心电数据处理与去噪

合集下载

基于离散平稳小波变换的心电信号去噪方法

基于离散平稳小波变换的心电信号去噪方法
维普资讯
塑 垒: 塑
工 程 技 术
Sci ce a T e en nd chn ogy nn ol I ovaton i Her d al
基于离散平稳小波 变换的心 电周波
( 南昌航空航空大学 自动化学院 江西 南昌 3 0 6 ) 3 0 3
小波 基函数 ( 不具 备唯一性 , ) 用不 同 的小波 基函数进行 分析 得到的结果相差甚远 , 2小波变换 的去噪原理 往 往 只有 通过 经验或 不断 的实验 来选择 。本 D n h 等人提 出对信号进行离散正 交小 文通过 对多种小波基的 实验比较后 , ooo 最终采用 渡变换 , 然后通过选择适 当小波 系数重构的方 C i4小 波 。 0f 法, 得到 埘原 信号的一 个估计 值 , 种方 法称 4 2 去噪算法 这 为小 波变换 的闽 值去噪 方法 。 其基 本思想 是 在 分析 了心 电信号 中各 类噪 声来源 及其 根据噪声与信号存 各尺度( 即各频带 ) 的小波 频带分布特 点的基础上 , 上 基于离散平 稳小波变 系数具有 不同的表现 , 各尺度上 由噪声 产生 换的 心电信号 去噪算法 描述如 下 : 将 的小波分量 , 特别是 去掉或大幅衰 减那些噪声 () 1将含噪心 电信号利 用 c i ol 4小波基进行 l 0个尺 度的离 散平 稳小波 分解 。 () 2对基线漂移信号而 言, 其能量大小主要 反映在尺度 9 0 、l 的小波 系数 上 , 为了比较彻 底地消除基线 漂移 , 可将这 两个尺度上的 小波 系数 强 制 置零 () 于肌电干扰信号 , 3对 其能量 主要反映在 小波分解尺度 l 2 、 的小波系数上 ; 工频干扰 而 图 1 正常的心 电信号 和 电极 移动干 扰信号 则主 要反映 在小波分 解 的 l~3尺 度上 , 由于 这些尺 度 中含 有较 少的 心 电信 号 成 分 。 () 4 利用离 散平稳小 波的逆变换 重建原信 号, 得到 去噪后 的心 电 信号 。 4. 实验 3 根 据以 上基 于离散 平稳 小波 变换 的去噪 图 2 含有 基线漂移 噪声 、肌 电干扰噪 声的心 电信号 方案 , 利用 Malb对心 电工作站数据库 中的 t a 实际心 电信号 数据进行去噪 实验 。 图 l 是正常 的心 电信号 , 2是 含有 严重基 线漂移噪 声 、 图 肌 电干扰 噪声的心 电信号 , 3 图 是利 用离散平 稳 小波对 上述含 有上述 两类 噪声 的心 电信号 进行去噪处理 后的结果 。结果表 明: 基于离散 平稳 小波变 换方 法对心 电信号 的噪 声具有 良 好的抑制效果。 图 3 离散平 稳小波 对上述含有 上述两类噪 声的心 电信号进 行去噪 处理后 的结果

心电信号预处理原理

心电信号预处理原理

心电信号预处理原理
心电信号预处理是指在对心电信号进行分析和处理之前,对原始心电信号进行一系列的处理步骤,以提高信号质量、减少噪音和干扰,使信号更适合后续的分析和应用。

预处理的原理涉及到多个方面:
1. 滤波,心电信号通常包含各种频率的噪音和干扰,滤波是预处理的重要步骤。

常用的滤波器包括高通滤波器和低通滤波器,用于去除基线漂移和高频噪音。

滤波的原理是通过设定合适的截止频率,只保留心电信号中有用的频率成分。

2. 去噪,心电信号可能受到各种干扰,如肌肉运动、电源干扰等,需要采用去噪技术。

常用的去噪方法包括小波变换去噪、均值滤波、中值滤波等,去噪的原理是通过数学模型或统计学方法,将噪音信号与心电信号分离或抑制。

3. 基线漂移校正,心电信号中常常存在基线漂移,即信号整体偏离基准线的现象。

基线漂移校正的原理是通过计算信号的均值或斜率,将信号整体平移或调整,使得信号整体回归到基准线附近。

4. 放大,在预处理中,有时需要对心电信号进行放大,以增强信号的幅度,使得信号更易于观察和分析。

放大的原理是通过调节放大倍数或增益,使得信号幅度适合后续处理和分析的要求。

总的来说,心电信号预处理的原理是通过滤波、去噪、基线漂移校正和放大等技术手段,对原始心电信号进行处理,以提高信号质量,减少干扰和噪音,为后续的心电信号分析和诊断提供更可靠的数据基础。

心电去噪方法研究24页PPT

心电去噪方法研究24页PPT

1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿

心电信号去噪设计报告

心电信号去噪设计报告

基于MATLAB的心电信号去噪设计报告摘要心脏是人体血液循环的动力源泉,而心脏病作为一种多发慢性疾病,却是威胁人类生命的主要疾病。

心电图作为一种无创伤性的检查手段,对于心脏基本功能诊断和病理研究具有重要参考价值,在临床上的作用无可替代。

研究开发具有心电信号采集、预处理、自动诊断、远程监护等功能心电监护诊断系统,可以及早发现心脏病征兆,可以给予心脏病患者实时监护,因此具有很高的临床价值和应用价值,满足人们对提高生命和生活质量的要求,是心电图设备的发展方向。

心电信号在心脏疾病的诊断中具有不可替代的地位,心电信号在采集、放大、检测、记录过程会受到多种噪声的干扰,包括由电力系统引起的工频干扰,人体呼吸引起的基线漂移、肌肉震颤引起的肌电干扰、电极脱落引起的电极接触噪声以及运动伪差等。

由于生物电十分微弱,存在的噪声会对心电信号分析产生很大影响,所以采集心电信号后的首要任务便是滤波。

心电信号相对于存在的环境是一种微弱信号,极易受到噪声的干扰。

针对现有算法的不足和心电信号去噪的具体要求,本文提出了基于MATLAB的心电信号去噪算法,可以很好的去除心电信号中的高频噪声,分别利用不同滤波器处理非稳态信号的优势,算法复杂度减小,信噪比提升大,实时性好。

结合小波分解与重构算法可以完美地去除心电信号中的噪声。

本文对三种不同滤波器用于工频干扰、基线漂移和肌电干扰问题作了研究,重点解决工频波动和基线漂移导致ST段频率重叠问题。

分别使用Butterwort 滤波器、切比雪夫滤波器和零相移滤波器对工频干扰、肌电干扰和基线漂移等噪声进行初步滤除。

由于三种滤波器的局限性未能将噪声完全滤去,所以我们最后采取小波变换对初步滤波后的心电信号进行改善和修复,得到较为纯净的心电信号。

关键词:心电信号小波变换 Butterwort滤波器切比雪夫滤波器零相移滤波器一、问题的重述1.1 问题背景心电信号十分微弱,在某些采集过程中,比如运动心电,由于受到仪器、人体等多方面影响,心电信号会受到强干扰的影响,引起心电信号畸发。

心电去噪方法研究

心电去噪方法研究
滤波器的特性如图(1)所示,去噪后信号与原始信号比较如图(2)所 示。
仿真结果
图(2) 波形对比
图(1) 滤波器特性
小波分析去噪
设计方案:
选择‘db5’小波,对心电信号S进 行3层分解(小波分解各层小波系数 如图(3)所示)。
利用MATLAB提供的默认阈值命令对 各层的高频系数CD1、CD2、CD3进行 阈值处理后。
IMF有2个特点:一是在整个信号长度上 极大值点数与极小值点数和过零点数相等 或相差为1;二是在任意一点,由包络线 定义的极大值与极小值的均值为零。
EMD的实质是对一个时间序列信号进行平 稳化处理,其结果是将信号中不同尺度的 波动或趋势逐级分解开来,产生一系列具 有不同特征尺度的数据序列,每一个序列 称为IMF分量 。
项c 1 h 变1 k,成r 1 单 调X ( 函t)数 c 时1 ,,X 原(t) 始 信r 1 号的EMD分解结束。最后得到
rn c n
rn
n
X(t) ci rn i1
经验模态分析去噪
经验模态去噪步骤:
首先,利用EMD对原始信号进行分解,得到不同尺度的IMF分量
和剩余信号。
然后,对各尺度上的IMF分量进行类似于小波去噪的阈值处理 。 最后,信号重构 。即:阈值处理后的各尺度上的IMF分量以及
经验模态分析去噪
(结4果)的以标准h1差1 代:替 X (t) ,重复以上三步,直到连续两次筛选
2
T
SD
h k1
(t)hk
(t)
t0
hk21(t)
小于指定的标准(一般为0.2至0.3之间)时,即可认为
符合IFM分量的要求,为一IFM分量,则记作:
h1k
(5)重复以上四步,直到 或 比预定值小;或剩余

基于提升方案的心电信号去噪算法

基于提升方案的心电信号去噪算法

t r s od d h e h l e—n sn t o e l t os d E G i a s o v i ae te a t a e e t f h t o ,sg asi o ig me h d t d a h n ie C sg l .T a d t h cu l f c e meh d i l n o wi n l f ot n MI T—B H E in ld t a e a e a ay e .Re u t s o h t h e—n i d sg a h s l t itrin,a d t e I CG s a aa s r n lz d g b s l h w t a e d s t os i l a i e d s t e n t l o o n h
摘要 : 针对 传 统 小 波 变换 的去 嗓 算 法运 算 复 杂 , 以用 于 心 电信 号 的实 时 处 理 , 难 而常 见 心 电信 号 滤 波 算 法在 实性和去噪效果 , 采用提升方案来构造小波 , 提高了小波分解 的速度 , 减少算法对 内存的需求 , 并结合阈值滤波算法对小波系数进行处理 , 实现信号与噪声 的分离。为了验证算法有效性 , MI 对 T—BH数据 I 库中数据进行了仿真实验 , 结果表 明方法处理后信号失真较小 , 信号中叠加 的工频干扰 和肌电干扰基本被消除 , 相对于基于
第2卷 第1期 7 0
文 章 编 号 :0 6— 3 8 2 1 )0—02 10 9 4 (0 0 1 2 6—0 4



仿

21年1月 00 0
基 于 提 升 方 案 的 心 电信 号 去 噪 算 法
张德平 , 贾文娜 , 杨叶 青
( 上海交通大学电子信息与电气工程学院 , 上海 2 0 4 ) 0 2 0

心电数据处理与去噪(DOC)

心电数据处理与去噪(DOC)

燕山大学课程设计说明书题目心电数据处理与去噪学院(系):电气工程学院年级专业: 11级仪表一班学号: 110103020036学生姓名:张钊指导教师:谢平杜义浩教师职称:教授讲师燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:自动化仪表系说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。

2014年7月 5 日摘要 (2)第1章设计目的、意义 (3)1.1 设计目的 (3)1.2设计内容 (3)第2章心电信号的频域处理方法及其分析方法 (4)2.1小波分析分析 (4)2.2 50hz工频滤波分析 (10)第3章 GUI界面可视化 (14)学习心得 (15)参考文献 (15)信号处理的基本概念和分析方法已应用于许多不同领域和学科中,尤其是数字计算机的出现和大规模集成技术的高度发展,有力地推动了数字信号处理技术的发展和应用。

心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。

心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。

在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。

心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电它属于随机信号的一种,用数字信号处理的方法和Matlab软件对其进行分析后,可以得到许多有用的信息,对于诊断疾病有非常重要的参考价值。

关键字:信号处理心电信号Matlab第一章设计目的、意义1 设计目的进行改革,增大学生的自主选择权,让学生发展自己的兴趣,塑造自己未来的研究发展方向。

课程设计的主要目的:(1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。

(2)培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力。

(3)培养学生综合分析问题、发现问题和解决问题的能力。

(4)培养学生用maltab处理图像与数据的能力。

心音信号的去噪

心音信号的去噪

心音信号去噪方法比较研究2016 年 01 月 06 日摘要 (1)关键词 (1)第一章绪论 (2)1.1研究背景 (2)1.1.1心音信号基础知识 (2)1.1.1.1心音的形成机制 (2)1.2心音信号的特性 (3)1.2.1心音的时域特性 (3)1.2.2心音的频率特性 (3)第二章去噪方法分析 (4)2.1 巴特沃斯滤波器 (4)2.2 切比雪夫低通滤波器 (5)2.3 小波变换 (6)第三章心音信号的获取及预处理 (12)3.1 心音信号的采集 (13)3.2 心音信号的预处理 (14)第四章心音信号去噪的实验过程 (14)4.1 常规方法 (14)4.2 小波去噪 (17)第五章滤波方法比较 (21)第六章实验总结 (21)参考文献 (22)附录 (24)摘要心音是最重要的信号之一。

然而,许多外界因素会影响心音信号的采集。

心音是弱电气信号以至很弱的外部噪声就能导致信号中的病理和生理信息的错误判断,从而导致疾病的错诊。

因此对心音信号去噪的研究非常重要。

本文研究并比较了几种基于matlab的心音去噪的方法。

首先我们采用经典的butterworth低通滤波器和切比雪夫低通滤波器对心音信号进行去噪,结果表明这两种滤波器对高频噪声的消除效果明显,但不能滤除低频噪声。

其次,我们采用了小波变换对含噪心音信号进行处理。

一种方法中丢弃分解信号的高频部分和部分细节,将分解后的信号近似和第四层细节相加作为样本信号的代替。

这种方法简单且能有效的消除高频噪声,但由于丢失了部分细节,易使信号失真。

然后,我们采用haar小波阈值法对信号去噪,取得的较好的去噪效果,但高频噪声残留较多。

最后,我们db6小波进行去噪,得到了很好的信号波形,而且高频噪声残留较少。

通过实验,我们得出结论,无论哪种去噪方式都有其自身的局限性,单独的使用一种去噪方法很难将噪声完全滤除。

应该采用综合滤波方法,结合各个方法的优势联合滤波。

首先使用巴特沃斯低通滤波器或切比雪夫滤波器低通滤波器滤除高频噪声,再用db小波阈值或haar小波阈值法去噪法进行去噪。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

燕山大学课程设计说明书题目心电数据处理与去噪学院(系):电气工程学院年级专业: 11级仪表一班学号: ************学生姓名:**指导教师:谢平杜义浩教师职称:教授讲师燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:自动化仪表系说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。

2014年7月 5 日摘要 (2)第1章设计目的、意义 (3)1.1 设计目的 (3)1.2设计内容 (3)第2章心电信号的频域处理方法及其分析方法 (4)2.1小波分析分析 (4)2.2 50hz工频滤波分析 (10)第3章 GUI界面可视化 (14)学习心得 (15)参考文献 (15)信号处理的基本概念和分析方法已应用于许多不同领域和学科中,尤其是数字计算机的出现和大规模集成技术的高度发展,有力地推动了数字信号处理技术的发展和应用。

心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。

心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。

在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。

心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电它属于随机信号的一种,用数字信号处理的方法和Matlab软件对其进行分析后,可以得到许多有用的信息,对于诊断疾病有非常重要的参考价值。

关键字:信号处理心电信号Matlab第一章设计目的、意义1 设计目的进行改革,增大学生的自主选择权,让学生发展自己的兴趣,塑造自己未来的研究发展方向。

课程设计的主要目的:(1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。

(2)培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力。

(3)培养学生综合分析问题、发现问题和解决问题的能力。

(4)培养学生用maltab处理图像与数据的能力。

2 设计内容2.1 设计要求:要求设计出心电数据处理的处理与分析程序。

(1) 处理对象:心电数据;(2) 内容:心电数据仿真,心电数据处理(仿真数据,真实数据);(3) 结果:得到处理结果。

2.2 设计内容:(1)心电数据仿真;(2)心电数据处理;(3)分析处理结果。

(4)可视化界面设计2.3 实验原理2.3.1心电产生原理我们常说的心电图一般指体表心电图,反映了心脏电兴奋在心脏传导系统中产生和传导的过程。

正常人体的每一个心动周期中,各部分兴奋过程中出现的电变化的方向、途径、次序和时问都有一定的规律,这种生物电变化通过心脏周围的导电组织和体液,反映到身体表面,使身体各部位在每一心动周期中也出现有规律的电变化。

在人体不同部位放置电极,并通过电联线与心电图机的正负极相连,在心电图机上便可以记录到周期变化的心电图。

心电图是通过二次投影形成的。

整体心肌细胞的除极和复极所产生的每一瞬l ’日J 的除极、复极综合向量轨迹,在立体心脏的三维空『日J 内按时问顺序将其顶端相连,便构成立体心向量环。

立体心向量环在额面和横面的投影,形成平面的心向量环;将平面向量环在导联轴上进行二次投影,就形成相应的心电图。

对于标准的12导联来说,额面心向量环在肢体导联上的投影,形成I 、II 、Ill 、avR 、avL 、avF 导联心电图,而横面心向量环在胸导联轴上的投影便形成了V1~V6导联心电图m 。

不同导联记录到的心电图,在波形上有所不同,但基本上都包括一个P 波,一个QRS 波和一个T 波,有时候在T 波后还出现一个小u 波。

第二章 心电信号的时域处理及其分析方法1.小波分析理论传统的信号分析建立在傅里叶变换基础之上,它运用数学言将信号表示为一组正弦函数或余弦函数之和并把信号分解众多的频率成分,这些频率又可以重构原来的信号,而且这种变换能量不变,因此她把它在信号处理领域长期处于统治地位。

但它是一种纯频域的分析方法,反映信号在整个时间轴上的频域特性,并且只适合时不变信号,对于非平稳信号有局限性。

在实际工程应用中,通常所分析的信号具有非线性,非平稳,并且奇异点较多的特点。

含噪的一维信号模型可表示为:其中,f(t)为真实信号,s(t)为含噪信号,e(t)为噪声, 为噪声标 准偏差。

)(*)()(t e t f t s σ 1_,,1,0n t1.2小波去噪理论有用信号通常表现为低频信号或是相对比较平稳而噪声信号通常现为高频信号。

利用小波对含噪的原始信号分解后,含噪部分主要集中在高频小波系数中,并且,包含有用信号的小波系数幅值较大,但数目少;而噪声对应的小波系数幅值小,数目较多。

基于上述特点,可以应用门限阈值法对小波系数进行处理。

(即对较小的小波系数置为0,较大的保留或削弱),然后对信号重构即可达到消噪的目的。

小波分解的结构示意图小波分解系数示意图1.3小波变换去噪的流程示意图1.4小波去噪matlab 程序clear;预处理小波变换多尺度分解各尺度小波系数除噪小波逆变换重构信号除噪后的信号 含噪信号close all;a=load('D:\Documents\Desktop\ECG\ECG_A.txt');data=a(1:200,3);figure,plot(data);xlabel('时间(s)');ylabel('被测变量y');title('原始信号(时域)');% mallet_wavelet.m% 此函数用于研究Mallet算法及滤波器设计% 此函数仅用于消噪a=pi/8; %角度赋初值b=pi/8;%低通重构FIR滤波器h0(n)冲激响应赋值h0=cos(a)*cos(b);h1=sin(a)*cos(b);h2=-sin(a)*sin(b);h3=cos(a)*sin(b);low_construct=[h0,h1,h2,h3];L_fre=4; %滤波器长度low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器if(mod(i_high,2)==0);coefficient=-1;elsecoefficient=1;endhigh_construct(1,i_high)=low_decompose(1,i_high)*coefficient;endhigh_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n)L_signal=100; %信号长度n=1:L_signal; %信号赋值f=10;a=load('D:\Documents\Desktop\ECG\ECG_A.txt');data=a(1:200,3);figure,plot(data);xlabel('时间(s)');ylabel('被测变量y');title('原始信号(时域)');figure(1);plot(data);title('原信号');check1=sum(high_decompose); %h0(n)性质校验check2=sum(low_decompose);check3=norm(high_decompose);check4=norm(low_decompose);l_fre=conv(data,low_decompose); %卷积l_fre_down=dyaddown(l_fre); %抽取,得低频细节h_fre=conv(data,high_decompose);h_fre_down=dyaddown(h_fre); %信号高频细节figure(2);subplot(2,1,1)plot(l_fre_down);title('小波分解的低频系数');subplot(2,1,2);plot(h_fre_down);title('小波分解的高频系数');1.5小波分析结果2. 50hz工频滤波分析陷波器也称带阻滤波器(窄带阻滤波器),它能在保证其他频率的信号不损失的情况下,有效的抑制输入信号中某一频率信息。

所以当电路中需要滤除存在的某一特定频率的干扰信号时,就经常用到陷波器。

在我国采用的是50hz频率的交流电,所以在平时需要对信号进行采集处理和分析时,常会存在50hz的工频干扰,对我们的信号处理造成很大干扰,因此50Hz陷波器在日常成产生活中被广泛应用,其技术已基本成熟。

工频陷波器不仅在通信领域里被大量应用,还在自动控制、雷达、声纳、人造卫星、仪器仪表测量及计算机技术等领域有着广泛的应用2.1 心电信号噪声分析心电信号由于受到人体诸多因素的影响,因而有着一般信号所没有的特点:(1)信号弱,心电信号是体表的电生理信号,一般比较微弱,幅度在10pV~5mV,频率为0.05~100Hz。

例如从母体腹部收取到的胎儿心电信号仅10/zV~50/IV。

(2)噪声强,由于人体自身信号弱,加之人体又是一个复杂的系统,因此信号容易受到噪声干扰。

(3)随机性强,心电信号不仅是随机的,而且是非平稳的。

同时,在心电图检测过程中极易受到各种噪声源的干扰,从而使图像质量变差,使均匀和连续变化的心电数值产生突变,在心电图上形成一些毛刺。

使原本很微弱的信号很难和噪声进行分解。

可能出现的噪声有如下的种类:(1)工频干扰工频干扰是由电力系统和人体的分布电容引起的,其频率包括50Hz(MIT-BIH 数据库数据工频因为是美国标准,所以是60Hz)的基波及其各次谐波,其幅值成分在ECG峰一峰值的0—50%范围内变化。

(2)引起基线漂移的干扰心电信号有时候会出现信号基线起伏不平的现象,造成这样的现象有很多原因,主要的有:①呼吸运动人体呼吸时胸腔内器官和组织会发生一定程度的变化,会对在体表记录到的心电图波形的幅度和形态有所影响,表现为基线随呼吸产生周期性或非周期性漂移,从而导致心电波形的幅度随呼气和吸气而分别上抬和下移。

呼吸运动是引起心电基线漂移的主要原因。

②运动伪迹运动伪迹是由于人体轻微运动造成电极与入体的接触电阻发生变化而引入的一种干扰,它的产生原因仅仅是接触电阻的变化,而不是接触的断续。

这种干扰同样导致信号基线的变化,但不是基线的跃变。

③信号记录和处理中电子设备引起的干扰这种干扰对信号影响很大,严重时可完全淹没心电信号或使得基线剧烈漂移,其中导联开路和放大器的热移是主要因素。

这种干扰往往无法通过心电分析算法来校正。

由于心电波形已经完全畸变,此时对这些数据分析已无太大意义。

相关文档
最新文档