,截止到2020年4月26日,全球感染新型冠状病毒肺炎的治愈人数已经突破858000人,将858000用科学记数法表示为() A. 58.5810⨯ B. 60.85810⨯C. 58.5810-⨯D. 385810⨯【答案】A 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于858000有6位,所以可以确定n=6-1=5. 【详解】解:858000=8.58×105. 故选:A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键. 3.下列几何体中,俯视图...为三角形的是( ) A. B. C. D.【答案】C 【解析】【分析】依次观察四个选项,A中圆锥从正上看,是其在地面投影;B中,长方体从上面看,看到的是上表面;C中,三棱柱从正上看,看到的是上表面;D中四棱锥从正上看,是其在地面投影;据此得出俯视图并进行判断.【解答】A、圆锥俯视图是带圆心的圆,故本选项错误;B、长方体的俯视图均为矩形,故本选项错误;C、三棱柱的俯视图是三角形,故本选项正确;D、四棱锥的俯视图是四边形,故本选项错误;故选C.【点评】本题应用了几何体三视图的知识,从上面向下看,想象出平面投影是解答重点;4.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. 等边三角形B. 直角三角形C. 正五边形D. 矩形【答案】D【解析】【分析】根据轴对称图形和中心对称图形的概念逐一判断可得.【详解】解:A.等边三角形轴对称图形,不是中心对称图形,不符合题意;B.直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意;C.正五边形是轴对称图形,不是中心对称图形,不符合题意;D.矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D.【点睛】本题主要考查中心对称图形和轴对称图形,解题的关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.5. 下列事件是必然事件的是( ).A. 随意掷两个均匀的骰子,朝上面的点数之和为6B. 抛一枚硬币,正面朝上C. 3个人分成两组,一定有2个人分在一组D. 打开电视,正在播放动画片【答案】C【解析】A.点数之和不一定是6;B.还可能是背面朝上;C.是必然事件;D.不一定,也可能会是其它节目. 故选C.6.下列运算中正确的是() A. 623a a a ÷= B. 23a a a ⋅=C. 2222a a -=D. ()22436a a -=【答案】B 【解析】 【分析】根据同底数幂的除法,同底数幂的乘法,合并同类项,幂的乘方法则进行计算,逐个判断即可. 【详解】解:A. 624a a a ÷=,故此选项不符合题意; B. 23a a a ⋅=,正确;C. 2222a a a -=,故此选项不符合题意;D. ()22439a a -=,故此选项不符合题意;故选:B .【点睛】本题考查同底数幂的除法,同底数幂的乘法,合并同类项,幂的乘方,掌握运算法则正确计算是解题关键.7.已知一个多边形的内角和等于900º,则这个多边形是( ) A. 五边形 B. 六边形C. 七边形D. 八边形【答案】C 【解析】试题分析:多边形的内角和公式为(n -2)×180°,根据题意可得:(n -2)×180°=900°,解得:n=7. 考点:多边形的内角和定理.8.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A. 0a b +>B. 0a c +>C. 0b c +>D. 0ac <【解析】 【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答. 【详解】解:a b =,原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=, 故选项A 错误, 故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.9.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程( ) A.7512x x+=+ B.2175x x++= C.7512x x-=+ D.275x x+= 【答案】B 【解析】 【分析】根据题意设甲乙经过x 日相逢,则甲、乙分别所走路程占总路程的27x +和5x,进而得出等式. 【详解】设甲乙经过x 日相逢,可列方程:2175x x++=. 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出两人所走路程所占百分比解题关键. 10.若(),a b a b <是关于方程()()()10x m x n m n --+=<的两个实数根,则实数,,,a b m n 的大小关系是()A. a b m n <<<B. m n a b <<<C. a m n b <<<D. m a b n <<<【答案】D 【解析】利用a是关于x的一元二次方程(x-m)(x-n)+1=0的根得到(a-m)(a-n)=-1<0,进而判断出m<a<n,同理判断出m<b<n,即可得出结论.【详解】解:∵a是关于x的一元二次方程(x-m)(x-n)+1=0的根,∴(a-m)(a-n)+1=0,∴(a-m)(a-n)=-1<0,∵m<n,∴m<a<n,同理:m<b<n,∵a<b,∴m<a<b<n.故选:D.【点睛】此题主要考查了一元二次方程的解的定义,不等式的性质,判断出(a-m)(a-n)<0是解本题的关键.二、填空题11.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .【答案】110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°12.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数 3 5 6 7 8人数 1 3 2 2 2则这些队员投中次数的众数为___________.【答案】5【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中5是出现次数最多的,故众数是5;故答案为:5.【点睛】本题考查了众数的定义,能够熟记众数的定义是解答本题的关键,难度不大.13.如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点,AB AC ⊥,若8AC =,120BOC ∠=︒,则BD 的长是__________.【答案】16【解析】【分析】由平行四边形的性质得出BO=DO ,AO=CO=12AC=4,由含30°角直角三角形的性质得出OB ,即可得出结果.【详解】解:∵▱ABCD 的对角线AC 与BD 相交于点O ,∴BO=DO ,AO=CO=12AC=4, ∵∠BOC=120°,∴∠AOB=180°-∠BOC=180°-120°=60°,∵AB ⊥AC ,∴∠BAO=90°,∠ABO=30°,∴OB=2AO=2×4=8, ∴BD=2OB=2×8=16, 故答案为:16.【点睛】本题考查了平行四边形的性质、平角、含30°角的直角三角形的性质等知识;熟练掌握平行四边形的性质是解题的关键.14.如图在圆内接四边形ABCD 中,::3:5:6A ABC BCD ∠∠∠=,分别延长AB ,DC 交于点,则P ∠的大小为__________.【答案】40°【解析】【分析】设∠A=3k ,∠ABC=5k ,∠BCD=6k ,根据圆内接四边形的性质得到k=20°,求得∠A=60°,∠ABC=5k=100°,∠D=80°,根据三角形的内角和即可得到结论.【详解】解:∵∠A :∠ABC :∠BCD=3:5:6,设∠A=3k ,∠ABC=5k ,∠BCD=6k ,∵∠A+∠BCD=180°,∴3k+6k=180°,∴k=20°,∴∠A=60°,∠ABC=5k=100°,∴∠D=80°,∴∠P=180°-∠A-∠D=40°,故答案为:40°.【点睛】本题考查了圆内接四边形的性质,三角形的内角和,熟练掌握圆内接四边形的性质是解题的关键. 15.如图,已知等边三角形ABC 的顶点,A B 分别在反比例函数1y x=图像的两个分支上,点在反比例函数()0k y k x=≠的图像上,当ABC ∆的面积最小时,的值__________.【答案】-3【解析】【分析】当等边三角形ABC 的边长最小时,△ABC 的面积最小,点A ,B 分别在反比例函数y=1x图象的两个分支上,则当A 、B 在直线y=x 上时最短,即此时△ABC 的面积最小,根据反比例函数图象的对称性可得OA=OB ,设OA=x ,则AC=2x ,x ,根据等边三角形三线合一可证明△AOE ∽△OCF ,根据相似三角形面积比等于相似比的平方可得结论.【详解】解:根据题意当A 、B 在直线y=x 上时,△ABC 的面积最小,函数y=1x图象关于原点对称, ∴OA=OB ,连接OC ,过A 作AE ⊥y 轴于E ,过C 作CF ⊥y 轴于F ,∵△ABC 等边三角形,∴AO ⊥OC ,∴∠AOC=90°,∠ACO=30°,∴∠AOE+∠COF=90°,设OA=x ,则AC=2x ,,∵AE ⊥y 轴,CF ⊥y 轴,∴∠AEO=∠OFC=∠AOE+∠OAE=90°,∴∠COF=∠OAE ,∴△AOE ∽△OCF ,∴221()3AOE OCF S OA S OC ===, ∵顶点A 在函数y=1x 图象的分支上, ∴S △AOE =12, ∴S △OCF =32, ∵点C 在反比例函数y=k x (k≠0)图象上, ∴k=-3,故答案为-3.【点睛】本题考查了综合运用反比例函数图象上点的坐标特征,反比例函数图象关于原点对称,相似三角形的判定与性质及等边三角形等知识点,难度不大,属于中档题.三.解答题16.解不等式组127111x x -≤⎧⎪⎨+<⎪⎩,并将解集在数轴上表示出来. 【答案】31x -≤<,数轴见解析.【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:127112x x -≤⎧⎪⎨+<⎪⎩①② 解不等式①,得3x ≥-解不等式②,得1x <不等式组的解集在数轴上表示为:∴不等式组的解集为:31x -≤<.【点睛】本题考查的是解一元一次不等式组,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.17.如图,在菱形ABCD 中,点、分别在AB 、CD 上,且AE CF =.求证:DAF DCE ∠=∠.【答案】证明见解析【解析】【分析】根据菱形的性质得出AD=CD,进而利用全等三角形的判定和性质解答即可.【详解】解:∵四边ABCD是菱形,∴AD=CD,∵AE=CF,∴AD-AE=CD-CF,即DE=DF,∵∠D=∠D,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE.【点睛】此题考查菱形的性质,关键是根据全等三角形的判定和性质解答.18.先化简,再求值:11221xxx x⎛⎫÷-+⎪++⎝⎭,其中2x=.【答案】12x;2.【解析】【分析】分式的混合运算,先做括号里面的,然后再做除法进行化简,然后将x的值代入计算即可.【详解】解:11221 xxx x⎛⎫÷-+⎪++⎝⎭=(1)(1)1 2211 x x xx x x+-⎡⎤÷+⎢⎥+++⎣⎦=211() 2211 x xx x x-÷++++=212(1)x x x x ++ =12x当2x =时,原式=12=422. 【点睛】本题考查分式的混合运算及二次根式的化简,掌握运算法则正确计算是解题关键.19.如图,ABC ∆中,是AB 边上一点.(1)在边AC 上求作一点,使得AE AD AC AB=.(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的条件下,若ABC ∆的面积是ADE ∆面积的9倍,且6BC =,求DE 的长.【答案】(1)作图见解析;(2)2【解析】【分析】(1)在AB 的右侧作∠ADE=∠B ,则DE ∥BC ,故AE AD AC AB=; (2)依据∠A=∠A ,∠ADE=∠B ,即可得到△ADE ∽△ABC ,再根据相似三角形的性质,即可得出DE 的长.【详解】解:(1)如图,点E 就是所求作的点.(2)∵∠A=∠A ,∠ADE=∠B ,∴△ADE ∽△ABC ,∴2()ADEABC S DE S BC = ,即21()69DE =. 解得:DE=2.【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.如图,矩形ABCD 中,2BC =,AB m =,将矩形ABCD 绕点顺时针旋转90︒,点,,A B C 分别落在点,,处.(1)直接填空:当1m =时,点所经过的路径的长为___________;(2)若点,,在同一直线上,求tan ABA '∠的值.【答案】(15π;(251-. 【解析】【分析】(1)由题意可知点B 经过的路径是以点D 为圆心,以BD 的长为半径,圆心角为90°的弧长,然后用勾股定理求得BD 的长,再利用弧长公式求解即可;(2)由AB=m ,根据平行线的性质列出比例式求出m 的值,根据正切的定义求出tan ∠BA′C ,根据∠ABA′=∠BA′C 解答即可.【详解】解:(1)由题意可知,点B 经过的路径是以点D 为圆心,以BD 的长为半径,圆心角为90°的弧长, ∴连接'BD B D ,,当m=1时,AB=1,在矩形ABCD 中,AD=BC=2∴在Rt △ABD 中,225BD AB AD =+= ∴此时点所经过的路径的长为9055=1802ππ 5π. (2)由题意AB=m ,则CD=m ,A′C=m+2,∵AD∥BC,∴'''C D A DBC A C=,即222mm=+,解得,151m=,251m=-(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C=51'2512BCA C==-+,∴tan∠51 -,【点睛】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.21.某印刷厂打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每盒150元,每台新机最多可配买24盒;若非同时配买,则每盒需220元.公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如表:消耗墨盒数22 23 24 25打印机台数 1 4 4 1(1)以这十台打印机消耗墨盒数为样本,估计”一年该款打印机正常工作5年消耗的墨盒数不大于24”的概率;(2)试以这10台打印机5年消耗的墨盒数的平均数作为决策依据,说明购买10台该款打印机时,每台应统一配买23盒墨还是24盒墨更合算?【答案】(1)910;(2)每台应统一配23盒墨更合算【解析】【分析】(1)直接利用概率公式求解即可;(2)分别求出购买23盒墨,24盒墨的费用即可判断.【详解】解:(1)因为10台打印机正常工作五年消耗的墨盒数不大24的台数为1+4+4=9,所以10台打印机正常工作五年消耗的墨盒数不大24的频率为910, 故可估计10台打印机正常工作五年消耗的墨盒数不大24的概率为910;(2)每台应统一配23盒墨更合算,理由如下:10台打印机五年消耗的墨盒数的平均数为:110414212323.510x ⨯+⨯+⨯+⨯=+= (盒), 若每台统一配买盒墨,则这台打印机所需费用为:23×150×10+(23.5-23)×220×10=35600(元); 若每台统一配买盒墨,则这台打印机所需费用为:24×150×10=36000(元). 因35600<36000,所以每台应统一配23盒墨更合算.【点睛】本题考查利用频率估计概率,加权平均数,列表法等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.22.某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.设该笔记本的销售单价为元,每天获得的销售利润为元.(1)当12x ≥时,求与之间的函数关系式;(2)当1215x ≤≤时,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值.【答案】(1)y=-10x 2+320x-2200;(2)销售单价为15元时,该文具每天的销售利润最大,最大值是350元.【解析】【分析】(1)根据总利润=单件利润×销售量列出函数解析式即可;(2)把y=-10x 2+320x-2200化为y=-10(x-16)2+360,根据二次函数的性质即可得到结论.【详解】解:(1)y=(x-10)[100-10(x-12)=(x-10)(100-10x+120)=-10x 2+320x-2200;(2)y=-10x 2+320x-2200=-10(x-16)2+360,∴12≤x≤15时,∵a=-10<0,对称轴为直线x=16,∴抛物线开口向下,在对称轴左侧,y 随x 的增大而增大,∴当x=15时,y 取最大值为350元,答:销售单价为15元时,该文具每天的销售利润最大,最大值是350元.【点睛】本题考查的是二次函数的应用、掌握二次函数的性质是解题的关键.23.如图,已知ABC ∆,以AC 为直径的O 交边AB 于点,BC 与O 相切.(1)若45ABC ∠=︒,求证:AE BE =;(2)点是O 上一点,点,D E 两点在AC 的异侧.若2EAC ACD ∠=∠,6AE =,45CD =求O 半径的长.【答案】(1)证明见解析;(2)5【解析】【分析】(1)连接CE ,依据题意和圆周角定理求得△ABC 是等腰直角三角形,然后根据圆周角定理和等腰三角形三线合一的性质求解即可;(2)连接DO 并延长,交CE 于点M ,交O 于点G ,利用三角形外角的性质求得2=EAC ACD AOD ∠=∠∠,从而判定DG ∥AE ,得到90DMC AEC ∠=∠=,从而根据垂径定理可得EM=CM ,根据三角形中位线定理可求132OM AE ==,然后设圆的半径为x ,根据勾股定理列方程求解即可. 【详解】解:连接CE∵BC 与O 相切∴∠ACB=90°∵45ABC ∠=︒∴45ABC CAB ∠=∠=︒∴CA=CB又∵以AC 为直径的O 交边AB 于点,∴∠CEA=90° ∴根据等腰三角形三线合一的性质可知,CE 是底边AB 的中线∴AE=BE(2)连接DO 并延长,交CE 于点M ,交O 于点G 由(1)可知,∠CEA=90°∵2=EAC ACD AOD ∠=∠∠∴DG ∥AE∴90DMC AEC ∠=∠=∴EM=CM∴在△AEC 中,132OM AE == 设圆的半径为x ,在Rt △OMC 中,2223CM x =-在Rt △DMC 中,222(45)(3)CM x =-+∴22223(45)(3)x x -=-+,解得5x =或8x =-(负值舍去)∴O 半径的长为5.【点睛】本题考查切线的性质,圆周角定理,垂径定理的应用,题目难度不大,但有一定的综合性,正确添加辅助线利用勾股定理列方程求解圆的半径是解题关键.24.抛物线2(0)y ax bx c a =++≠与轴交于,A B 两点,与轴交于点.已知点()1,0A -,点()0,P p -.(1)当2a p =时,求点的坐标;(2)直线y x m =-+与抛物线交于,P N 两点,抛物线的对称轴为直线1x =①求,所满足的数量关系式;②当OP=OA 时,求线段PN 的长度.【答案】(1)(12,0);(2)①3p a =;②. 【解析】【分析】(1)利用待定系数法,将()1,0A -,点()0,P p -,2a p =代入函数解析式,求得b p =,从而求得函数解析式及对称轴,然后根据数轴上的对称性求得点B 的坐标;(2)①由抛物线的对称轴求得12b a-=,求得2b a =-,然后将点()1,0A -,点()0,P p -代入函数解析式求得p 与a 的数量关系;②由OP=OA 时,分情况讨论当P (0,1)或(0,-1),求得p 的值,从而确定二次函数和一次函数解析式,然后求其交点坐标,利用勾股定理求PN 的长度. 【详解】解:(1)将点()1,0A -,点()0,P p -代入函数解析式,得0a b c c p -+=⎧⎨=-⎩当2a p =时,可得20p b p --=,解得:b p =∴此时抛物线解析式为:22y px px p =+-,抛物线对称轴为1224p x p =-=-⨯ 设B 点坐标为(x ,0) ,则此时1124x -+=-,解得:12x = ∴B 点坐标为(12,0) (2)①将点()1,0A -,点()0,P p -代入函数解析式,得0a b c c p -+=⎧⎨=-⎩有题意可知:12b a-=,则2b a =- ∴(2)0a a p ---=,解得3p a =②当OP=OA 时,P (0,1)或(0,-1)当P (0,1)时,-p=1,即p=-1,则3=-1a ,解得13a =- ∴此时抛物线解析式为:212133y x x =-++ 又∵直线y x m =-+与抛物线交于P N ,两点∴一次函数解析式为:1y x =-+ 由此2121331y x x y x ⎧=-++⎪⎨⎪=-+⎩,解得01x y =⎧⎨=⎩或5-4x y =⎧⎨=⎩ ∴此时P (0,1)),N (5,-4)∴=当P (0,-1)时,-p=-1,即p=1,则3=1a ,解得13a = ∴此时抛物线解析式为:212133y x x =-- 又∵直线y x m =-+与抛物线交于P N ,两点 ∴一次函数解析式为:1y x =-- 由此2121331y x x y x ⎧=--⎪⎨⎪=--⎩,解得01x y =⎧⎨=-⎩或10x y ⎧⎨⎩=-= ∴此时P (0,-1)),N (-1,0)∴=∴综上所述,PN的长度为.【点睛】本题考查二次函数与一次函数的综合,掌握函数的图像性质,利用数形结合思想解题是关键.。

人教版2020年中考数学模拟试题及答案(含详解) (4)

人教版2020年中考数学模拟试题及答案(含详解) (4)

中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础小卷速测 代数式的化简及求值
一、选择题
1.下列运算正确的是( A.(2a2)3=6a6
) B.-a2b2·3ab3=-3a2b5
C.
a
b
b

b
a
a
=-1
D.
a2 a
1
·
a
1
1
=-1
2.计算:
x2
5x x2 1
6

x x2
3 x
,其结果是(
)
A.
x(x 1) x2
求代数式(x-y)2-(x+2y)(x-2y)的值.
14.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中 x=-1,y=
3. 3
15.先化简,再求值:(a+1-
4a 5 a 1
)÷(
1 a 1

2 a2
a
),其中
a=-1.
16.先化简(
2x2 x2
2x 1
2.在算式 4-|-3□5|中的□所在位置,填入下列哪种运算符号,计算出来的值最小( )
y=
1 5

所以原式=-2×(-1)×
1 5
+5×(
1 5
)2
= 2+1 =3 . 555
14.解:原式=x2-y2-2x2+4y2=-x2+3y2.
当 x=-1,y=
3 3
时,原式=-1+1=0.
15.解:原式=
a2
1 (4a a 1
5)
÷
a2 a(a 1)

(a 2)2 a 1

x2 ห้องสมุดไป่ตู้2
x 2x 1

x
x 1
,然后解答下列问题:
(1)当 x=3 时,求原代数式的值;
(2)原代数式的值能等于-1 吗?为什么?
参考答案
1.C 2.B 3.B [解析]依题意,得 25a+23b+2c-10=7.即 25a+23b+2c=17.当 x=-2 时,原式=-25a-23b-2c-10= -(25a+23b+2c)-10=-17-10=-27.故选 B.
4.A
[解析]原式=6a2-2ab-6a2+ab=-ab.当
a=14,b=
1 98
时,原式=-14×
1 98
=-
1 7
.故选
A.
5.B [解析]原式=3(x2-4x+4)-6(x2-1)=3x2-12x+12-6x2+6 =-3x2-12x+18=-3(x2+4x)+18. ∵x2+4x-4=0,∴x2+4x=4.
A.a=2,b=0
二、填空题
B.a=1,b=1
C.a=0,b=0
D.a=2,b=4
8.若(2a+3b)2=(2a-3b)2+A,则 A=______.
9.计算:(m-2n+3)(m+2n-3)=________.
10.化简:(
a2 a
3

3
9
a

a
a
3
=______.
11.已知 x2+x-5=0,则代数式(x-1)2-x(x-3)+(x+2)(x-2)的值为______.
B.
x(x 2) x 1
C.
x2 x(x 1)
D.
x 1 x(x 2)
3.当 x=2 时,多项式 ax5+bx3+cx-10 的值为 7,则当 x=-2 时,这个多项式的值是( )
A.-3 B.-27 C.-7 D.7
4.当
a=14,b=
1 98
时,式子
6a2-2ab-2(3a2-
1 2
12.若
(2n
1 1)(2n
1)

a 2n 1

b 2n 1
,对任意自然数
n
都成立,则
a=______,b=______;计算:m=
1 1
3

1 35

5
1
7
+…+
19
1
21
=______.
三、解答题
x 5y 2, ①
13.已知
x,y
满足方程组
2x

5
y

1.②
原式=-3×4+18=6.
故选 B.
6.D
[解析]原式=
a
b
c

a
c
b

b
a
c

b b

c c

a a
=-3
7.D [解析](ax+3)(bx2-6x+9)=abx3-6ax2+9ax+3bx2-18x+27=abx3-(6a-3b)x2+(9a-18)x+27.依题意可
6a 3b 0, a 2, 得 9a 18 0. 解得 b 4.
·
a(a 1) a2
=a2-2a.
当 a=-1 时,原式=(-1)2-2×(-1)=3.
16.解:(1)原式=[
2x(x 1) (x 1)(x 1)

x(x 1) (x 1)2
]•
x
1 x
=(
2x x 1

x
x 1
)•
x
1 x

x
x 1

x
1 x

x x
1 1


x=3
8.24ab 9.m2-4n2+12n-9
10.a
[解析]原式=(
a2 a
3

a
9
3

a
a
3

a2 a
9 3
÷
a
a
3
=(a+3)·
a
a
3
=a.
11.2 [解析]原式=x2-2x+1-x2+3x+x2-4=x2+x-3. 因为 x2+x-5=0,所以 x2+x=5.
所以原式=5-3=2.

a a

b b

0, 1.
解得
a=
1 2
,b=-
1 2

∴m=
1 2
(1-
1 3

1 3

1 5
+…+
1 19

1 21
)=
1 2
(1-
1 21
)=
10 21

13.解:原式=x2-2xy+y2-x2+4y2=-2xy+5y2.
①+②得:3x=-3,即 x=-1.

x=-1
代入①,求得
ab)的值是(
)
A.-
1 7
B.
1 7
C.-7 D.7
5.若 x2+4x-4=0,则 3(x-2)2-6(x-1)(x+1)的值为( )
A.-6 B.6 C.18 D.30
6.若
a+b+c=0,则
a( b1

1c )

b(1c

1 a
)

c(
1 a

1 b
)
的值等于(
)
A.0 B.1 C.-1 D.-3 7.已知多项式 ax+3 与 bx2-6x+9 的乘积中不含 x2 与 x 的项,则 a、b 的值为( )
时,原式=
3 3
1 1
=2;
(2)如果
x x

1 1
=-1,那么
x+1=-x+1.
解得 x=0.

x=0
时,除式
x
x
1
=0,原式无意义.
故原代数式的值不能等于-1.
基础小卷速测(一) 实数的混合运算
一、选择题
1.计算(-2)0+9÷(-3)的结果是( ) A.-1 B.-2 C.-3 D.-4
12. 1 ,- 1 ; 10 2 2 21
[解析]∵
(2n
1 1)(2n
1)

a 2n 1

b 2n 1

a(2n 1) b(2n 1) (2n 1)(2n 1)

2(a b)n (a b) (2n 1)(2n 1)

∴对任意自然数 n,等式 2(a+b)n+a-b=1 都成立.
相关文档
最新文档